
Paper ID #49385

From Typing to Insights: An Interactive Code Visualization and Error Detection
for Enhanced Student Support Using Keystroke Data

Friday Emmanuel James, Kansas State University

Friday James is a PhD Candidate at Kansas State University. He has a double-majored Bachelor’s degree
in Statistics/Computer Science from University of Agriculture, Makurdi - Nigeria. He got a Master’s
degree in Statistics and a Master’s degree in Computer Science from University of Ilorin - Nigeria and
Kansas State University - Kansas USA in 2015 and 2021 respectively. His research interest cuts across
the use of machine learning and data science in Computing Science Education to improve teaching and
learning.

Joshua Levi Weese, Kansas State University

Dr. Josh Weese is a Teaching Assistant Professor at Kansas State University in the department of Computer
Science. Dr. Weese joined K-State as faculty in the Fall of 2017. He has expertise in data science, software
engineering, web technologies, computer science education research, and primary and secondary outreach
programs. Dr. Weese has been a highly active member in advocating for computer science education in
Kansas including PK-12 model standards in 2019 with an implementation guide the following year. Work
on CS teacher endorsement standards are also being developed. Dr. Weese has developed, organized and
led activities for several outreach programs for K-12 impacting well more than 4,000 students.

Russell Feldhausen, Kansas State University

Russell Feldhausen received a bachelor’s degree in computer science in 2008, and a master’s degree
in computer science in 2018, both from Kansas State University. He is currently pursuing a doctorate
in computer science with a focus on computer science education, also at K-State. Feldhausen’s research
interest is computer science education, targeting rural populations and exploring ways to integrate mastery
learning into CS curricula. He is also actively involved in many K-12 outreach programs providing
curricula and teacher training throughout Kansas.

Nathan H Bean, Kansas State University

Dr. Nathan Bean is a Teaching Associate Professor at Kansas State University Department of Computer
Science and Co-Director of the Advancing Learning and Teaching in Computer Science (ALT+CS) Lab.
His research is focused on the need to grow the body of students skilled in computing – both within
the field of Computer Science, and within other disciplines that increasingly rely on the tools computer
science makes available to advance their own work. Thus, his research involves investigations into how to
effectively reach a broader and more diverse audience of students, and developing pedagogical techniques
and technologies that allow it to be done at scale.

Dr. Michelle Friend, University of Nebraska - Omaha

Dr. Michelle Friend is an Associate Professor in the Teacher Education Department at the University
of Nebraska at Omaha. She teaches CS teaching methods and research methods. Her research focuses
on equity in computer science and interdisciplinary connections between computer science and other
subjects. She received her Ph.D. from Stanford University in Learning Science and Technology Design,
and previously taught middle school computer science.

Dr. David S. Allen, Kansas State University

David is an Associate Professor in the Department of Curriculum and Instruction at Kansas State University
and the Director of the Center for STEAM Education. His work involves professional development for
K-12 schools in STEAM related areas, and he is currently focused on on-line programing development in
mathematics and computer science education.

©American Society for Engineering Education, 2025



From Typing to Insights: An Interactive Code
Visualization and Error Detection for Enhanced

Student Support Using Keystroke Data

Abstract

The continuous rise of digital learning platforms has unarguably brought about a
surge in the amount of data obtained from different learning environments. This, in turn,
presents a great opportunity for computer science teachers to gain an understanding of
students’ coding processes, which is vital for enhancing student support. Traditional
assessment methods, such as feedback after homework submissions or completed lab
assignments, often result in late and untimely intervention that would prevent early
dropouts and high failure rates as the students’ learning journey is neglected in the
process. This paper presents an analytical tool that leverages students’ keystroke
data to improve teaching and learning in introductory programming courses. Using
fine-grained data from Python and Java-based assignments delivered through the Codio
learning platform – covering 3 semesters and having 13 programming assignments each,
the tool reconstructs students’ code progression. The tool also integrates unit tests and
execution logs to deliver immediate feedback on code correctness, track error correction
times, and highlights students’ debugging strategies, thereby offering instructors a
comprehensive view of the students’ programming process. It employs a mixed-method
approach, combining quantitative analysis of keystroke data with qualitative insights
into students’ problem solving approaches. Pedagogically, the tool helps shift the
focus from traditional grade-based assessments to a data-driven approach of identifying
struggling students. Insights from the tool inform curriculum design and allow educators
to address common challenges and refine teaching methods. This work contributes to
computer science education by demonstrating the potential of data-driven methods to
enhance students’ learning outcomes. The findings highlight the importance of fine-
grained analytics in understanding behaviors of novice programmers, thereby paving
the way for adoption of such tools in existing educational management systems. This
research underscores the impact of integrating analytics into programming education
by bridging the gap between raw coding data and actionable insights.

