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Computational Modeling in Materials Science and Engineering:
Student Responses to a Restructurated Introductory Course

Abstract: This paper reports student perceptions of a redesigned introductory materials science
and engineering (MSE) course based around computational atomistic models embedded in a
novel interactive digital textbook. Atomistic models can foster principled understanding of MSE
phenomena by foregrounding how material structures and properties emerge from atomic
interactions and can be used to engage students in active, inquiry-based learning. Students
completed an end-of-course survey with Likert-style and open-ended questions. A large majority
of students reported feeling that the course was more engaging than other STEM courses, that
they learned more than in other courses, that the course was equally or somewhat more
challenging than other courses, and that they had a positive experience with the interactive
textbook. Open-ended questions revealed that most students preferred active model-based
learning compared to video lectures, because they were engaging and helped with understanding.
However, some students found the computational models confusing. Students also had positive
experiences with the interactive textbook and appreciated that the content on the platform was
well-organized, easy to navigate, and exactly reflected the requirements of the course. Overall,
the findings show it is feasible to radically redesign introductory MSE around computational
modeling while maintaining positive student experiences.

1. Introduction

This paper reports on student perceptions of an introductory materials science and engineering
(MSE) course redesigned to center around computational models and taught with a novel
interactive textbook with the computational models embedded. This redesign is in response to
two trends. First, computation is transforming MSE, and the curriculum should reflect that fact.
Second, computation and computational representations can be harnessed to create powerful
tools for learning. This paper is a continuation of the work presented in [1] which described the
redesigned course without reporting on any student results. The background section of this paper
summarizes the theoretical foundation for the course redesign and the methods section briefly
describes the redesign itself, but refer to [1] for more details. The focus of this paper is student
perceptions and reactions to the redesigned course as a whole rather than focusing on content-
based learning outcomes. We made this choice for two reasons. First, given the magnitude of the
changes we made to the course—redesigning it entirely, engaging students in explorations of
computational models throughout, and authoring/using an interactive textbook—it was entirely
possible that students would be overwhelmed or have other negative reactions. Therefore, it was
important to demonstrate the feasibility of this kind of radical change to the curriculum. Second,
as we redesigned the content of the course around computational models, we also redesigned
assessments to require deeper conceptual understanding, making it difficult to compare student
learning outcomes to prior years. It is still possible to evaluate student learning in relation to our
new assessments, but this requires in-depth qualitative analysis which could not fit in this paper
due to space limitations. Future work will investigate student learning outcomes as well as how
our assessments evolved to require deeper conceptual understanding.



2. Background
2.1 Computation in MSE

The impact of computation on science and engineering has been dramatic. The advent of digital
computers has been described as “the second metamorphosis of science” because computational
modeling and experiments provide a new way to generate knowledge about nature,
complementing experimental and mathematical methods from the first metamorphosis which
initiated the scientific revolution [2], [3]. In addition to the vast calculations computers enable,
computational representations also support a different (complementary) way of thinking
compared to classical mathematical representations, emphasizing procedural “how to”
knowledge compared to more descriptive “what is” knowledge of most classical mathematics

[4].

MSE is no exception to the trend of computation transforming science and engineering, and there
is widespread agreement that undergraduate and graduate education should reflect these changes
[5], [6], [7]- Recently, the Materials Genome Initiative argued that computation is one of the
three competencies that the next generation of the MSE workforce would need to master [8]. On
the theoretical side, computation allows scientists to model “real, complex materials as they are”
[9], by modeling interactions of many atoms and allowing larger scale patterns to emerge. The
procedural focus on sow atoms interact can help researchers “to gain insight into a physical
system and then obtain a new theoretical understanding” [10] compared to only focusing on
macrolevel descriptions.

