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The Role of Context in Problem-Solving in STEM Education: Bridging 

Informal and Formal Learning: A Systematized Literature Review 

Abstract 

A common belief developed throughout human history that children learn principally in 

schools. The perspective that they are learning primarily in school is being increasingly 

challenged. Researchers have revealed that children develop content understandings in daily, 

out-of-school contexts, which often differ from what is taught in classrooms. This means that 

informal methods may not be taught in traditional school settings. Children often engage in 

informal settings outside of school while simultaneously dealing with school-taught 

algorithms and their ineffective application. Although formal school teaching methods may 

offer powerful tools to enhance cognitive processes, it is vital to comprehend how to 

effectively connect formal and informal STEM learning. Different strategies have been 

highlighted in the literature to connect abstract representations in formal learning to practical 

contexts in informal setups. 

A substantial body of research has highlighted the differences and lack of connection 

between what students learn in school and what happens outside of school. This underscores 

the importance of analyzing and synthesizing the existing literature by leveraging extensive 

knowledge to identify the common trends and themes that have developed over time. Themes 

were developed using qualitative analysis techniques. This review sheds light on the 

significance of context in formal and informal learning in STEM problem-solving and 

highlights the strategies for bridging the contextual divide that exists between formal and 

informal learning environments. The significance of this review is to provide educators with 

practical implications by providing a theoretical refinement of the concept of formal and 

informal learning contexts in STEM problem-solving. 
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Introduction 

In 1985, Terezinha Nunes Carraher and colleagues challenged the perspective that students 

learn mathematics primarily in schools in their foundational research [1], broadening the 

scope of mathematics education research. This was one of the studies examining how real-

world experiences systematically influence mathematical understanding. Their research 

revealed that children develop mathematical understandings in daily, out-of-school contexts, 

which often differ from what is taught in classrooms. Building on this, they investigated how 

informal, intuitive ways of learning mathematics can be leveraged in educational settings. 

Besides the cognitive and cultural dimensions of this research, their work spans the domains 

of children’s literacy and numeracy with a special interest in educational applications. 

While traditional classroom settings have been the primary focus of mathematical education 

research, a growing body of literature over recent decades highlights that mathematical 

learning and reasoning extend far beyond the confines of the classroom. Studies conducted 

outside formal educational settings reveal that both children and adults engage with 

mathematics in diverse, meaningful ways in their everyday lives, demonstrating practices that 

differ significantly from those found in traditional classrooms. Independent of formal 

schooling, mathematics serves as a vital tool for addressing real-world challenges and 

completing everyday and professional tasks [2],[3]. Researchers have underscored the 

potential of these informal experiences as valuable resources for enhancing mathematics 

education in schools. Martin and colleagues emphasize the need to bridge the divide between 

in-school and out-of-school mathematics, arguing that “when the mathematics of school and 

that of everyday life are seen as incommensurable, it impoverishes both contexts, separating 



the symbolic precision and power of school math from the flexibility and creative sense-

making of everyday life” [4]. 

Mathematical practices and learning have been documented across a wide range of everyday 

contexts, including candy selling, carpet laying, video gaming, entertainment, sports, 

budgeting, money management, fishing, construction work, shopping, farming, sewing, 

professional industries, and family activities [5]-[15]. These informal experiences have been 

identified as critical predictors of children’s developing math skills and knowledge. For 

example, Benigno [16] observed the natural mathematical practices of four-year-old African 

American children and their families, finding evidence of counting, geometric thinking, 

spatial reasoning, and discussions of difference and similarity. This growing recognition of 

the interplay between formal and informal mathematics learning underscores the importance 

of leveraging everyday mathematical experiences to inform and enhance classroom 

instruction. 

