
Paper ID #49307

Examining Student Resolutions of Automated Critiques

Laura Albrant, Michigan Technological University

After completing a bachelor’s degree in computer science, Laura Albrant decided to challenge how she
viewed software development, by switching departments. Currently working towards a PhD in Applied
Cognitive Science & Human Factors at Michigan Technological University, Laura pursues interests on
both sides of the fence through education research.

Dr. Michelle E Jarvie-Eggart P.E., Michigan Technological University

Dr. Jarvie-Eggart is a registered professional engineer with over a decade of experience as an environmental
engineer. She is an Assistant Professor of Engineering Fundamentals at Michigan Technological University.
Her research interests include technology adoption, problem based and service learning, and sustainability.

Dr. Leo C. Ureel II, Michigan Technological University

Leo C. Ureel II is an Assistant Professor in Computer Science and in Cognitive and Learning Sciences
at Michigan Technological University. He has worked extensively in the field of educational software
development. His research interests include intelligent learning environments, computer science education,
and Artificial Intelligence

©American Society for Engineering Education, 2025

Examining Student Resolutions of Automated Critiques

Abstract

This study examines the submission data of students in an introductory engineering courses who
modify their code in response to automated critique and how this process evolves over multiple sub-
missions. Our research is grounded in data collected from students in Engineering Fundamentals
(EF) courses who used our automated feedback tool, automated feedback tool, WebTA. This tool
provides instant feedback on code syntax, logic, and style, tailored for first-year college students.
We analyze student interactions over four semesters, examining the effectiveness of EF students’
abilities to resolve critiques. This comparative analysis highlights differences in problem-solving
strategies, engagement levels, and learning approaches in engineering fundamentals students. The
data gathered from four semesters of engineering fundamentals courses, includes detailed logs of
each submission, such as submission times, errors identified, critique counts, and resolution times.
By analyzing patterns across different submissions, we tracked how student learning evolved over
time and varied across disciplines. This approach allowed us to identify effective strategies in
automated feedback design that cater to the diverse needs of learners from different educational
backgrounds.

1 Introduction

Providing rich, timely feedback to the students when they are learning is a significant challenge in
large classrooms. This is especially true in first-year engineering classrooms where students are
tasked with learning the syntax and understanding the semantics of a programming language, such
as MATLAB. The feedback provided by the MATLAB environment is often opaque and geared
towards experts, not beginning programmers. Most large introductory programming courses incor-
porate autograders into their teaching and learning practice, but here again the feedback provide is
often not rich and may just provide binary (correct/incorrect) or number of points scored feedback.

The ability to provide timely and effective feedback is taxed by the onerous time commitment
required and compounded with large course sizes. Instructors cannot critique every student’s
code in large classroom settings. Furthermore, instructors are unavailable during late-night study
sessions (or at any particular time of day an individual student needs that immediate feedback) to
help students develop good coding practices.

We have developed an automated code critiquer called WebTA that serves as our research plat-
form as we investigate ways to help students learn to code [1, 2]. This study reviews WebTA’s
learnability through the students’ behavior as logged by the system.

2 Background

2.1 Patterns & Antipatterns

2.1.1 Patterns

Design patterns represent fundamental principles of good software design, applicable across var-
ious programming styles. Patterns represent well-structured algorithms, modular function design,
and consistent data handling. They promote readability, maintainability, and reusability, even
within the constraints of script-based development [3].

Pattern: The Parameterized Function Pattern

For example, the Parameterized Function (Listing 1) pattern involves encapsulating a specific
computation or algorithm within a function that accepts input parameters. This pattern promotes
modularity, reusability, and clarity, allowing for easy modification and adaptation of the function
to different scenarios.

Consider a scenario where we need to compute the numerical derivative of a function using a finite
difference method.