2.2 Restructurations for Learning

The term restructuration refers to the ways that new representational forms change the way we
think and learn [11], [12]. A classic example is the transformation from Roman to Hindu-Arabic
numerals, which enabled much more powerful ways of thinking about and manipulating numbers
[12]. Computational representations can provide similarly dramatic changes in how we think and
learn [11], [12], [13], [14]. One reason is the procedural nature of computational knowledge
discussed above. In the context of MSE, the focus on #ow things happen combined with the
calculation power of computers enables the modeling of materials starting from atomic
interactions. Since all materials phenomena ultimate emerge from atomic interactions, the same
core computational model can be used to understand many phenomena. This “one-to-many”
property of computational models makes them powerful tools for understanding the atomic
mechanisms underlying materials phenomena and unifying understanding of various phenomena
together [15]. Additionally, the perspective of emergence—how large-scale patterns arise from
many micro-level interactions—is a powerful lens for understanding not only many phenomena
in MSE, but many phenomena across the sciences [11], [12], [16]. It is a “powerful idea” in the
language of constructionist learning theory [13] and an important cross-cutting concept in the
language of the Next Generation Science Standards [17], [18].

A significant body of research has investigated the benefits of computational restructurations for
understanding emergent phenomena, including in physics [19], chemistry [20], [21], [22],
biology [23], [24], probability [25], social sciences [26], [27], and materials science [15]. There



have been calls to integrate computational modeling, and the perspective of emergence it
highlights, across K-16 STEM curricula in general [28], [29] and specifically to make “one-to-
many” computational models the backbone of the MSE curriculum [15]. However, prior work on
computational restructurations have only designed learning interventions for specific topics
within a subject. The course redesign reported in this paper is the first time that a project rooted
in restructuration theory has taken on the task of redesigning an entire course.

2.3 Prior work

In [1], we described the course redesign in detail, including conceptual explanations of the
computational techniques used, but we did not report on student results of any kind. This paper
focuses on student perceptions of the course, and future work will address content-based student
learning outcomes for the reasons discussed in the introduction.

3. Research Questions

Given the magnitude of the changes we made to the introductory MSE course, we chose to focus
on student perceptions to assess the feasibility and desirability of our approach. Our research
questions are:

1. Is it feasible to redesign the introductory MSE curriculum to center around computational
models while maintaining positive student experiences of the course?

2. What were student perceptions of the redesigned course, the interactive textbook, and the
computational models?

The goal of answering the first research question is a kind of existence proof. We simply want to
demonstrate that it is possible to radically change the introductory MSE course to center around
computational models—considered by many to be an advanced topic—and maintain positive
student experiences with the course. Our goal in this paper is not to compare our restructurated
course to more traditional courses (see future work section). The goal of the second research
question is to gain qualitative insight into student perceptions of the course to learn what they did
and did not find valuable.

4. Methods
4.1 Setting and Participants

The setting of this design-based research is an introductory materials science and engineering
(MSE) course taken by approximately 100 students each term at a large private university. The
course serves both MSE majors and other engineering majors with about three quarters of the
students coming from other majors as part of their engineering requirements. The only
prerequisite is one introductory chemistry course.



4.2 Structure of the Course

The course has two 80-minute lecture periods per week and one 50-minute recitation led by
teaching assistants. Students were assigned pre-lecture exercises, which usually consisted of
interacting with one or more computational models and answering questions to complete before
each lecture. Lecture periods usually consisted of three segments of 20-30 minutes: (1) lecturing
on the content covered in the pre-lecture exercises, (2) a period of active-learning usually
comprised of another model-based inquiry task, and (2) a final short lecture on that topic. See [1]
for more details on the structure and content of the course.

4.3 NetLogo.: Computational Modeling Tool and Example Models

NetLogo [30], the main computational modeling tool used in the course, has unique affordances
which make it ideal for introductory MSE course despite not being specifically an MSE tool. It is
an agent-based modeling platform designed to be “low threshold” and “high ceiling” [31],
meaning that it is easy to get started, even for users with no programming experience, while not
being limiting for advanced users. The “low threshold” design of NetLogo allowed sophomore
MSE students to learn the syntax of NetLogo and code a new model in a single 2.5 hour session
[15]. NetLogo models can be interacted with while they are running, enabling various
interactions which support conceptual understanding. Additionally, there is a browser-version,
NetLogo Web [32], which enables students to use the software without downloading anything,
making it much easier to implement in a large classroom.