In engineering education, much like mathematics, the integration of contextualized problems 

into the curriculum is essential for bridging the gap between theoretical knowledge and real-

world application. Wolff [34] emphasizes the importance of contextualizing engineering 

problems to enhance problem-solving abilities in complex, real-world settings. According to 

Wolff [34], the theory-practice divide in engineering can be addressed by incorporating 

multiple perspectives, specifically situational, doctrinal, and purist insights, into problem-

solving tasks. In this way, students are encouraged not only to apply disciplinary knowledge 

but also to recognize the contextual complexities that influence engineering practice in 

professional environments. 

This study synthesizes existing literature on the differences and lack of connection between 

STEM concepts learned in school and outside of school, identifying common trends and 

themes that have developed over time. It is vital to comprehend how to integrate formal and 

informal engineering, mathematics, and science learning through effective pedagogical 

strategies. This review synthesized the research on the significance of context in formal and 

informal learning in problem-solving and highlighted the strategies for bridging the 

contextual divide that exists between formal and informal learning environments, and 

suggested future directions. 

Research Questions 

By reviewing the available literature, this systematized literature review aims to answer the 

following research questions:  

1) How does context influence formal and informal learning in STEM education? 

2) What are the pedagogical strategies to integrate informal learning in formal educational 

settings? 

Methodology 

To address the research questions, a systematic literature review was conducted to examine 

the existing body of work methodically. The groundbreaking work of Carraher and 

colleagues [1] has since influenced numerous studies in mathematics education, shaping 

the current understanding of learning in context. This synthesis examines articles and 

demonstrates how the study findings have contributed to more practical, context-based 

approaches in mathematics education, fostering deeper connections between real-world 

problem-solving and classroom learning. 

Articles were purposefully selected based on specific inclusion and exclusion criteria. A 

codebook was created to document the selected articles, enabling a thorough analysis of each 

study’s objectives, sample characteristics, data collection methods, results, implications, and 



limitations, as well as to establish preliminary connections aligned with our research 

questions. The findings were synthesized using the systematic thematic synthesis method 

outlined by Booth et al. [17] and communicated through a narrative description. Thematic 

analysis was used for developing themes [18]. 

Search and Selection Criteria 

After using various search strings derived from the central theme of the literature review to 

identify relevant articles across multiple databases, ERIC, IEEE Xplore, Education Full Text, 

PsycINFO, and Google Scholar, we selected only two databases of ERIC and PsycINFO, to 

run the initial search. Multiple search strings were built by taking all the possible 

combinations of search keywords. Each string is made with the union and intersection of the 

key concept categories: formal learning, informal learning, context, mathematics, and 

engineering. Multiple search strings like the one mentioned below were formed to extract an 

extensive collection of literature while maintaining the simplicity of search terms.  

(“formal learning” OR “informal learning “) AND (“Math’s” OR “mathematics” OR 

“engineering” OR “science” OR “technology”) AND (“problem solving”) 

We retrieved 44 articles from ERIC and 37 from PsycINFO that included the search terms 

appearing anywhere within the title, abstract, or full text. Initially, the articles were screened 

based on keywords in the title and abstract. Then the selected articles were screened further 

by reviewing the full text to ensure their relevance. The criteria for inclusion in the review 

were as follows: (1) publication type- the publication was a journal article or conference 

paper, (2) empirical- the study reported empirical findings, (3) participants- K-12 and STEM 

students, (4) articles published after Carraher et al.’s [1], (5) language- the study was written 

in English. Studies were excluded if they did not answer the research questions. We chose to 

synthesize the eighteen relevant articles based on the inclusion and exclusion criteria and 

relevance based on the research questions. The selected articles were marked with an asterisk 

in the reference section. Articles were reviewed to document each study’s objectives, results, 

and outcomes, facilitating preliminary connections with the research questions. Subsequently, 

a second review was conducted to record sample characteristics, study purpose and focus, 

and research design features of the selected articles. These two sets of coding elements were 

consolidated into a unified coding table, which was periodically updated as needed and 

treated as a dynamic document.  

Synthesis Method 

A thematic analysis was conducted to identify key themes across the studies listed in the 

coding table. This method, inspired by Booth et al. [17], was utilized to extract common ideas 

and conclusions pertinent to our research questions, rather than to generate new knowledge, 

though that remains a possibility. This systematized literature review synthesizes the relevant 

studies from the coding table, aligning them with our research questions to present the key 

findings. 