Listing 1: The Parameterized Function Pattern
1 % P a t t e r n : P a r a m e t e r i z e d F u n c t i o n
2 f u n c t i o n d e r i v a t i v e = c o m p u t e D e r i v a t i v e (func , x , h)
3 % Computes t h e n u m e r i c a l d e r i v a t i v e o f f u n c a t x
4 % u s i n g a c e n t r a l d i f f e r e n c e method .
5 % f u n c : F u n c t i o n ha nd l e .
6 % x : P o i n t a t which t o compute t h e d e r i v a t i v e .
7 % h : S t e p s i z e .
8 d e r i v a t i v e = (func (x + h) − func (x − h)) / (2 * h) ;
9 end

10
11 % Example usage :
12 f = @(x) s i n (x) ;
13 x v a l = pi / 4 ;
14 s t e p s i z e = 0 . 0 0 1 ;
15 d e r i v v a l = c o m p u t e D e r i v a t i v e (f , x v a l , s t e p s i z e) ;
16 di sp ([” D e r i v a t i v e a t x = ” num2str (x v a l) ” : ” num2str (d e r i v v a l)]) ;
17
18 f2 = @(t) t . ˆ 2 ;
19 t v a l = 2 ;
20 s t e p s i z e 2 = 0 . 0 0 0 0 1 ;
21 d e r i v v a l 2 = c o m p u t e D e r i v a t i v e (f2 , t v a l , s t e p s i z e 2) ;
22 di sp ([” D e r i v a t i v e a t t = ” num2str (t v a l) ” : ” num2str (d e r i v v a l 2)]) ;

In Listing 1, the ‘computeDerivative’ function encapsulates the derivative computation, accepting
the function handle, the point of evaluation, and the step size as parameters. This positive pattern
promotes reusability, as the function can be applied to different functions and parameter values

without modification. It also improves clarity, as the function’s purpose and inputs are explicitly
defined.

2.1.2 Antipatterns

Antipatterns are commonly observed problem solutions that result in negative consequences [4].
They often arise from a lack of structure, excessive code duplication, and reliance on implicit
assumptions. These practices lead to fragile code that is hard to understand, modify, and debug.
The absence of clear interfaces and effective data flow management worsens these issues, making
it difficult to grasp the program’s behavior.

Antipatterns are code structures that appear sound, and may indeed work well in limited contexts,
but generally produce poor results [4]. Andrew Koenig illustrated them as, “An Antipattern is just
like a pattern, except that instead of a solution it presents something that looks superficially like a
solution, but isn’t one” [5].

While we are concerned with Antipatterns in general, we are more concerned with novice Antipat-
terns; i.e., poorly conceived or erroneous code structures commonly created by novice program-
mers. Often, these novice Antipatterns represent bad solutions that would never be seen in expert
code. For this reason, tools designed to assist expert programmers rarely provide good feedback
on these kinds of mistakes.

Antipattern: The Magic Number Antipattern

For example, consider the antipattern where magic numbers are used directly within the code,
without clear documentation or encapsulation (Listing 2).

Listing 2: The Magic Numbers Antipattern
1 % A n t i p a t t e r n : Magic Numbers
2 f m a g i c = @(x) s i n (x) ;
3 x magic = pi / 4 ;
4 h magic = 0 . 0 0 1 ;
5 d e r i v m a g i c = (f m a g i c (x magic + h magic) − f m a g i c (x magic − h magic))

↪→ / (2 * h magic) ;
6 di sp ([” D e r i v a t i v e a t x = ” num2str (x magic) ” : ” num2str (d e r i v m a g i c)])

↪→ ;
7
8 f 2 m a g i c = @(t) t . ˆ 2 ;
9 t m a g i c = 2 ;

10 h2 magic = 0 . 0 0 0 0 1 ;
11 d e r i v 2 m a g i c = (f 2 m a g i c (t m a g i c + h2 magic) − f 2 m a g i c (t m a g i c −

↪→ h2 magic)) / (2 * h2 magic) ;
12 di sp ([” D e r i v a t i v e a t t = ” num2str (t m a g i c) ” : ” num2str (d e r i v 2 m a g i c)

↪→]) ;

In Listing 2, the constants ‘0.001’ and ‘0.00001’ are used directly within the computation, without
clear documentation or encapsulation. Among the potential problems caused by this are:

• Lack of Clarity: The purpose of the magic numbers is unclear, making it difficult to under-
stand the code.

• Reduced Maintainability: If the values of the magic numbers need to be changed, they must
be manually updated in multiple locations, increasing the risk of errors.

• Reduced Reusability: The code is tightly coupled to the specific values of the magic numbers,
making it difficult to reuse in different contexts.

• Increased Error Proneness: If a magic number is mistyped or incorrectly updated, it can
lead to subtle errors that are difficult to detect.

The Magic Number antipattern leads to brittle, unmaintainable code that is prone to errors. It
violates fundamental principles of software engineering, such as clarity and maintainability.