We were able to create models for the large majority of topics in the course using just two
techniques: molecular dynamics and random walk. The one-to-many nature of these techniques
[15]—that one technique can be used to model many phenomena—helps to emphasize the
common principles and mechanisms underlying many MSE topics. Figure 1 shows two example
models from the course, one for each of these techniques. On the left is a model of chain-growth
polymerization. Each “agent” represents a molecule which executes a random walk without
overlapping with each other. When a monomer collides with a radical, they bond, after which
their random walk is also restricted to prevent their bond from breaking. Students can explore
how changing the numbers of monomers and initiators changes the molecular weight distribution
and the speed of the reaction. On the right of Figure 1 is a molecular dynamics model in which
the bonds between atoms are visualized and students are able to adjust the size of an impurity
atom to see how it affects lattice strain and the overall energy of the material. For more examples
of models we created in the course as well as a brief conceptual explanation the computational
techniques, see [1].
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Figure 1: (left) A model of chain-growth polymerization.
Monomers are modeled as following a random walk. When
—_— they collide with a radical, they bond and then follow a self-
0 hisonn e s excluding random walk which prevents overlap and chain

breaking. (right) An MD model in which students can explore
substitutional impurities by changing the size of one of the
lattice atoms and seeing how it changes the energy of the
material and the strain on the lattice.

4.4 Interactive Textbook

An important aspect of the course redesign was authoring a new interactive textbook to align
with the course by the first and second authors. It was hosted on a platform called Morfli!
(pronounced more-flea) designed by the first author with the intention to integrate all the course
content in one place including computational models, explanations, and exercises. Morfli makes
it easy for the authors to edit and add content. For students, they are able to interact with the
NetLogo models, answer questions, and read surrounding explanatory material all in one place.

Since we authored the textbook from the outset in an interactive digital medium, we were able to
foster more active learning than a typical textbook in two important ways. First, we embedded
interactive computational models throughout the text. Second, we often require students to
explore a model and attempt to answer questions about it before providing additional
explanation, in line with research on The Learning Cycle [33], [34], [35] and related pedagogical
approaches [36], [37], [38], [39] which show that active exploration before explanation improves
learning. We combined these ideas with the constructionist idea of “microworlds”—interactive
computational models that embed important concepts from a learning domain [13]—to produce
“constructionist learning cycles.” The textbook contains 15 chapters, 30 embedded
computational models, and over 300 embedded questions for students to answer. For most of the
questions, students are able to view a solution immediately after submitting their own answers,
allowing them to check their understanding.

4.5 Data and Analysis Methods

!https://www.morfli.com/



Data for this study come from an end-of-course survey in the spring of 2024 which included
several questions about their experience with the course overall and their perceptions of Morfli
and the embedded NetLogo models. Seventy-eight students completed the survey. Table 1 shows
the four Likert-style questions on the survey. The results of these questions are reported in tables
and bar charts. Table 2 shows the four open-ended questions along with the methods used to
analyze them. Inductive bottom-coding was used to identify certain types of responses and
categorize them. We first did a round of open coding using “descriptive coding” [40]. Next, we
conducted “pattern coding” [40] on the initial codes to reduce the number of codes to a smaller
number of categories representing key themes in the data. Following Hammer and Berland [41],
the codes developed are not treated as data to be quantified but as claims about the data. The raw
written responses are the data, and codes are claims made about the data. The code are reported
in the results section along with enough examples of data for each code that readers can decide
for themselves if they agree with the coding scheme [41], [42].