Analysis 

Themes were developed across the array of selected studies using the thematic analysis 

method of Saldana [18] by extracting common ideas and conclusions related to our research 

questions. Two rounds of coding were performed to develop the themes. In the first cycle, the 

findings of the selected articles were coded using descriptive coding relevant to our research 

questions. In the second phase, the codes were grouped into categories and themes to 

synthesize the findings of the included studies into meaningful ideas. 

 

 



Findings 

The analysis of eighteen studies included in this synthesis resulted in four key themes: 

cognition in context, spatial context, transfer of learning, and pedagogical strategies. 

Theme 1: Cognition in Context 

Cognition in context refers to the idea that thinking, learning, and problem-solving are not 

isolated mental processes but are shaped by the environments in which they take place. This 

means that knowledge and skills are often developed in response to the specific demands and 

social interactions of a given context. This theme was developed to answer the first research 

question and runs through the studies published after Carraher et al.’s research, illustrating 

the central role of context in shaping cognitive development. Carraher et al.’s [1] study on 

Brazilian street vendors identified a clear disconnect between the informal math skills 

developed through daily activities and the formal procedures taught in academic settings, 

indicating that traditional school math fails to leverage the practical knowledge gained from 

everyday experiences. The findings underscored the importance of recognizing that cognitive 

skills are highly context-dependent, as students perform better in meaningful situations rather 

than in abstract form. Street vendors use strategies that involve mentally manipulating 

quantities for daily problem-solving tasks. In contrast, school settings emphasized the 

manipulation of symbols for computations. Resnick [21] took Carraher et al.’s findings and 

highlighted the need to rethink schooling as it focuses on individual performance and 

promotes symbolic thinking, whereas mental activities out of school engage directly with 

objects and situations. Resnick argued that school learning is decontextualized, isolating 

knowledge from real-world contexts, and tends to focus on isolated cognitive tasks, whereas 

real-life cognition is deeply rooted in contexts [21]. Saxe [15] extended Carraher et al.’s and 

Resnick’s emphasis on the importance of context in mathematical learning. He examined 

the mathematical understanding of child candy sellers through their participation in selling. 

Saxe’s study emphasized that children’s mathematical skills are heavily influenced by their 

everyday experiences, social interactions, and the practical demands of their environment, but 

these skills do not always transfer smoothly to formal educational settings. These studies 

highlighted the concept of cognition in context in a way that children's cognitive skills are 

shaped by their practical experiences and environments. The math skills demonstrated by 

street vendors in Carraher et al.’s study and candy sellers in Saxe's study are highly effective 

within their specific real-world contexts, but transferring these skills to formal education 

remains a challenge, as argued by Resnick for a restructuring to better reflect the social and 

practical nature of cognition.  

Engineering education is undergoing rapid transformation, with cognitive perspectives on 

learners taking center stage in shaping teaching methodologies. This shift highlights the 

significance of psychological factors and social interactions as key elements in the learning 

process. It also underscores the value of students’ prior knowledge, the impact of context on 

their learning experiences, and the widely accepted notion that learners actively construct 

their understanding of subject matter. Kipper and Rüütmann [35] emphasized how learning in 

engineering education is deeply influenced by the interplay between cognitive processes and 

contextual factors. Their research underscores that cognition in engineering education is not 

merely about understanding abstract concepts but is deeply rooted in the context in which 

learning occurs. By incorporating real-world applications, social interactions, and students' 

prior knowledge, the teaching process fosters a more holistic and meaningful cognitive 

development. 

Brizuela and Strachota [20] grasped these foundational ideas a step further by integrating the 

concept of playful engagement into early algebraic reasoning by emphasizing the role of real-

world contexts in mathematical learning. Where Carraher et al. [1] focused on how informal 



contexts shape mathematical understanding, Brizuela and Strachota [20] expand this by 

creating a familiar contextual environment where students engage in playful stances towards 

algebra. This demonstrates that when students’ math learning is tied to meaningful and 

familiar experiences (like candy sharing or playful tinkering), they experience cognition in 

context more naturally, facilitating deeper learning. 