1 INTRODUCTION

In the field of Computer Science Education (CS Ed), programming assignments and projects
play a crucial role in fostering students’ problem-solving skills, computational thinking, and
competence. However, for many students, particularly inexperienced ones, programming
can be a difficult journey that is characterized by trial and error, moments of confusion,
and periods of frustration. Computer science educators often resort to assignments and
examination scores to assess students’ level of understanding, which often results in late

1



and untimely intervention that could prevent early dropouts and high failure rates. Early
identification of when and why students are struggling during the process of coding is essential
for both timely intervention and effective teaching. This is particularly important for large
classes, where individualized attention is practically impossible.

To address this problem, we develop and evaluate an analytical tool that leverages keystroke
data to identify struggling students by reconstructing and visualization their coding process.
The basis for the functionality of the tool is the interaction of students with their programming
assignments through keystroke dynamics, which will offer significant insight into their thought
process and general coding habits.

Keystroke data, which captures granular details about students’ coding process such as
insertions and deletions, offer a great wealth of information for understanding how students
approach problem solving. The application also tests students’ code snippets against unit
tests to evaluate code correctness and functionality. This work therefore seeks to provide
answers to the following research questions:

• RQ1: How can keystroke data be effectively utilized to understand analyze students’
programming behaviors and identify struggling students for early intervention?

• RQ2: How can code execution logs and error reports enhance the teaching and learning
experience in programming courses?

By addressing these questions, this research aims to contribute to the broad issue of data-
driven interventions in CS education by providing actionable insights for both educators and
learners.

2 BACKGROUND AND RELATED WORK

2.1 Overview Of Learning Analytics

Learning Analytics is the measurement, collection, analysis, and reporting of data about
learners and their contexts for the purpose of understanding and optimizing learning and the
environments in which it occurs [1]. Its emergence is a response to the need for a more data-
driven approach to education by integrating different disciplines such as machine learning,
cognitive psychology, data science and statistics [2]. The overall goal of learning analytics
is to gather educational data and utilize the insightful information obtained from the data
to enhance learning, provide actionable feedback to students, and guide educators toward
providing intervention to struggling students [3]. It has developed into an essential tool used
by educational instit utions to enhance both student learning and how educators provide
intervention through the use of data mining, machine learning, and visualizations [2]. Thus,
by leveraging data mining techniques, institutions of higher education can uncover patterns
hidden in student data to provide assistance to students at risk of under-performing [4].

Beyond data mining approaches, educational institutions can leverage the power of deep
learning techniques in learning analytics. Supervised machine learning algorithms, such
as Support Vector Machines (SVM), Naive Bayes, Decision Trees, as well as unsupervised
machine learning algorithms such as clustering, are useful frameworks for predicting student



performance and improving students’ learning outcomes [4]. The data used for learning
analytics goes beyond just student grades and attendance. Different types of data can be
used to improve educational learning outcomes. According to [5], eye-tracking data is useful
for evaluating inter-subjectivity in face-to-face collaboration, log data can be used to predict
student performance and contrition in team work for project-based learning, and automated
dialog data can be used to predict the coming of newcomers in online learning. Also, other
forms of data such as audio, student logs, and video capturing can be utilized in building
Multimodal Learning Analytics (MMLA), which is useful for automating complex assessments
and providing real-time valuable feedback, especially in project-based learning. This is
applicable in text mining, students’ gesture tracking, and programming analysis [6].

Learning analytics has had a significant impact in the ability to analyze students’ learning
outcomes by providing valuable insights into students’ behavior and learning processes, but
it has not yet been fully utilized beyond small-scale studies to cover larger and more complex
education-related issues [7].

Within that context, the development of this tool, which aims to analyze students’ program-
ming keystroke dynamics, aligns well with the overall goal of learning analytics by aiming to
identify students who might be struggling with their programming assignments and enabling
instructors to provide early and proactive interventions to avoid dropouts and failures.

2.2 Keystroke Dynamics In Education

Keystroke dynamics, also referred to as keystroke biometrics, typing dynamics, or typing
biometrics, refers to the collection of biometric information generated by key-press-related
events that occur when a user types on a keyboard [8]. Thus, keystroke dynamics provides
granular data that gives significant insights into students’ keystroke actions – insertions,
deletions, pauses, and so on. Keystroke patterns can also be obtained through typing games,
and can be used to demonstrate the potential of identifying students’ programming aptitude,
especially in the early stages of taking programming courses [9].

Another application of keystroke dynamics is the identification of students who might be
struggling in programming courses. Typing speed, typing rhythms, pauses, insertions, and
deletions are features that can be used as powerful indicators of students’ programming
proficiency and performance in coding [10]. In a similar fashion, Shrestha R. [11] explored the
use of keystroke data from students to detect struggling students by analyzing the students’
thought processes, typing, and programming patterns. The analysis of their pausing behavior,
pause-frequencies of different lengths and the last keystroke action before pausing, correlated
with exam scores and provided insight into identifying struggling students [11].