Table 1: Likert-style questions on the end-of-course survey

Question Response Options
Rate your experience using Morfli (the interactive | 5: It was great
textbook) in this course. 4: It was good

3: It was okay
2: It was kind of bad
1: It was really bad

How engaging was this course compared to most | Much more engaging
other engineering, science, and math courses you | Somewhat more engaging

have taken? About the same

Somewhat less engaging

Much less engaging
How challenging was this course compared to Much more challenging
most other engineering, science, and math Somewhat more challenging

courses you have taken? About the same

Somewhat less challenging

Much less challenging
How much do you think you learned in this Much more
course compared to most other engineering, Somewhat more

science, and math courses you have taken? About the same

Somewhat less

Much less
Table 2: Open-ended questions on the end-of-course survey
Question Analysis Methods
About how much time did you | First, the amount of time the student reported was recorded.
spend doing pre-lecture If they reported a range, both the low and high end were
exercises per class using recorded and then averaged. Most students did not report




Morfli? What about video
lectures? Did you prefer the
video lectures or model-based
exercises more and why?

separate times for Morfli exercises vs video lectures. For
those who did, the minimum time of the two was recorded as
the low end and the maximum of the two was recorded for
the high end and then averaged. 57 responses had numerical
information about how much time they spent. The rest either
didn’t answer or gave non-numerical answers such as “Not
enough time, I wish I did more.”

Next, each response was coded for whether the student
preferred video lectures, model-based exercises, or both. 66
responses included this information.

Finally, the remaining “why” of student answers were coded
qualitatively. First, the answers were open coded resulting in
20 codes. 57 responses received at least one of these
qualitative codes. The remaining answers only reported on
timing and which type of pre-lecture exercise they preferred.
Next, similar codes were combined, and some were split to
differentiate between whether they were referring to video
lectures or Morfli exercises. For example, initially responses
were coded with “easier to review.” This code was then split
because some students found the Morfli exercises easier to
review and some the video lectures. After this, any codes
with fewer than three responses were removed. An additional
round of code combination and splitting was carried out after
which any opposing codes were grouped together but not
combined into a single code (e.g., some students found the
video lectures more convenient and some the Morfli
exercises). After this, any codes or code groups with fewer
than five responses were ignored, as the goal was to identify
major themes in the data.

What did you like about
Morfli?

First, the answers were open coded resulting in 15 codes. 72
responses received at least one of these qualitative codes.
Next, codes were grouped into two main categories: (1)
regarding the content on Morfli, and (2) regarding
functionality of Morfli which was further divided into (a)
interactive functionality and (b) other functionality. One
code did not fit into either of these categories making it its
own category. Only codes which appeared at least 5 times in
the data are reported.

Share any ideas you have for
improving Morfli.

First, the answers were open coded resulting in 25 codes. 52
responses received at least one of these qualitative codes.
The other 24 of the remaining responses were either blank or
said things like “n/a” or “it works well,” and two were




irrelevant to the question. Next, codes with only one
response were removed and the rest were grouped into four
main categories: (1) regarding the content of the course
hosted on Morfli, (2) suggestions for new features, and (3)
suggestions for improvements to existing features.

Do you think the NetLogo
computational models used in
class and pre-lectures helped
you learn? What did you like?
What didn't you like?

Each response was coded for whether the student felt the
NetLogo models helped them learn or not. A third category
of “somewhat” emerged from the data. 72 of the 78
responses could be coded into one of these three categories.
The remaining 6 responses did not contain enough
information.

The remainder of reach response was then open coded for
reasons they liked or didn’t like the NetLogo models
resulting in six initial codes for liking the models and six for
disliking. These codes were then refined, and some were
merged resulting in four codes for liking the models and five
for disliking. Note, that even students who said they thought
the models helped them learn might have had some
complaints about the models and vice versa.

5. Results

The results section begins with the students’ overall perceptions of the course and the interactive
textbook as reported in Likert-style questions followed by the time students spent on pre-lecture
exercises. Then, major themes in student perceptions from open-ended questions are reported.