Integrating informal methods with formal procedures can significantly enhance mathematical 

understanding. This approach allows learners to connect intuitive problem-solving strategies 

with structured mathematical concepts, fostering a deeper comprehension of the subject 

matter. In the study by Hattikudur et al. [25], participants were introduced to two distinct 

methods for solving systems of equations: an informal “trading” procedure and a formal 

“matrix” procedure. They examined how comparing informal and formal procedures affects 

learning in solving systems of equations. Similarly, Civil [5] provides valuable insights into 

how integrating everyday mathematics with formal mathematical instruction influences 

student engagement and learning. She demonstrated that when classroom activities connect 

with students’ real-life experiences, participation increases, especially among those who 

might otherwise disengage. However, as discussions shift toward more formal mathematical 

concepts, some students may withdraw, highlighting the need for careful integration of 

informal and formal learning to maintain engagement.  

Kaminski and Sloutsky [26] discussed how the context in which mathematical concepts are 

presented can significantly influence children’s learning and cognitive processing. 

Specifically, they examined the impact of using rich, contextualized materials (like colorful, 

student-made paper pizzas) versus simple, generic materials (such as monochromatic paper 

circles) in teaching fractions to first-grade students. They highlighted that the cognitive 

demands of interpreting and creating complex, context-rich materials can interfere with the 

effective learning of mathematical ideas. Therefore, introducing mathematical concepts with 

simple, generic materials may be more beneficial for elementary students’ comprehension 

and application of these concepts. Similarly, Pouw et al. [29] embedded cognition 

emphasizes the dynamic interplay between a learner’s cognitive processes and their physical 

environment. They argued that the environment can act as an extension of the mind, 

offloading cognitive demands and shaping problem-solving strategies. For example, external 

artifacts, such as instructional manipulatives, can structure cognitive activities by reducing 

working memory load and offering direct sensory and motor engagement. This view 

suggested that cognition is not isolated within the brain but distributed across tools and 

spaces, which makes the learning context crucial for facilitating understanding. The research 

highlighted the importance of designing learning environments that integrate perceptual and 

interactive richness to align with how cognition naturally unfolds in context. 

Zbiek and Conner [31] discussed mathematical modeling that enables the application of 

mathematical principles to address real-world problems. Mathematical modeling situates 

learning within meaningful real-world contexts, allowing students to see the relevance of 

abstract mathematical ideas. This contextualization engages cognitive processes by requiring 

learners to interpret, analyze, and adapt to the constraints and dynamics of a given situation. 

The theme of cognition in context permeates all aspects of STEM education, emphasizing 

that learning is not an isolated mental activity but deeply influenced by the environments and 

experiences in which it occurs. Across STEM disciplines, whether in engineering design, 

mathematical reasoning, or scientific inquiry, students engage more effectively when 

knowledge is connected to meaningful, real-world contexts. 



Theme 2: Spatial Context 

The spaces we inhabit and learn in significantly influence our understanding and experience 

of the world. Most research in mathematics teacher education has focused on cognitive and 

social concepts. However, discussions often overlook the importance of physical and 

imagined spaces. Recent studies in mathematics and STEM education highlight an increasing 

need to comprehend the significance of spatial reasoning within the mathematics curriculum 

and its application in daily spatial interactions [27].  