Keystroke dynamics also provides effective ways of predicting student performance in courses
that involve programming. In educational data mining, predicting students’ academic
outcomes — such as exam scores, mid-term exam, and final grades - is made possible by
identifying struggling students for effective intervention early in the course using keystroke
data that can be collected without having to place unexpected burden on the instructor. This
is done by analyzing keystroke data comprising of time-on-task, typing speed, and pauses [12].
The correlation between students’ pausing behavior and learning outcomes obtained through



keystroke dynamics also provides an understanding of students’ coding strategies [13]. While
keystroke data can be modeled to predict students’ success, the models may not generalize
well across different contexts and it could be misleading to rely solely on a single semester’s
data [14].

Keystroke dynamics goes beyond identifying struggling students and performance prediction.
It also provides insight into students’ emotional states while working on programming tasks.
Emotions, such as being frustrated or stressed, can have significant impacts on students’
learning outcomes. Cowley et al. [15] used a combination of keystroke data with surveys
collected on students’ perceptions of difficulty to identify when programmers are in a state
of “flow” — defined as the mental state occurring when a person is so concentrated on an
activity that they lose track of time and awareness of the self, which can occur when the
difficulty of a task matches or slightly exceeds the individual skills [16]. Keystroke data can
provide information that identifies typing patterns that are induced by stress, which can be
used to detect users’ emotional state [17]. Specifically, emotional states such as confidence,
hesitance, nervousness, relaxation, sadness, and tiredness have been modeled using keystroke
dynamics with the potential of identifying anger and excitement as well [18]. In addition,
keystroke data has been found to be useful in detecting engagement and boredom. Research
conducted by Bixler and D’Mello [19], which used keystroke data obtained from students
typing three different essays on topics ranging across academic, socially charged issues and
personal emotional experiences, found that keystroke latency, which is defined as the time
interval between key presses, can be used to model students’ emotional states.

2.3 Existing Approaches To Identifying Struggling Students

In the educational sectors, research to understand and identify students that are struggling
has gained a lot of attention. Ranging from studying students’ code compilation behaviors
using real-time feedback systems to visualizations and building predictive models, several
approaches have been used to provide early intervention to students that are struggling,
especially in programming courses. A study analyzing students’ code compilation behavior –
precisely the edit-compile cycle – using the BlueJ programming environment reveals that
struggling students are often in iterative cycles of editing and compiling their code [20]. A
similar study has shown that the frequency of syntax errors detected in students’ programs
can provide the teacher with valuable insights toward identifying the areas where the students
need support [21].

Beyond examining students’ code compilation behavior, keystroke data have been shown to
be useful for identifying struggling students. Gao et al. [22] employed Differential Sequence
Mining (CDSM), a data-driven feature engineering algorithm, to identify sequences of events
(i.e. patterns) in students’ log data that differentiate two groups of students: high-performing
(HP) and low-performing (LP) students. Specifically, the method identifies two types of
patterns: patterns that occur for more students in one group than another (for example 30%
of LP students vs. 60% of HP students), and secondly, patterns that occur for students in
both groups, but appear more times for students in one group than another (for example, an
average 5 times per assignment for HP students vs. 1 time per assignment for LP students).
These patterns were used as features in a predictive model for students’ performance early in



the semester using their keystroke data, which allows early identification of students at risk
of dropping out or failing.

In courses where a Version Control System (VCS) such Git is used, students’ commit histories
have been used to track the progress of the students. In [23], Karakaš and Helic revealed
that keeping track of students’ commit histories proves a great way of early identification of
students in struggles. They pointed out a positive correlation between students’ frequency
of commits and student performance while fewer commits indicate delay in starting the
assignment and ultimately struggling to finish on time. The researchers concluded by opining
that a combination of local testing and automatic commits of students assignment ensured
that a continuous tracking of the students’ progress is achieved.

Visualization tools are incredibly useful for monitoring student progress. McBroom et al. [24]
proposed a novel visualization tool, Progress Networks, that summarizes the progression of
a student population through a learning task. In particular, for each student they record
a trace of their solution states while working on the task, then map each of the states to
a level of progress, resulting in a trace of progress levels. Finally, they summarize these
progress traces in a network, where progress levels are nodes and edges indicate how many
students moved from one level to another. In addition, in [25], CodeProcess Charts was
introduced using keystroke data generated from students to enable instructors to monitor
students’ coding processes and provide an assessment of their problem-solving approaches, as
well as detect potential plagiarism.

Early detection of students at risk of dropping out has been revealed to identify struggling
students. Pereira et al. [26] used data from the online CodeBench judging system, consisting
of 9 introductory programming courses, to build a decision tree machine learning model
that could predict early dropout (within two weeks of the start of classes), which helped
to identify struggling students. Cabo [27] used association analysis and noted that early
success in solving simple programming problems could predict students’ ability to solve more
complex problems that include loops and conditionals.