5.1 Overall perceptions of the course

Tables 3-6 below show the results of student answers to the Likert-style questions about the
course and the interactive textbook (Morfli). A large majority of students, 81%, thought the
course was more engaging than other courses STEM courses they had taken, while 14% thought
it was about the same and only 5% thought it was somewhat less engaging (Table 3). Regarding
perceptions of learning, a large majority, 72%, felt they learned somewhat or much more
compared to other courses, 23% thought they learned about the same, and only 5% thought they
learned somewhat less (Table 4). Regarding how challenging the course was compared to other
courses, the large majority thought it was fairly typical—87% thought it was somewhat less
challenging, about the same, or somewhat more challenging—while 13% thought it was much
more challenging (Table 5). An overwhelming majority of the students, 98%, rated their
experience with Morfli as okay, good, or great with a large majority, 80%, in the latter two

higher categories (Table 6).




Table 3: Response to the question, “How engaging was this course compared to most other engineering, science,
and math courses you have taken?”

Rating Respondents | Percentage
Much more engaging 33 42%
Somewhat more engaging 30 39%

About the same 11 14%
Somewhat less engaging 4 5% .
Much less engaging 0 0%

Table 4: Response to the question, “How much do you think you learned in this course compared to most
other engineering, science, and math courses you have taken?”

Rating Respondents | Percentage
Much more 36 45%
Somewhat more 21 27%
About the same 18 23%
Somewhat less 4 5%
Much less 0 0%

Table 5: Response to the question, “How challenging was this course compared to most other engineering,
science, and math courses you have taken?”

Rating Respondents | Percentage
Much more challenging 10 13%
Somewhat more challenging 34 43%
About the same 24 31%
Somewhat less challenging 10 13%
Much less challenging 0 0%




Table 6: Responses to the question, “Rate your experience using Morfli in this course”

Rating Respondents | Percentage

5: It was great 27 35%

4: It was good 35 45%

3: It was okay 14 18%

2: It was kind of bad 2 2% .
1: It was really bad 0 0%

5.2 Time Spent on Pre-lecture Exercises

The average time students reported spending on pre-lecture activities was 45 minutes, the median
was 35 minutes, and the minimum and maximum were 10 minutes and 3 hours respectively. A
median time of 35 minutes for pre-lecture activities is totally reasonable, given the expectation
that students spend a total of around 10 hours per week on a course.

5.3 Preference of model-based pre-lecture exercises vs videos

Of the 78 students who responded to the survey, 66 provided responses with a clear answer to
this question: 41 students (62%) preferred the model-based pre-lecture exercises, 19 students
(29%) preferred video lectures, and 6 students (9%) said they like a combination of both. Table 7
displays the two main categories of reasons that students preferred model-based exercises in
order of how commonly they appeared: (1) they were more interactive, engaging, or fun, (2) they
helped students understand or visualize the concepts better. Table § displays the one main
category found for why students preferred video lectures: they found them easier to understand
and/or found the models confusing.

Students were also asked in another question whether they thought the NetLogo models helped
them learn, what they liked about them, and what they didn’t like about them. Of the 72 students
who answered whether they thought the models helped them learn, 65 (90%) said yes, five (7%)
said somewhat, and two (3%) said no. Student responses regarding what they did and didn’t like
resulted in similar themes as the previous question. Students liked that NetLogo models were
interactive or engaging and thought they helped them visualize phenomena and understand them
better. On the negative side, students sometimes thought the model were confusing or not enough
explanation was provided. Given the similarity of these responses to the previous question,
specific examples are not included here for space considerations.

Table 7: Reasons students gave for preferring model-based pre-lecture exercises

\ Code \ Count \ Examples




Interactive/ 22 “I liked the model-based exercises because it allowed me to adjust
engaging/ the initial and future conditions and see the results very easily.”
fun . . .

“pre-lecture exercises I think helped more than the video lectures

because I was actually applying the knowledge.”

“The models were just fun to play around with.”

“I enjoyed the model-based ones more since I could interact with

them and try out things beyond what was asked in the assignment.”
Better 13 “i really really liked model based exercises because i was able to
understanding/ gain better intuition for the concepts and i could picture the
visualization simulation during a test when i needed to.”