The environment in which we learn mathematics affects how we learn it and what we 

perceive as mathematics [1].  Carraher et al. demonstrated that Brazilian street vendors 

excelled at practical math skills within the spatial context of the marketplace. The findings of 

Carraher et al. [1] significantly influenced Weiland and Poling’s [23] research by reinforcing 

the critical importance of spatial context in mathematics education. Weiland and Poling 

echoed this by encouraging teacher education programs to integrate spatial contexts into their 

curricula, helping future teachers create lessons that connect mathematics to students’ lived 

experiences. This alignment between theory and practice supports the notion that effective 

math education must engage with the real-world contexts of students. They advocated 

preparing teachers to consider various environments that can help students see connections 

across the curriculum, making math more relevant to their lived experiences. They suggested 

modifying classroom activities like classroom observations, community walks, and data 

investigations to incorporate spatial considerations into their practice. 

Weiland and Poling’s approach of utilizing community walks directly connects to Saxe’s 

findings by allowing future teachers to observe how spatial contexts affect student learning 

and interaction with mathematics. This can help teachers recognize the importance of 

incorporating students’ environments into their instruction. The incorporation of spatial 

considerations into teacher education, as suggested by Weiland and Poling, complements 

Wood’s findings by encouraging future teachers to create learning environments that 

facilitate collaboration and discussion. By modifying activities to reflect spatial contexts, 

educators can better support student engagement and understanding. Weiland and Poling [23] 

and Brizuela and Strachota [20] shared emphasis on the importance of spatial considerations 

in mathematics education. While Weiland and Poling focused on the physical and 

geographical spaces in which students learn, Brizuela and Strachota [20] emphasized the 

cognitive development of spatial reasoning within those spaces. Together, these works 

suggested that effective mathematics education must address both the external environments 

students inhabit and the internal cognitive tools they use to understand and interact with those 

environments. These studies emphasized that learning is deeply intertwined with the 

environments in which it occurs, suggesting that educators must recognize and adapt to these 

contexts to enhance students’ understanding and engagement in mathematics. Viewing space 

as a dimension of reality goes beyond content or teaching methods, breaking down the 

artificial boundaries between subjects and giving students the chance to see connections 

across the curriculum. 

Courtney et al. [28] brought the concept of field trips as spatial contexts to enhance student 

learning, particularly in mathematics. Field trips provide opportunities for students to interact 

with real-world environments that are rich in mathematical content, such as museums, 

architectural landmarks, and other community spaces. These experiences help ground 

abstract mathematical concepts in tangible, meaningful contexts, allowing students to 

develop problem-solving skills through inquiry-based learning. For instance, the study 

emphasizes that field trips enable students to explore mathematical problems embedded in 

community settings, such as calculating dimensions or interpreting spatial layouts, fostering a 

connection between mathematical reasoning and real-world applications. 



Besides physical, research has also emphasized the virtual spaces besides physical that can 

enhance the problem-solving skills and conceptual grips. The study by Demitriadou et al. 

[30] emphasizes that VR and AR improve students’ spatial skills by enabling them to 

visualize and manipulate 3D geometric shapes, fostering a deeper understanding of spatial 

relationships. The activities encouraged students to identify geometric shapes in their 

surroundings, reinforcing the relevance of spatial geometry to daily life. By providing an 

immersive and interactive experience, these technologies make abstract spatial concepts more 

tangible and engaging, aiding cognitive and psychomotor development related to spatial 

contexts. The study concludes that both VR and AR technologies are equally effective in 

enhancing STEM learning, particularly in the spatial domain, by making concepts more 

accessible and engaging compared to traditional teaching methods. 

Avargil et al. [38] used spatial context primarily through interdisciplinary connections in the 

Taste of Chemistry module. Teachers focused on transferring between molecular 

representations, such as 2D structural formulas, and 3D models like ball-and-stick or space-

filling models. Four levels, including macroscopic (observable phenomena), microscopic 

(particle-level explanations), symbol (equations and graphs), and process (reactions and 

transformations), are integrated into teaching. These transitions help students connect 

symbolic and spatial aspects of chemistry. These approaches collectively aim to deepen 

student understanding by bridging abstract concepts with spatially tangible representations. 