3 METHODOLOGY

3.1 Data Collection And Description

The data was collected from Codio [28], an online learning platform that is specifically
designed for programming and computer science courses. Codio provides an Integrated
Development Environment (IDE), where all actions of the students are logged while working
on coding problems. The platform provides a rich source of fine-grained data about the
students’ coding habits, strategies, behaviors, and struggles for the entire duration of writing
the programs. The data covers three semesters and having 13 programming assignments in
CS1 courses (Introduction to Computing - Python and Java based)

The dataset consists of the following attributes:

• Date: This column contains the exact timestamp in the ISO 8601 format (e.g. 2022-09-
05T00:13:53.698Z) and records when an event occurred. It tracks every student action



including character insertions, character deletions, and when code version changes. It
also tracks when the student imports starter code or when starter code is provided for
the students to complete.

• Position: This column shows th e cursor position where character insertion or deletion
occurs.

• Insert: This column defines the character or lines inserted at the specified position,
which gives a reflection of the contents that the students are adding to their program.

• Delete: This column defines the character or lines deleted by the student at the specified
position. The delete attribute gives us an insight into students’ frequency of revision or
code removal, which plays a key role in identifying struggles or confusion.

• Version: This column is an integer value that represents the version of the code at that
timestamp. The version increases with changes made by the students to their code,
which allows for tracking of their code progression over time.

• User: This column is simply an identifier for each student that works on the program.
Each file is unique to each student. There is an ”internalReload” user that represents
an automatically generated action provided by Codio. It is basically starter code for
the student, and it does not reflect any action by the student.

3.2 Data Processing

Effective data processing is essential for the usability of the application. Data processing
involves two steps: file extraction and directory parsing implemented using Python program-
ming language using Visual Studio Code IDE. Initially, instructors upload a ZIP file containing
the students’ keystroke logs, which is then extracted and organized in a temporary directory
to prevent conflict with existing files. The application validates the data extracted to ensure
that the supported file formats are included. The directory parsing involves identification
of the students’ assignment folders and anonymizing the student names. The application
handles errors by flagging empty or unsupported file types, which ensures that the data
remains intact and usable for further analysis.

3.3 System Development And Design

The development of the analytical tool combines several components – reconstruction of code
progression, error detection, visualization, and generation of code execution logs – into a
cohesive system. The components work together to transform the raw keystroke data into
interactive insights that help instructors analyze students’ coding behaviors and challenges.
The front-end is built with HTML and styled with CSS and Bootstrap to ensure a responsive
design. The back-end uses Flask as the primary framework for handling HTTP requests and
responses, while Flask-SocketIO enables the bi-directional communication.

Reconstruction Of Code Progression
Code reconstruction is the core functionality that transforms the students’ raw keystroke
data into code snippets at each recorded timestamp. As a student inserts and deletes



characters, each action is recorded with an associated timestamp, position index, and the
inserted or deleted text. These events are chronologically applied in the order executed by
the student to preserve the natural flow of the code progression and stored in an empty
code buffer. The reconstruction algorithm iterates through each event, modifies the code
representation according to the inserted or deleted text, and saves the resulting state at each
timestamp.

This approach yields a complete timeline of the code evolution, thereby enabling the instructors
to examine the sequential and incremental development of a student’s solution and to
pinpoint the exact moments when the student encountered challenges or appeared to be
struggling.

The constructed code snippets are displayed to include syntax highlighting. This provides a
visually accessible representation of the code as well as allowing for clarity and conciseness
to the codes [29]. Once the code snippet is reconstructed, the application associates each
state with its timestamp. The timestamps-to-code snippet matching is stored in a list of
timestamp and code-snippet tuples. A slider/progress bar is constructed within the interface
to allow the instructor to move seamlessly through the code evolution, thereby offering the
flexibility of jumping to any point in time, reveal changes line by line, and observe the
students’ approaches and how it shifts throughout the entire problem solving process as
shown in Figures 1 and 3.

Figure 1: Interface Showing File Upload and Navigation Timestamp Slider



Figure 2: Interface showing unit test upload functionality

Interfacing With External Code Editor
The application integrates error detection by interfacing with an external code editor execution
environment shown in Figure 4. The development of this interactive code editor involves
combining Flask and Flask-SocketIO to create a dynamic, user-friendly platform for writing
and executing code in real time. Python’s Flask framework is a useful tool for developing
dynamic web application [30].

The user interface as shown in Figure 4 includes a dual-pane layout: one for the code editor
and another for displaying execution results. Additional fields are provided for entering
command-line arguments and simulated user-input. A “Run Code” button triggers the
execution of the code.