The Parameterized Function pattern and the Magic Number antipattern illustrate the impact of de-
sign choices on programs. By adhering to good patterns, developers can create modular, reusable,
and clear code. Conversely, when novices implement antipatterns, such as the Magic Number
antipattern, it leads to technical debt, reduced maintainability, and increased complexity.

In the context of introductory computing, cultivating an awareness of patterns and a critical eye for
antipatterns are good habits for writing sustainable and reproducible code. Application of sound
design principles can significantly improve the quality and lclarity of student programs.

2.2 WebTA Platform

WebTA is a web-based, interactive tool that facilitates learning through automatic critique of stu-
dent source code. WebTA is comprised of several modules, data sources, components, and inter-
action modes (Figure 1). Students submit code via a website. Their code is stored in a database
and passed in sequence to a compiler, a test stand, and a critiquer. The critiquer module combines
static analysis with an Abstract Syntax Tree (AST) to identify patterns and antipatterns in student
code. Critique results are returned to the student immediately and stored for instructor review.

Figure 1: WebTA Architecture
Figure 2: WebTA Integrated Develop-
ment Cycle

Students are provided with immediate feedback in the form of line-by-line code critiques (Figure
3). Students receive the benefits of cognitive apprenticeship through the feedback they receive in
the tool. This facilitates tight, productive cycles of inquiry, critique and learning (Figure 2).

Figure 3: WebTA code critiques

3 Research Framework

3.1 Cognitive Apprenticeship

The Cognitive Apprenticeship model [6, 7] is a constructivist approach to learning that focuses on
teaching concepts and practices utilized by experts to solve problems in realistic environments. It
has special relevance in the context of novice programming because it emphasizes making implicit
processes explicit to the learner.

Cognitive Apprenticeship posits six key teaching methods:

1. Modeling: The expert demonstrates the target skill, making their thought processes explicit
through verbalization and other means.

2. Coaching: The expert provides guidance and support as the learner attempts to perform the
skill, offering feedback and suggestions.

3. Scaffolding: The expert provides temporary support structures that enable the learner to
perform tasks that would otherwise be beyond their capabilities.

4. Articulation: The learner is encouraged to articulate their understanding and reasoning,
making their thought processes explicit.

5. Reflection: The learner is encouraged to compare their performance with that of the expert,
identifying areas for improvement.

6. Exploration: The learner is encouraged to independently explore new problems and apply
their skills in novel contexts.

These methods promote the development of metacognitive skills, enabling learners to become self-
directed and independent problem-solvers. Cognitive Apprenticeship emphasizes the importance
of situated learning, where skills are learned in the context of authentic tasks and problems.

3.2 The Kolb Learning Cycle

David A. Kolb’s experiential learning theory [8] frames learning as a cyclical process involving
four distinct stages: concrete experience, reflective observation, abstract conceptualization, and
active experimentation. Kolb’s model emphasizes the importance of experience as the foundation
of learning, suggesting that knowledge is constructed through the transformation of experience.

• Concrete Experience: This stage involves engaging in a new experience or situation. This
could be a practical task, a problem-solving scenario, or a social interaction.

• Reflective Observation: After an experience, the learner reflects on their observations and
considers different perspectives and interpretations.

• Abstract Conceptualization: Based on the reflections, the student forms abstract concepts
and generalizations, developing theories and models to explain their observations.

• Active Experimentation: Students apply new concepts and theories to new situations, test-
ing their validity and refining their understanding.

The Kolb Learning Cycle is a continuous, iterative process that closely aligns with the program
development cycle (Figure 2). Students can enter the cycle at any stage. The cyclical nature of
learning allows for continuous improvement and adaptation as learners refine their understanding
through repeated cycles of experience and reflection.

4 Methods

Across four semesters, we collected the data on every submission students made on WebTA: 1)
the date and time of submission, 2) details of every pattern found within the code submitted, 3)
the overall status (i.e. highest severity of the patterns found), 4) the identifier for who submitted,
5) and the assignment the submission is for. This data was compiled to inspect, compare, and
contrast students’ behaviors while using WebTA across all four semesters. The analysis’ results
suggest that student behavior remained relatively similar.