“I liked the model exercises because it helped visualize the
concepts”

“Model-based; greatly increased my understanding of whatever the
topic was and provided a different angle than just lecturing.”

“I prefer the model-based exercises as they allow me to play
around with them and have a better grasp of the material.”

Table 8: Reason students preferred video lectures

Code

Count

Examples

Videos easier to
understand or
models were
confusing

13

“I liked the video lectures because they explained everything.”

“I preferred the video lectures more because learning from a person
ensured I related more to the content and understood it better.”

“I liked the video lectures more because the model exercises were a
little more time consuming and harder to understand.”

“The video lectures were always very nice. Some of the models
were a bit confusing, so I usually prefer videos.”

5.4 Questions Related to Morfli

The following summarize the main takeaways from each category of what students liked about
Morfli (their suggestions for improvement are below):
1. Many students thought that the content on Morfli reflected the course content and was
well organize, clear, comprehensive for the needs of the course, and concise. The codes
with example responses supporting this claim are shown in Table 9.
2. Students enjoyed the NetLogo models, general interactive nature of Morfli, and the fact
that solutions to questions were immediately available after submitting an answer. The
codes with example responses supporting this claim are shown in Table 10.




3. Students found Morfli easy to use and navigate and specifically appreciated that due
dates for assignments were very prominent. The codes with example responses
supporting this claim are shown in Table 11.

4. Students appreciated the extent to which everything was in one place on Morfli including
text, questions and models. Example responses supporting this claim are shown in Table
12.

Table 9: Reasons students like the content of the course hosted on Morfli

Code Count | Examples
Well organized, | 16 “I liked the organized structure and content.”
structured and . . . .
“There's a lot of info and it's easily accessible and well sorted..”
focused
“It was organized into smaller sections and chapters.”
Morfli content | 11 “Morfli reflected what was shown in class...”
reflected the

“I liked that it was written by the instructor so all of the
information was important which I never feel was the case I felt
when reading textbooks for my other classes.”

course content

“I liked how everything I needed to know was on it. It ensured that
I was not questioning if a concept would be tested or not.”

“I liked that the "textbook" for this class was customized so that it
only contained info that we were supposed to know and not just
random information too.”

Clear content 8 “It was very easy to use and the content was clear and concise.”

“Content was straightforward and simple to understand. Callister is
a bit too dense in my opinion.”

“I liked that it was like a textbook, but easy to read and easy to use.
It's conveniently split up, and definitely used it a lot to study for the
exams. I just read all the Morfli chapters from front to back, which

really helped me understand all the content.”

“It was not hard to understand like a lot of other textbooks.”

Comprehensive | 7 “The information on there was really comprehensive and easy to
content understand.”

“It was a good source of info, learned a lot from it and it was
everything I needed to learn.”

“I liked that it was written in such a way that you could actually
read every word on every page and it had just the right amount of
material for our class. Didn't have to judge whether something was




getting too complicated and should be skipped to focus on stuff that
would more likely actually be covered in class.”

Content was
concise

“It was very easy to use and the content was clear and concise.”

“It had just the right amount of information, enough to feel like I
understood the content while still being able to go and read it all.”

“...most of the information was presented in a concise manner.”

Table 10: Codes related to Morfli's interactive features

Code Count | Examples
Liked the 13 “I really enjoyed the models that we used.”
del : :
fodets “Simulations was the best part.”
“...the models were useful...”
“The models were fun to play with.”
General 8 “I liked that it tested your knowledge at every step.”
int ti . . . .
feractive “I liked how it was interactive.”
“I liked the interactive exercises.”
“The exercises were productive and helped me interact with the
content.”
Immediate 4 “I liked the feedback and answers right away.”
Solutions

“I liked that we were able to see the solution after answering.”

“T also liked that after answering questions you could easily check
your answer instead of having to wait for a key to be released. i
could immediately correct my mistake in my head instead of
proceeding with the incorrect assumption.”

“I liked how you could change your answer after submitting, made
it much lower stress, and the ability to see the answer and correct
yourself was very helpful to ensure you were going down the right
track which was nice.”