Theme 3: Transfer of Learning 

The concept of transfer of learning refers to the ability to apply knowledge and skills learned 

in one context to new, different situations. Saxe [15] explored the concept of learning transfer 

through candy selling by building on Carraher’s insight that transfer of learning can be 

bidirectional, informal math skills can be adapted for formal educational contexts, and formal 

strategies can be adjusted for real-world situations. However, Saxe’s research findings 

revealed that there was a gap in the accuracy of solutions, indicating limited generality and 

requiring specialized strategies that reflect a deeper understanding of how to navigate across 

formal and informal contexts. 

Resnick’s [21] theoretical research, prompted by the empirical findings of Carraher et al [1] 

explained the disconnect between formal and informal learning in mathematics in terms of 

a mental model. Mental models support the transfer of learning by permitting flexibility in 

response to unexpected situations. Resnick emphasized the importance of schooling in 

equipping students with the cognitive tools, like mental models, needed to construct relevant 

mental models for diverse situations, enabling them to adapt their skills effectively when 

faced with new environments or unexpected problems. If schools continue to prioritize 

individual competence, tool-free performance, and decontextualized skills, educating students 

solely for success in school may not sufficiently prepare them to be effective learners outside 

of the classroom [21]. 

Wood [24] explored the development of mathematical understanding by creating 

opportunities for argument and discussions in the classroom, replicating informal learning 

benefits within a formal setting. She argued that incorporating more real-life, practical 

problems into classroom discussions, like the types of problems encountered in Carraher et 

al.’s study, can make the classroom a place where formal and informal thinking can co-exist. 

Wood’s research was set in a dynamic, argument-driven classroom, using open-ended, 

discussion-based problems. The setting was deliberately designed to promote social 

interaction and cognitive engagement through discourse, allowing students to deepen their 

understanding of mathematical concepts and practice applying their learning flexibly. The 

problems were real-world or contextualized scenarios that students could relate to, which 

helped to bridge the gap between abstract mathematical concepts and practical application. 



Unlike Carraher et al.’s and Saxe’s findings, where transfer from informal to formal settings 

was problematic, Wood’s classroom environment nurtured cognitive flexibility that aids 

transfer by encouraging students to articulate, debate, and justify their reasoning in a 

structured yet socially interactive setting. 

Brizuela and Strachota [20] provided a potential solution, just like Wood’s research presented 

in the form of classroom discourse, to the problems discussed in Carraher et al.’s and Saxe’s 

research regarding the difficulty of transferring knowledge from one context to another. They 

suggested joyful engagement in algebraic tasks can create a smoother bridge for the transfer 

of learning by making abstract concepts more engaging and accessible. When students 

experience joy and agency in solving algebraic problems, they are more likely to retain and 

transfer these skills to other contexts, indicating that positive emotional engagement enhances 

learning transfer, as also suggested in Wood’s and Saxe’s findings. The use of familiar 

contexts, multiple representations, and open-ended questions encouraged students to think 

deeply about the underlying principle of algebra, making it easier for them to transfer their 

learning to new tasks [20]. Zbiek and Conner [31] extended the concept of learning transfer 

to mathematical modeling differs from mental models suggested by Resnick [21]. 

Mathematical modeling serves as a rich context for learning by bridging the real-world and 

mathematical worlds, fostering spatial reasoning, and enabling learning transfer. It 

encourages students to explore, connect, and deepen their understanding of mathematical 

ideas, emphasizing both cognitive development and practical application. 

The use of contextualized learning environments enhances transfer, but Kaminski and 

Sloutsky [26] indicated that highly perceptual materials may hinder abstraction. They 

conducted two experiments to examine whether different instructional approaches impacted 

students’ ability to transfer fraction knowledge to novel contexts. They discussed learning 

transfer in the context of using rich, contextualized, student-made material versus simple, 

pre-made material for teaching fractions to elementary students. The findings suggested that 

the type of material used in instruction significantly affects learning transfer. Transfer was 

measured by testing students’ ability to apply learned fraction concepts to novel tasks one 

week after the initial instruction. The study concluded that rich, perceptually detailed 

materials may hinder transfer because they introduce extraneous information that distracts 

from the core mathematical relations.  