Unit Test Integration And Code Execution Logs
In addition to merely detecting compilation or syntax errors by interfacing with the external
code editor, the application extends its functionality to provide a comprehensive and interac-
tive review environment. This includes the integration of execution logs associated with a
series of unit tests, which helps to ensure that the students’ code performs as expected across
various conditions. These unit tests can be simple outputs or a combination of inputs and
their expected outputs, depending on the requirements of the assignment. These unit tests
are loaded into the system (Figure 2) and are tailored towards verifying that the logic of the
students’ code behaves as expected. If input files are present, the application passes them as
command-line arguments and the outputs are captured and compared against the expected
results, revealing any discrepancies.



Figure 3: Interface showing slider movement and corresponding code snippets

Also, as part of the process, the system continuously tracks the pass/fail status of each test
case and generates detailed execution logs that provide useful feedback as shown in Figure 5.
The error details indicate different types of errors - runtime errors, syntax errors or logical
mismatches that occur during execution.

Error Correction Times
The application includes a feature to track error correction times, providing a detailed timeline
of when errors occurred and when the errors were resolved. Errors in this context implies
the mistakes the students make while writing their programs. This could by syntax, logical,
runtime or compilation errors (in case of Java codes). This feature records the timestamp of
the error, the resolution timestamp, the details of the error and the time taken to correct
it. For example, as shown in Figure 6, syntax errors such as ”unterminated string literal”
were logged with their timestamps, and the application automatically computed the time it
took for the student to resolve the issue. This feature was implemented by capturing error
events during code execution, which were then linked to students’ subsequent keystrokes to
determine when the errors were corrected.



Figure 4: Interaction with Code Editor on Clicking ”Send to Code Editor” Button

Figure 5: Interface Showing Code Execution Logs and Pass/Fail Counts



4 Discussion Of Results

4.1 RQ1: Understanding Students’ Programming Behaviors And Identifying
Struggling Students

The analysis of students’ keystroke data provided a comprehensive understanding of students’
programming behaviors by reconstruction of their coding processes. The tool provided a clear
progression of how the students’ code evolved over time. Instructors could observe problem
solving approaches that led to final implemented solutions. Struggling students demonstrated
erratic patterns of coding with frequent rewrites and a seemingly uncoordinated approach to
writing their codes.

The analysis revealed that extended pauses over time as well as frequent backtracking were
indicative of confusion or difficulty with the assignment. Students who struggled displayed
longer hesitations and tended to delete large portions of code before rewriting. These
behaviors, if detected early, can enhance timely intervention.

The timeline slider enabled the instructors to identify the students who consistently approached
the programming problems in a well-coordinated manner versus those who relied on a trial-and-
error approach. This helped the instructor make clear distinctions between high-performing
and struggling students without having to wait for final grades, which would make timely
intervention practically impossible.

Figure 6: Error Correction Times



4.2 RQ2: Enhancing Teaching And Learning Through Code Execution Logs
And Error Reports

The integration of automatic code execution logs and unit tests provided critical insights.
The tool provided error tracking by capturing syntactical, logical, and runtime exceptions as
they occurred at intervals of five minutes. Based on this, instructors could pinpoint common
stumbling blocks and provide early intervention. In addition, keystroke execution logs revealed
trends that informed instructional and pedagogical strategies. Instructors could identify
recurring issues such as common syntax errors, or a more widespread misunderstanding of
specific areas of the course materials since the analysis is done on a module-by-module basis.
These provide a basis for instructors to refine course content and teaching strategies to better
align with the needs of students. For example, if a significant proportion of students failed
the same test case, it suggests that the underlying concept required further explanation or a
change of the teaching method.

The tool also tracks the time that students spent correcting their errors. This provides insights
into how quickly students observe and resolve coding issues as they work on programming
tasks. Students with extended error resolution times are perceived to display struggling
behaviors. By tracking the duration and frequency of error corrections, instructors can gain
insight into students’ debugging strategies.

Furthermore, by integrating unit tests with the keystroke analysis, the tool enables the
instructors to dynamically assess code correctness. The pass/fail rates of the unit tests are
clear measures of students’ progress.

5 Ethical Considerations

Given the focus of this research on student data collection and analysis, the study adheres to
established ethical guidelines in order to protect the students’ privacy and maintain data
security. This research has been approved by our University’s Institutional Review Board
(IRB), ensuring that all data collection and analysis comply with ethical standards for human-
subject research. The tool operates locally and no data processing or analysis is transmitted
to external servers or third-party platforms. This is to ensure data security and prevent
unauthorized access to student keystroke logs. To further protect the students’ privacy, all
identifying information is fully anonymized before processing and analysis. The tool replaces
the students’ user IDs with generic identifiers (student 1, student 2, etc.). However, this
anonymization is for research purpose only. The instructors utilizing this tool will have access
to student information to be able to provide early intervention where necessary.

6 Scalability And Generalizability

This tool is currently designed to analyze keystroke data from the Codio learning platform.
The underlying methodology and data processing can be extended to other Integrated
Development Environments (IDEs). A key step in enhancing the tool’s scalability is the
current development of a plugin for Visual Studio Code (VS Code) which will allow keystroke
tracking of student data similar to that of Codio. The plugin will capture similar keystroke



logs, including insertions, deletions and timestamps. This integration will allow use of this
tool beyond Codio.