Table 11: Codes related to ease-of-use

Code Count | Examples
Easy to use and | 22 “It was very easy to use...”
navigate

“It was very convenient to use, especially when reviewing.”

“It was easy to access all the information.”




“It's a great platform and very intuitive, no major complaints!”

“I like the setup of the course and how easy and intuitive it is to
use.”

Clear due dates | 8 “The due date times are all there.”

“I liked that it gave me exactly what I needed to do and by when...”

...I also liked how the assigned questions appeared on the home
page and indicated when they were due, and if they were
completed or not.”

““...the task list on the home page is really nice to make sure
nothing is missed...”

Table 12: Stand-alone code about the platform having everything in one place.

Code

Count | Examples

Everything in 10 “How everything was in one place.”
one place and
well-integrated

“I liked how the question software was embedded into the
textbook.”

“I enjoyed how the exercises could be interwoven into the
textbook, and they built off of each other.”

“I love how Morfli helps students see simulations, read the
textbook, and do homework, all in the same place.”

Only 52 students of the 78 responses suggested improvements for Morfli. The other 26 either left
this question blank or wrote things like “n/a” or “none,” or “Overall I thought it was very solid.”
The responses for what students thought could be improved about Morfli were coded and these
codes grouped into four broad categories. Any code which had only one response and was not
able to be categorized into one of these categories was removed. The broad take aways from the
four categories are:

1.

The most common responses were the mention of typos (12 responses) and that the
content in Morfli wasn’t complete (9 responses). These were grouped into one category
because they relate to the course not being finished and polished.

Students had various suggestions on how to improve the content of the course on Morfli.
None of these suggestions appeared more than five times, indicating that there were not
any glaringly obvious problems. Some suggestions included: shortening the sections,
providing more external resources, including more videos, and improving the
descriptions of models.

Seven students expressed frustration with the questions in the course which required
students to submit an image. This aspect of the platform can be improved.

Students had a few suggestions for new features for Morfli. The only suggestion that
occurred more than once (three times) was for a commenting system, which is now being
developed.




6. Discussion

This project reports on student perceptions of a major redesign of the introductory MSE course at
a large private university to center around computational models. The redesign was rooted in the
idea of restructurations, that the way we represent knowledge can have a profound impact on
thinking and learning. Although a large literature on computational restructurations exists, this
project was the first to attempt a full course redesign. It was not obvious at the outset that it
would be feasible to do this without overloading students in a large lecture-based course. We
have shown that with the right tools and pedagogy, not only is it feasible, but the response from
students was overwhelmingly positive.

The core of the course’s restructuration is using “one-to-many” computational techniques to
represent and model materials science phenomena. Each computational technique can be used to
model many phenomena, and each one embeds “powerful ideas,” in the language of
constructionism, and important “cross-cutting concepts” and “core disciplinary ideas”, in the
language of Next Generation Science Standards. Molecular dynamics (MD) is the most common
computational technique in the course which is based on the core concepts of Newton’s laws and
interatomic force/energy interactions. From the relatively simple rules of modeling each atom as
a point mass which exerts a force on surrounding atoms, phenomena such as crystal structure,
energy of point defects, mechanical properties, and dislocations emerge. Thus, in addition to
foundational Newtonian physics, MD simulations continuously highlight the emergent nature of
materials phenomena.

The core tools used for the course were NetLogo and an interactive textbook platform called
Morfli. NetLogo is a computational modeling platform designed to be “low threshold” and “high
ceiling.” NetLogo code is relatively easy for novices to understand, and it enables the models to
be interactive in real time as they run. The custom interactive textbook used to deliver the
computational models enabled models, surrounding explanatory content and exercises to all be
on one platform. This made it easy to engage students in more active learning than a typical
course.