Theme 4: Pedagogical Strategies 

The articles following Carraher et al. [1] presented several pedagogical strategies that can 

enhance mathematics education by incorporating cognition in context, learning transfer, and 

spatial context, focusing on students’ learning processes. This theme is developed to answer 

the second research question. Weiland and Poling [23] advocated for a spatial turn in 

mathematics teacher education, encouraging teachers to recognize and utilize the spatial 

dimensions of learning environments. Educators can implement activities that explore spatial 

reasoning, such as mapping exercises, geometry projects, or community walks that allow 

students to analyze and visualize mathematical concepts in their surroundings. Wood’s [24] 

research highlighted the effectiveness of collaborative discourse in the classroom based on 

real-world problems to move their mental effort from contextual understanding to a more 

abstract or formal understanding of math itself. Besides contextual discourse, Brizuela and 

Strachota [20] encouraged the use of visual tools showing real-world scenarios, allowing 

students to explore ideas with joy and curiosity, making learning more meaningful and 

applicable to their lives. Resnick’s [21] shifted the idea from visual tools towards the focus 

on mental models, a key part of her pedagogical strategy, as it promotes deep learning, 

flexibility, and the ability to transfer knowledge across different contexts, and educators can 

support learners in understanding mathematical systems more holistically. By encouraging 

teachers to recognize how spatial contexts influence student learning, Weiland and Poling 



[23] advocate for more equitable, engaging, and contextually relevant math education that 

connects students to the physical world and its spatial dynamics. 

The use of concrete and digital mathematical models by teachers to present problems in 

context-based situations emerged as one of the most common strategies identified as a theme. 

Zaranis et al. [32] discussed the incorporation of Realistic Mathematical Education (RME) 

principles, which emphasize using thematic frameworks drawn from real-life scenarios. 

Digital tools, such as tablets and mobile applications, play a pivotal role in this process by 

offering interactive activities that simulate real-world problem-solving. For example, children 

might calculate the number of tickets required to enter a park or solve addition problems 

based on groceries in a basket. These tasks contextualize mathematics, enhancing students’ 

ability to relate abstract numbers and operations to tangible experiences. Additionally, 

combining digital activities with physical resources such as board games and hands-on 

manipulatives reinforces these connections, catering to diverse learning styles. Immediate 

feedback from digital tools further supports student understanding by allowing them to refine 

their problem-solving strategies in real-time. Besides this, Zbiek and Conner [31] provided a 

diagrammatic model of mathematical modeling that illustrates how mathematical 

understanding can emerge or evolve as learners work through modeling tasks. It fosters a 

dynamic interplay between context and abstraction, ensuring that the mathematical 

framework not only simplifies reality but also retains its essential complexities to provide 

actionable insights. Similarly, De Corte et al. [33] argued that traditional mathematics 

education often fails to encourage realistic modeling in problem-solving, leading to what they 

term a suspension of sense-making. Their findings emphasize the importance of embedding 

mathematical problems within authentic, real-world contexts to foster meaningful 

engagement and practical application of mathematical concepts. 

The incorporation of context-based approaches is also being emphasized in STEM education.  

Kipper and Rüütmann [35] emphasized the Inductive Model as a primary method for 

introducing context into learning and teaching in engineering education. This model begins 

with specific examples, such as real-world problems, case studies, or experimental data, and 

guides students to analyze and extract general principles or concepts. By focusing on real-

world scenarios, the Inductive Model immerses students in the complexities and contextual 

realities of engineering, enabling them to construct their understanding rather than passively 

absorbing information. In another study by Fadhilah et al. [36], the context in physics 

education, primarily through the application of the Contextual Teaching and Learning (CTL) 

approach, is introduced. The contextualization of learning materials is emphasized to help 

students understand the relevance of physics to their daily lives, professional goals, and 

societal needs. The CTL approach can transform physics education by linking abstract 

concepts to practical, real-world applications. This approach not only improves students' 

comprehension and motivation but also fosters critical thinking, creativity, and a deeper 

understanding of physics as the foundation of engineering [36]. 