The tool has the ability to scale effectively in large classroom settings. Unlike traditional
programming courses with large classes, where individual attention is challenging, the efficient
data processing framework ensures that even with large class size, it will remain effective.

While the tool has been primarily tested on Python and Java, it is designed to make it
adaptable to any programming language where keystroke logs can be obtained. Because the
tool operates based on universal keystroke actions which are not language-dependent, the
tool can be utilized to visualize code progression and generate automatic error reports across
code snippets at specific timestamps.

7 Comparison Of The Proposed Keystroke Analytics Tool With Existing Learn-
ing Analytics Tools

Existing research studying programming behaviors has focused primarily on students’ compi-
lation behaviors rather than the entire programming process. One notable study is the work
by Jadud [20], which introduced a compilation behavior analysis tool to track how novice
programmers interact with the compiler in the BlueJ Integrated Development Environment
(IDE). This tool collects data only when students compile their code, and provides insights
into students’ edit-compile cycles, focusing on the frequency of compilation attempts, time
spent between compilation errors and most common compilation error occurrences. The
proposed keystroke analytics tool differs by capturing every keystroke event rather than
relying on compilation snapshots. It continuously collects records on insertions, deletions,
monitors pauses and error corrections, thereby showing how students progressively develop
their code before attempting to compile it. This makes it possible to detect when a student
is struggling, even before attempting to run their code.

One of the key contributions of Jadud’s study was the introduction of the Error Quotient(EQ)
– a metric for quantifying how much a student struggles based on the frequency of syntax errors
across multiple compilations [20]. However, students who hesitate, or delete and rewrite their
code multiple times without compiling, may not be flagged as struggling even though they
are experiencing difficulties. The proposed keystroke tool improves on the Error Quotient
approach by providing more struggle indicators such as frequent deletions, erratic patterns of
code progression, and tracking the time students spend resolving specific errors.

The proposed keystroke analytics tool also builds on the capabilities of CodeBench - a learning
analytics system designed by Pereira et al. (2020) [31] to analyze students’ interaction with
an Online Judge system. CodeBench focuses on an automated assessment of students’ pro-
gramming assignments by collecting fine-grained data on keystrokes, number and correctness
of submissions and time spent in the IDE. While CodeBench provides valuable insights into
students’ submission behaviors and the effectiveness of their problem-solving approaches,
it’s focus on submission-based evaluation contrasts it from the keystroke analytic tool. The
proposed tool goes beyond submission-based analysis to reconstruct the entire coding process,
thereby providing deeper insights into students’ coding behaviors, point(s) of struggle and
debugging strategies.



Another fundamental difference between the CodeBench and the proposed tools is in er-
ror analysis and debugging insights. CodeBench primarily evaluates final code correctness
through automated test cases and employs machine learning and clustering techniques to
classify students into performance categories. This does not track the intermediate steps
students take to debug their programs, nor link error messages to specific keystroke events.
The proposed tool addresses this gap by tracking error correction timelines, which allows an
in-depth analysis of how students attempt to fix program errors over time.

The proposed keystroke analytics tool shares similarities with CodeProcess Charts [25] in
that both tools aim to provide insights into students’ programming behaviors by analyzing
their code processes rather than just final submissions. However, while CodeProcess focuses
primarily on visualizing the evolution over time, the proposed tool extends beyond visualization
to provide keystroke-based struggle detection, error analysis and debugging insights.

8 Limitations

Although the tool provides valuable insights into students’ coding process, and infers struggles
based on patterns like frequent deletions, pauses or repeated errors, it does not determine
whether a student is struggling due to some external distractions. Supplementing the keystroke
analysis with other data such as self-reporting surveys from the students will ensure a more
comprehensive assessment of struggle.

The tool is currently being implemented using completed courses. Additional data is being
collected and will be used as a baseline performance metric to enhance the accuracy of the
tool in detecting struggling students during the course itself.

9 Recommendations

To maximize the potential of keystroke data in computer science education, institutions should
actively embrace the use of data-driven strategies. This is because integration of tools that
utilize keystroke data and error reports allows educators to adopt a more proactive approach in
identifying struggling students and providing early interventions, thereby preventing academic
setbacks and improving student retention rates.

Given that the success of the tool relies on the ability of educators to interpret and review
the effectively, it is important to provide instructors with training programs that would
equip them with the skills to analyze keystroke patterns, interpret error logs, and identify
actionable insights.

Furthermore, institutions should should explore ways to integrate these tools with existing
educational technologies, such as embedding keystroke analysis and error reporting features
into commonly used learning management systems like Canvas.