4.1 Participants and Setting

The study included undergraduate students enrolled in engineering fundamentals courses at an R1
public university. Over four academic semesters, data were collected from 898 students who used
WebTA as part of their regular coursework. (Spring 2023: 68 students, Fall 2023: 153 students,
Spring 2024: 62 students, Fall 2024: 615 students) Fall 2024 saw the largest number of students
using our software as we deployed to all sections of the course. The EF courses utilized MATLAB
to introduce engineering problem-solving through programming.

4.2 Data Collection

WebTA automatically logged every student submission, capturing a range of data points for each:

• Submission Metadata: Date and time of submission, student identifier, and assignment
details.

• Code Analysis: Details of every pattern and antipattern detected within the submitted code,
providing insights into the types of errors students made and their frequency.

• Performance Indicators: Overall status of each submission, categorized by the highest
severity of errors, allowing for the assessment of student progress and error resolution over
time.

• Feedback Interaction: Data on how students responded to specific critiques, including the
time taken to resolve each and the sequence of changes made.

5 Results

For the following analysis, the three intervention assignments for the Spring 2023 will be called
A, B, and C. The three assignments for Fall 2023 will be D, E, and F. The three assignments for
Spring 2024 will be G, H, and I. Finally, the three assignments from Fall 2024 are referred to as
J, K, and L. Table 1 shows a general overview of the submissions made by students across the
assignments/semesters.

Submissions By Assignment
Assignment Total Min Max Median Mean

Spring 2023
A 21 0 7 0 0.32
B 282 0 12 4 4.34
C 172 0 10 2 2.65

Fall 2023
D 262 0 10 1 1.74
E 107 0 6 0 0.71
F 441 0 17 2 2.92

Spring 2024
G 138 0 8 1 2.30
H 93 0 9 1 1.55
I 91 0 9 1 1.52

Fall 2024
J 1732 0 26 2 2.83
K 828 0 20 2 1.35
L 805 0 18 1 1.31

Table 1: A breakdown of submissions for each assignment.

5.1 Spring 2023

As table 1 shows, the Spring 2023 semester has an assignment (A) with a tenth to a fourth of
the submissions compared to the other assignments. This is due to an unexpected time constraint
during the class period, which led to only a handful of students submitting to WebTA. In tandem,
the low submission count can cause the assignment to seem like an outlier in weird instances. For

example, assignment A is the only assignments with a mean number of submissions per student be
less than 0.5.

The number of patterns found in students’ submissions over time, color-coded by assignment is
graphed in Figure 4. The thick lines show the mean number of patterns found for a given submis-
sion number per assignment. Table 2 shows the results from a simple linear regression model on
the thicker, mean lines from Figure 4. This table reveals with good confidence (p < 0.007) that the
slope of assignments A, B, and C are slightly negative. It is also clear that assignment B had some
outlier students who received a hefty number of found patterns and made that their last submission.

Figure 4: Spring 2023 Pattern Count and
Mean Across Submissions

Figure 5: Spring 2023 Distribution of Sub-
missions

In Figure 4, the data is from the Spring 2023 semester. Each thin line on this graph represents
the number of patterns found across a student’s submission(s) for a given assignment. The X-axis
of submission number acts as time. The colors differentiate which assignment and the thick lines
display the average across students at that submission/attempt number.

In Figure 5, the data is from the Spring 2023 semester. This boxplot shows the distribution of the
number of attempts/submissions that students made per assignment.

Linear Regression of Mean Per Assignment
Assignment Estimated Coefficient p-value

A -0.5039 p = 0.004
B -0.1665 p = 0.006
C -0.5061 p < 0.001

Table 2: The estimated coefficients and p-values of linear regression on the mean lines from Figure
4.

The distribution of the number of submissions made by students is shown in Figure 5. The closest
assignment to a normal distribution is assignment B. However, all three assignments are skewed
towards zero submissions.

The ratio of a pattern’s presence over students’ submissions (time) is shown in Figure 6. For
example, in the X number of students that reached 12 submissions (in all three assignments) around
50% of those submissions contain the “Correct Comment Block” pattern.

Figure 6: This series of bar charts shows the ratio of students whose code contained the given
pattern at the given submission number. For example, in the Spring 2023 semester, no students
that made 10 or more submissions had the ”Comma without a Space” antipattern by their 10th
submission.

5.2 Fall 2023

The Fall semester(s) is peculiar compared to the Spring semesters as, at Michigan Technological
University, there is a significantly higher number of students that join the school in the Fall than
the Spring. This means that this semester had a significantly larger class (i.e. more likely to get
submission data) than the Spring.