Sutaphan and Yuenyong [37] provided a seven-stage framework that begins with identifying 

social issues, such as environmental challenges or technological design, and progresses 

through exploring solutions, acquiring necessary knowledge, decision-making, prototyping, 

testing, and socialization. This context-based approach fosters inquiry and constructivist 

learning, encouraging students to connect academic concepts to practical applications. By 

combining conceptual (scientific and mathematical) and procedural (design and modeling) 

knowledge, students develop problem-solving skills, creativity, and an understanding of 

technology’s impact on society, making STEM education more relevant and engaging. 

 

 



Discussion 

This review concludes by synthesizing the results of eighteen key articles with the 

foundational research of Carraher et al. [1], highlighting influential themes that have shaped 

STEM education research. The role of context is emphasized by a pool of scholars [20]-[40], 

including Saxe, Resnick, Wood, Weiland and Poling, and Brizuela and Strachota, who all 

expanded on the idea that engineering and mathematics learning is deeply influenced by the 

physical and social environments in which it occurs. Carraher et al.’s study has provided a 

dynamic lens through which researchers have examined how cognition in context, learning 

transfer, and spatial context impact mathematics learning and teaching. These themes 

illuminate both the challenges and opportunities inherent in enhancing STEM learning 

experiences. The theme of cognition in context suggested that integrating real-world 

scenarios and informal problem-solving methods into formal curricula can foster holistic 

cognitive development and bridge the gap between theory and practice. Incorporating spatial 

contexts, such as community walks or field trips, into teachers’ education to connect 

mathematical concepts to students’ lived experiences. Educators should consider 

incorporating field trips and VR/AR technologies into their teaching strategies to enhance 

students’ spatial skills. By providing tangible experiences and opportunities to interact with 

and visualize abstract STEM concepts, these approaches can make learning more meaningful 

and engaging, ultimately supporting deeper conceptual understanding and improved problem-

solving abilities. The gap between formal and informal can be bridged by incorporating both 

physical spaces and cognitive tools, educators can better support students in understanding 

mathematical concepts and their real-world applications. These approaches also align with 

broader goals of equity in STEM education, ensuring that diverse learning needs are met. 

The difficulty students face in transferring skills learned in informal settings to formal 

education emphasizes the need for context-based models that bridge these gaps. The 

strategies of collaborative discourse and joyful engagement to facilitate transfer can nurture 

cognitive flexibility. Mathematical modeling, which situates learning in real-world contexts, 

fosters both cognitive development and practical application. The Inductive Model and the 

Contextual Teaching and Learning (CTL) approach discussed by Fadhilah et al. [36], 

emphasize real-world applications and constructivist learning principles. Instructors should 

implement these strategies to encourage students to actively construct knowledge through 

inquiry, reflection, and problem-solving in meaningful contexts. Sutaphan and Yuenyong’s 

[37] seven-stage framework further illustrates how STEM education can integrate social 

issues and practical applications, fostering critical thinking and creativity. Digital tools and 

interactive activities, as explored by Zaranis et al. [32], also play a pivotal role in 

contextualizing learning, making abstract concepts more accessible and engaging for diverse 

learners. For educators, incorporating such strategies is critical in helping students move 

beyond rote learning to constructing knowledge through context-based learning. 

Conclusion 

The integration of context into STEM education is vital for fostering deeper cognitive 

engagement, improving learning transfer, and enhancing spatial reasoning. By grounding 

abstract concepts in real-world scenarios and leveraging innovative pedagogical strategies, 

educators can create more meaningful and inclusive learning experiences. It will be helpful 

for diverse learners by providing them with cultural and socially relevant experiences. 

However, challenges such as bridging the gap between informal and formal learning and 

ensuring effective teacher collaboration remain. Future research should continue to explore 

these intersections, with a focus on refining instructional approaches to better align with the 

cognitive and contextual realities of learners in diverse educational settings. 
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