10 Future Work

Future enhancements of the keystroke analytics tool will focus on addressing implementation
challenges and expanding its functionality through predictive analytics, broader platform



integration and multi-modal learning analytics. A key area of development involves the
incorporation of machine learning models to automatically identify patterns indicative of
struggling students. Extensive feature engineering will be performed to build predictive
models that anticipate when a student is likely to struggle. In line with that, implementation
challenges such as avoiding false positives and false negatives in struggle detection as well as
optimizing computational efficiency will be carefully addressed.
To enhance the tool’s versatility and effectiveness, future research will explore its application
in diverse programming environments and collaborative coding platforms. While the current
tools has been tested primarily in introductory programming courses, expanding its usage to
more complex programming tasks such as software engineering, data structures or artificial
intelligence courses will help validate its generalizability.
Another future direction for future work involves integration with widely used Learning
Management System(LMS) such as Canvas. Embedding keystroke analytics within these
platforms will allow instructors to access real-time insights directly. However, scalability and
data integration challenges must be taken into account.

11 Summary

This research introduces a keystroke analytics tool designed to enhance programming education
by tracking and analyzing students’ coding behaviors at a granular level. The tool leverages
keystroke dynamics to reconstruct students’ code evolution, providing instructors with insights
into problem-solving approaches, debugging strategies and potential points of struggle. Unlike
traditional assessment methods that rely on final code submissions or compilation logs,
the tool continuously captures keystrokes, insertions, deletions, pauses and error correction
times, allowing for detection of struggling students. The research is structured around two
primary research questions: The first explores how keystroke data can be effectively used
to understand students’ programming behaviors and identify struggling students for early
intervention. The second research question examines the role of code execution logs and error
reports in improving programming instruction. The tool integrates automated unit tests and
execution logs, tracking syntax, runtime and logical errors.
The research compares the tool to existing educational technologies such as the BlueJ and
CodeBench. The study acknowledges the limitation of not accounting for possible external
distractions that might make a student struggle with programming code. Self-reported data
is being collected to serve as a baseline performance metric to refine the struggle detection
mechanism.

References

[1] G. Siemens, “Learning analytics: The emergence of a discipline,” American Behavioral
Scientist, vol. 57, no. 10, pp. 1380–1400, 2013.

[2] L. Tateo, “The journey of learning,” Mind, Culture, and Activity, vol. 26, no. 4, pp. 371–
382, 2019.



[3] J. T. Avella, M. Kebritchi, S. G. Nunn, and T. Kanai, “Learning analytics methods,
benefits, and challenges in higher education: A systematic literature review.,” Online
Learning, vol. 20, no. 2, pp. 13–29, 2016.

[4] R. K. Veluri, I. Patra, M. Naved, V. V. Prasad, M. M. Arcinas, S. M. Beram, and
A. Raghuvanshi, “Learning analytics using deep learning techniques for efficiently
managing educational institutes,” Materials Today: Proceedings, vol. 51, pp. 2317–2320,
2022.

[5] N. Nistor and Á. Hernández-Garćıa, “What types of data are used in learning analytics?
an overview of six cases,” Computers in Human Behavior, vol. 89, pp. 335–338, 2018.

[6] P. Blikstein, “Multimodal learning analytics,” in Proceedings of the third international
conference on learning analytics and knowledge, pp. 102–106, 2013.

[7] S. Dawson, S. Joksimovic, O. Poquet, and G. Siemens, “Increasing the impact of learning
analytics,” in Proceedings of the 9th international conference on learning analytics &
knowledge, pp. 446–455, 2019.

[8] R. Moskovitch, C. Feher, A. Messerman, N. Kirschnick, T. Mustafic, A. Camtepe,
B. Lohlein, U. Heister, S. Moller, L. Rokach, et al., “Identity theft, computers and
behavioral biometrics,” in 2009 IEEE International Conference on Intelligence and
Security Informatics, pp. 155–160, IEEE, 2009.

[9] T. Nakada and M. Miura, “Extracting typing game keystroke patterns as potential
indicators of programming aptitude,” Frontiers in Computer Science, vol. 6, p. 1412458,
2024.

[10] J. Leinonen et al., “Keystroke data in programming courses,” Department of Computer
Science, Series of Publications A, 2019.

[11] R. Shrestha, “Programming process, patterns and behaviors: Insights from keystroke
analysis of cs1 students,” Master’s thesis, Utah State University, 2022.

[12] J. Edwards, K. Hart, R. Shrestha, et al., “Review of csedm data and introduction of
two public cs1 keystroke datasets,” Journal of Educational Data Mining, vol. 15, no. 1,
pp. 1–31, 2023.

[13] R. Shrestha, J. Leinonen, A. Zavgorodniaia, A. Hellas, and J. Edwards, “Pausing while
programming: insights from keystroke analysis,” in Proceedings of the ACM/IEEE 44th
International Conference on Software Engineering: Software Engineering Education and
Training, pp. 187–198, 2022.