The number of patterns found in students’ submissions over time, color-coded by assignment is
graphed in Figure 7. The thick lines represent the mean number of patterns found for a given
submission number per assignment. The average student has a negative slope or a rather flat slope.
Table 3 shows the results from a simple linear regression model on the thicker, mean lines from
Figure 7. This table reveals with good confidence (p < 0.001) that the slope of assignment E is
negative. However, assignments D and F did not contain this same trend.

In Figure 7, from the Fall 2023, each thin line on this graph represents the number of patterns found
across a student’s submission(s) for a given assignment. The X-axis of submission number acts
as time. The colors differentiate which assignment and the thick lines display the average across
students at that submission/attempt number.

In Figure 8, from the Fall 2023, the boxplot shows the distribution of the number of attempts/sub-
missions that students made per assignment. The closest assignment to a normal distribution is
assignment B. However, all three assignments are skewed towards zero submissions.

Figure 9 observes ratio of a pattern’s presence over students’ submissions (time). For example, in
the X number of students that reached 16 or 17 submissions (across all three assignments) 100%
of those submissions contain the “Correct Comment Block” pattern.

In Figure 9, the series of bar charts shows the ratio of students whose code contained the given

Figure 7: Fall 2023 Count & Mean Across
Submissions

Figure 8: Fall 2023 Distribution of Submis-
sions per Student

Linear Regression of Mean Per Assignment
Assignment Estimated Coefficient p-value

D -0.1866 p = 0.706
E -0.6003 p < 0.001
F 0.44460 p = 0.105

Table 3: The estimated coefficients and p-values of linear regression on the mean lines from Figure
7.

Figure 9: Percentage of Antipatterns across Student Attempts

pattern at the given submission number. For example, in the Fall 2023 semester, no students
that made 11 or more submissions had the ”Comma without a Space” antipattern by their 11th
submission.

5.3 Spring 2024

Spring 2024 is the semester in which students began using our newly re-designed WebTA. Due to
similar class sizes, it is easier to make more direct comparisons and contrasts between this semester
and Spring 2023

The number of patterns found in students’ submissions over time, color-coded by assignment is
graphed in Figure 10. Each thin line on this graph represents the number of patterns found across
a student’s submission(s) for a given assignment. The X-axis of submission number acts as time.
The colors differentiate which assignment and the thick lines display the average across students
at that submission/attempt number. The thick lines show the mean number of patterns found for a
given submission number per assignment. Table 4 shows the results from a simple linear regression
model on the thicker, mean lines from Figure 10. This table reveals with good confidence (p <=
0.005) that the slope of assignments G and I are negative.

Figure 10: Spring 2024 Count and Mean
Across Submissions

Figure 11: Spring 2024 Distribution of Sub-
missions

The distribution of the number of attempts/submissions that students made per assignment (Figure
11). All three assignments have an average number of submissions per student that is > 1. This
means that the average student submitted at least one time for all three assignments.

Linear Regression of Mean Per Assignment
Assignment Estimated Coefficient p-value

G -1.0159 p < 0.001
H -0.0828 p = 0.698
I -0.6574 p = 0.005

Table 4: The estimated coefficients and p-values of linear regression on the mean lines from Figure
10.

Figure 12 observes ratio of a pattern’s presence over students’ submissions (time). For example, in
the X number of students that reached 9 submissions (across all three assignments) none of those
submissions contain the “Correct Comment Block” pattern.

Figure 12: This series of bar charts shows the ratio of students whose code contained the given
pattern at the given submission number. For example, in the Spring 2024 semester, no students
that made 7 or more submissions had the ”Line Length Over 80 Characters” antipattern by their
7th submission.

5.4 Fall 2024

This Fall semester(s) contained the highest number of students than any of the previous semesters.
It resulted in a much larger number of submissions for each assignment.

The number of patterns found in students’ submissions over time, color-coded by assignment is
graphed in Figure 13. The thick lines represent the mean number of patterns found for a given
submission number per assignment. Table 5 shows the results from a simple linear regression
model on the thicker, mean lines from Figure 13. This table reveals with good confidence (p <=
0.004) that the slope of assignments J and K are slightly negative.

Figure 13: Fall 2024 Count and Mean Across
Submissions

Figure 14: Fall 2024 Distribution of
Submissions

In Figure 13, from the Fall 2024 semester, each thin line on this graph represents the number of
patterns found across a student’s submission(s) for a given assignment. The X-axis of submission

number acts as time. The colors differentiate which assignment and the thick lines display the
average across students at that submission/attempt number.