Specifically, we used the constructionist learning cycle, a combination of constructionist
microworlds with the original learning cycle, for designing activities around computational
models. The learning cycle is based on the idea that students must go through a constructivist
process to learn “science concepts of considerable explanatory power” [35, p. 78] but that most
students will not discover these ideas on their own without some direct instruction. The learning
cycle thus consists of three stages: (1) exploration, in which students explore a phenomenon on
their own, (2) concept development/term introduction, in which the instructor helps students
interpret their findings from the exploration and eventually introduces the scientific terms of the
phenomenon, and (3) concept application, in which students apply the concept to a new situation.
The constructionist learning cycle, introduced here, retains these three stages and uses
computational microworlds (interactive computational models) in the exploration and/or the
concept application stages. The overall approach is meant to strike a balance between student-
driven exploration of models and the targeting of specific learning outcomes.



Based on the Likert-style questions, the answer to our first research question is that it is feasible
to restructurate the introductory MSE course around computational models and maintain positive
student experiences. Students had overwhelmingly positive experiences with the course, the
interactive textbook, and the computational models. The large majority of students rated the
course as more engaging than most STEM courses they had taken and their experience with the
interactive textbook as good or great. A large majority also thought they learned more than in a
typical course while only a small minority found it much more challenging than a typical course.

Student responses to open-ended questions, revealed a number of important themes about student
perceptions to the novel aspects of the course, specifically the interactive models and the
interactive textbook. Most students preferred the model-based pre-lecture exercises over video
lectures. The main two reasons for this preference were that they were (1) more interactive,
engaging, or fun and (2) they helped students understand and visualize concepts better. For the
minority of students who preferred video lectures, the main reason was they found videos easier
to understand or found the models confusing. This suggest that that although the model-based
exercises worked well for most students, additional scaffolding might be needed for some
students.

The reasons students liked the interactive textbook fell into four broad categories. First, students
thought that the content was clear, well organized, concise, and comprehensive for the needs of
the course. It was feasible to make the interactive textbook concise while still comprehensive
with respect to the course because it was designed text specifically for our course, enabling us to
cover everything we wanted without having superfluous material. The platform we used allows
instructors to edit the text which would enable other instructors to adapt the text to be concise yet
comprehensive with respect to their courses. Second, students enjoyed the interactive nature of
Morfli, including both the embedded NetLogo models and the fact that solutions were
immediately viewable after submitting answers to a question. These are features obviously not
available for static textbooks. Third, students felt the interactive textbook was easy to use and
helped them keep track of when pre-lecture assignments were due. Finally, students appreciated
that the interactive models, explanatory text, and exercises were all in one place. In an age when
software products are proliferating, students appreciate having a single website contain all these
elements in one place. The main suggestions for improvements were very minor relating to typos
in the text and that they wished the content of the interactive textbook was finished (at the time
of the course, a few course topics had not yet been completed).

6.1 Limitations and Future Work

The study has a number of limitations. First, the students are from a selective private university.
It is possible that the positive results reported here will not generalize to other student
populations. Second, we did not collect data from a control group because our materials and
questions evolved over a number of iterations, making it difficult to compare between groups.
Third, this study does not study student learning outcomes. We plan to conduct future work to
address these limitations by working with another professor to collect data on student learning
and perceptions prior to using our materials and then again after implementing a version of our
materials.



7. Conclusion

Basing the introductory MSE course around computational models aligns it with the larger trend
of increasing computation in the field and—when using the right tools—harnesses the powerful
learning affordances of computational representations, as described in restructuration theory. We
redesigned the introductory MSE course using two main technological tools—NetLogo and
Morfli—and one main pedagogical approach, the constructionist learning cycle. NetLogo is an
easy-to-use yet powerful modeling platform which enabled to us to create interactive models and
embed them in an online interactive textbook. Morfli is an interactive textbook platform which
made it easy to engage students in constructionist learning cycles in which they first explore a
computational model of a phenomenon, answer questions about it, and then receive explanations
before further applying the new concepts. Our findings demonstrate that, at least with these tools
and pedagogy, it is feasible to develop an introductory MSE course based around atomistic
computational models and for the large majority of students to have very positive experiences
with it, both in terms of engagement and perceived learning.
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