[14] Z. Pullar-Strecker, F. D. Pereira, P. Denny, A. Luxton-Reilly, and J. Leinonen, “G is for
generalisation: Predicting student success from keystrokes,” in Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1, pp. 1028–1034, 2023.

[15] B. U. Cowley, A. Hellas, P. Ihantola, J. Leinonen, and M. Spape, “Seeking flow from
fine-grained log data,” in Proceedings of the ACM/IEEE 44th International Conference
on Software Engineering: Software Engineering Education and Training, pp. 247–253,
2022.



[16] J. Nakamura, M. Csikszentmihalyi, et al., “The concept of flow,” Handbook of positive
psychology, vol. 89, p. 105, 2002.

[17] A. Ko lakowska, “A review of emotion recognition methods based on keystroke dynam-
ics and mouse movements,” in 2013 6th international conference on human system
interactions (HSI), pp. 548–555, IEEE, 2013.

[18] C. Epp, M. Lippold, and R. L. Mandryk, “Identifying emotional states using keystroke
dynamics,” in Proceedings of the sigchi conference on human factors in computing
systems, pp. 715–724, 2011.

[19] R. Bixler and S. D’Mello, “Detecting boredom and engagement during writing with
keystroke analysis, task appraisals, and stable traits,” in Proceedings of the 2013 inter-
national conference on Intelligent user interfaces, pp. 225–234, 2013.

[20] M. C. Jadud, “Methods and tools for exploring novice compilation behaviour,” in
Proceedings of the second international workshop on Computing education research,
pp. 73–84, 2006.

[21] A. Altadmri and N. C. Brown, “37 million compilations: Investigating novice program-
ming mistakes in large-scale student data,” in Proceedings of the 46th ACM technical
symposium on computer science education, pp. 522–527, 2015.

[22] G. Gao, S. Marwan, and T. W. Price, “Early performance prediction using interpretable
patterns in programming process data,” in Proceedings of the 52nd ACM technical
symposium on computer science education, pp. 342–348, 2021.

[23] A. Karakaš and D. Helic, “Combining local testing with automatic commits: Benefits
for progress tracking and cs2 students’ learning experience,” in Proceedings of the 2024
on Innovation and Technology in Computer Science Education V. 1, pp. 108–114, 2024.

[24] J. McBroom, B. Paassen, B. Jeffries, I. Koprinska, and K. Yacef, “Progress networks
as a tool for analysing student programming difficulties,” in Proceedings of the 23rd
Australasian Computing Education Conference, pp. 158–167, 2021.

[25] R. Shrestha, J. Leinonen, A. Hellas, P. Ihantola, and J. Edwards, “Codeprocess charts:
Visualizing the process of writing code,” in Proceedings of the 24th Australasian Com-
puting Education Conference, pp. 46–55, 2022.

[26] F. D. Pereira, E. Oliveira, A. Cristea, D. Fernandes, L. Silva, G. Aguiar, A. Alamri, and
M. Alshehri, “Early dropout prediction for programming courses supported by online
judges,” in Artificial Intelligence in Education: 20th International Conference, AIED
2019, Chicago, IL, USA, June 25-29, 2019, Proceedings, Part II 20, pp. 67–72, Springer,
2019.

[27] C. Cabo, “Student progress in learning computer programming: Insights from association
analysis,” in 2019 IEEE Frontiers in Education Conference (FIE), pp. 1–8, IEEE, 2019.

[28] C. Inc., “Codio — the hands-on platform for computing & tech skills education,” 2024.



[29] M. Patrignani, “Why should anyone use colours? or, syntax highlighting beyond code
snippets,” arXiv preprint arXiv:2001.11334, 2020.

[30] V. R. Vyshnavi and A. Malik, “Efficient way of web development using python and
flask,” Int. J. Recent Res. Asp, vol. 6, no. 2, pp. 16–19, 2019.

[31] F. D. Pereira, E. H. Oliveira, D. B. Oliveira, A. I. Cristea, L. S. Carvalho, S. C. Fonseca,
A. Toda, and S. Isotani, “Using learning analytics in the amazonas: understanding stu-
dents’ behaviour in introductory programming,” British journal of educational technology,
vol. 51, no. 4, pp. 955–972, 2020.


	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Overview of Learning Analytics
	Keystroke Dynamics in Education
	Existing Approaches to Identifying Struggling Students

	METHODOLOGY
	Data Collection and Description
	Data Processing
	System Development and Design
	Reconstruction of Code Progression
	Interfacing With External Code Editor
	Unit Test Integration and Code Execution Logs
	Error Correction Times


	Discussion of Results
	RQ1: Understanding Students' Programming Behaviors and Identifying Struggling Students
	RQ2: Enhancing Teaching and Learning Through Code Execution Logs and Error Reports

	Ethical Considerations
	Scalability and Generalizability
	Comparison of the Proposed Keystroke Analytics Tool with Existing Learning Analytics Tools
	Limitations
	Recommendations
	Future Work
	Summary