Linear Regression of Mean Per Assignment
Assignment Estimated Coefficient p-value

J -0.1000 p < 0.001
K -0.1460 p = 0.004
L -0.0852 p = 0.138

Table 5: The estimated coefficients and p-values of linear regression on the mean lines from Figure
13.

Figure 15 observes ratio of a pattern’s presence over students’ submissions (time). For example,
in the X number of students that reached 25 submissions (across all three assignments) all of those
submissions contain the “Missing Header Comment Block” antipattern.

Figure 15: This series of bar charts shows the ratio of students whose code contained the given
pattern at the given submission number. For example, in the Fall 2024 semester, all of the 26th
submissions contained the ”Correct Header Comment Block” good pattern.

6 Discussion/Conclusion

While it is difficult to make broad statements on education-related research, especially pilot data,
this study still provides insight into students’ resolutions while using WebTA. The key takeaways
from this study include:

1. There is evidence of WebTA’s learnability with this data as the average student is typically
able to decrease the number of antipatterns found in their code. This is a trend found in
multiple assignments, across multiple semestersm and across two different UI designs (Figs.
4, 7, 10; Tabs. 2,3,4).

2. There is a limit to how many tries an individual student is willing to do while submitting.

3. It can be inferred that too much feedback at once can cause a student to give up, likely from
being overwhelmed and/or frustrated (Fig. 4).

The analysis of student behavior across four semesters is not conclusive, but rather extremely
suggestive of WebTA’s usefulness to enhancing students’ learning while programming. As WebTA
aims to help students through the processes of programming and improving their code. By only
providing explanation of the antipatterns and hints to solve them, the above evidence of students
learning to fix antipatterns is promising for the continued development of WebTA.

7 Future Work

Future plans include: (1) robust usability testing with both students & instructors, (2) validation
& further prototyping of interactive help documentation, (3) continuation of rewriting/improving
critique messages, (4) amending the lack of easy autonomy for professors to set up their assign-
ments on their own in WebTA, (5) creation of a customizable experience with WebTA’s pattern
database, complete with a machine-learning recommendation system for which patterns to check
for in an assignment, and (6) the creation of a dashboard for professors to employ as an aid to their
pedagogy.

Acknowledgments

This work was funded by the National Science Foundation award #2142309. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.

This paper is a modified version of Chapter 6 of the author’s thesis [9]. We thank the National Sci-
ence Foundation, the Institute of Computing and Cybersystems, and the Michigan Technological
University College of Computing for their support in making this research possible.

References

[1] L. C. Ureel II, Critiquing Antipatterns In Novice Code. PhD thesis, Michigan Technological
University, Houghton, MI, Aug 2020.

[2] L. C. Ureel II and C. Wallace, “Automated critique of early programming antipatterns,” in
Proceedings of the 50th ACM Technical Symposium on Computer Science Education, pp. 738–
744, 2019.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software Addison-Wesley. Addison-Wesley, 1995.

[4] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray, AntiPatterns: refactoring
software, architectures, and projects in crisis. John Wiley & Sons, Inc., 1998.

[5] A. Koenig, “Patterns and antipatterns.,” Journal of Object-oriented Programming, vol. 8,
pp. 46–48, 1995.

[6] A. Collins, “Cognitive apprenticeship,” in Cambridge Handbook of the Learning Sciences
(R. Sawyer, ed.), pp. 47–60, Cambridge University Press, 2006.

[7] A. Collins, “Cognitive apprenticeship and instructional technology,” Center for the Study of
Reading Technical Report; no. 474, 1989.

[8] D. A. Kolb, Experiential learning: Experience as the source of learning and development. FT
press, 2014.

[9] L. E. Albrant, “Enhancing students’ user experience with a code critiquer,” Master’s thesis,
Michigan Technological University, Houghton, MI, September 2024.

	Introduction
	Background
	Patterns & Antipatterns
	Patterns
	Antipatterns

	WebTA Platform

	Research Framework
	Cognitive Apprenticeship
	The Kolb Learning Cycle

	Methods
	Participants and Setting
	Data Collection

	Results
	Spring 2023
	Fall 2023
	Spring 2024
	Fall 2024

	Discussion/Conclusion
	Future Work

