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Abstract 

This paper explores the use of machine learning to identify key factors that may connect to a 

student's academic performance and how it may be used to predict student learning outcome at 

an early stage, specifically, by utilizing two machine learning models: the Random Forest 

classifier and the Multi-Output classifier. The Random Forest Classifier is widely used for 

classification tasks. It operates by constructing multiple decision trees during training and 

selecting the mode of their predictions for a given input, identifying the most significant factors 

affecting outcomes. On the other hand, a Multi-Output Classifier is specifically designed for 

multi-label or multi-output classification tasks, where each instance can be linked to multiple 

labels or output variables. It may be used for predicting several target variables simultaneously, 

for example, assessing a student's grade and engagement level simultaneously, and our Multi-

Output classifier uses a neural network backend. In this paper, several datasets sourced from 

Kaggle containing student background information and academic engagement and performance 

data were processed using the above two classifier models. The steps for cleaning, preparing and 

analyzing the data were discussed in this paper. The results show that the Random Forest 

classifier is very effective in identifying key factors that may connect to a student's academic 

engagement and performance such as number of units completed in previous semester, grades 

from previous semester, and tuition fee payment status with an accuracy of 85.9% for the 

predictions on the test data: 94.5% correctly on the prediction of non-dropouts and 67.9% 

correctly on the prediction of dropouts. Furthermore, the same set of data was processed by the 

Multi-Output Classifier neural network resulting in accuracy scores ranging from 83.5% to 

94.2% for the five target variables, providing valuable insights to educators for advocating 

tailored support for at-risk students. 

Introduction 

       

Multiple research projects have shown the effectiveness of using early warning for supporting at-

risk students in engineering education as it may help tailor support, enhance learning outcome 

and improve the retention rates of those students who might otherwise drop out (Atif et al, 2020; 

Tinto, 2012).  

Early warning systems usually relied on the analysis of student performance data and 

engagement indicators to predict which students may need additional support (Akçapınar et al, 



 

2019; Shafiq et al, 2022). Studies also show that the use of predictive analytics, a key component 

of early warning systems, is effective to target and improve first year student attrition (Seidel & 

Kutieleh, 2017) and it works for online STEM learning as well (Yu & Wu, 2021).  

In recent years, with the growing popularity of machine learning techniques, a variety of 

machine learning algorithms have been utilized to analyze student data and predict student 

learning outcomes to identify at-risk students. The uses of different machine learning techniques 

including decision trees, support vector machines, classification, regression, and neural networks 

for predicting student performance were discussed in multiple recent studies (Al-Tabarwi et al., 

2019; Dabhade et al., 2021; Gull et al., 2020).  

Furthermore, in-depth research has been done into the relative performance of traditional single-

output predictive mathematical models in student performance prediction for an engineering 

course (Huang & Fang, 2013). They concluded that while multiple linear regression models can 

accurately predict the average exam results of the class, the most accurate model for predicting 

individual outcomes is the support vector machine model. They also emphasized the importance 

of expanding inputs beyond static measures of previous student performance – like previous 

exam scores and GPAs – into data that give a more holistic view of the student, like mindset 

questionnaires and personal/demographic information. Howard, Meehan, and Parnell conducted 

a similar study in 2018 comparing the prediction performance of Bayesian Additive Regressive 

Trees (BART), Random Forests (RF), Principal Components Regression (PCR), Multivariate 

Adaptive Regression Splines (Splines), K-Nearest Neighbours (KNN), Neural Networks (NN), 

and Support Vector Machines (SVM). They concluded that the most promising model was 

BART: combined with clustering and other methods, this model has an average prediction error 

of 6.5 prediction points six weeks into the semester (Howard et al., 2018). In another study, the 

effectiveness of the Majority Voting model, in which submodels vote in order to determine the 

final classification of a student, was established (Said et al., 2024). This approach greatly 

increases accuracy, resulting in an accuracy of 92.7%.  

Among the different machine learning methods, classification is considered one of the most 

essential tasks for analyzing student performance data because it enables the identification of 

patterns in student performance and behavior, allowing educators to categorize students into 

distinct groups based on factors such as grades, background, and engagement, helping in the 

early identification of at-risk students, enabling timely interventions that improve academic 

performance and reduce dropout rates. Additionally, classification allows for personalized 

learning strategies, better resource allocation, and the development of predictive models that 

forecast future performance to make data-driven decisions and optimize teaching and learning 

strategies. 

In this paper, the use of two classification methods: the Random Forest Classifier (RFC) model 

and the Multi-Output Classifier (MOC) model is discussed as they show very promising results 



 

in analyzing student performance data for providing reference to early warning and intervention 

in engineering education. 

The Random Forest Classifier is a widely used machine learning algorithm for classification 

tasks that operate by constructing multiple decision trees during training and selecting the mode 

of their predictions for a given input. This ensemble method enhances accuracy and helps control 

overfitting while ranking feature importance, which aids in identifying the most significant 

factors affecting outcomes (Parmar et al., 2018; Breiman, 2001; Prasad et al., 2002). Due to its 

minimal requirement on data preprocessing and the straightforwardness for implementation 

(Scikit-Learn, 2024), the Random Forest algorithms have been established as a strong contender 

in student performance prediction. Huynh-Cam, Chen, and Le (2021) achieved an 80.00% 

accuracy rate using only demographic information, allowing strong predictions even before the 

beginning of the learning period and leading to greater applicability in practice. Another benefit 

of this class of model is the explainability of the generated rule sets. When making predictions 

that will directly affect students, one must be able to explain why they were targeted for 

additional learning resources or for possible remedial work. Explainability becomes more crucial 

when model predictions are expanded beyond grades. 

On the other hand, the Multi-Output or Multi-Label Classifier is a machine learning model 

specifically designed for multi-label or multi-output classification tasks, where each instance can 

be linked to multiple labels or output variables. It is a machine learning model that is used for 

multi-output classification problems, where the goal is to predict multiple target variables 

simultaneously. Each target variable may belong to a different class, and the model makes 

predictions for all these target variables at once. This is particularly useful in scenarios where 

there are multiple related tasks that need to be solved at the same time, such as predicting 

multiple attributes or labels for each instance (Zhang et al., 2014; Xu et al., 2020; Xue et al., 

2023). For educational settings, the Multi-Output Classifier may be very beneficial in cases 

where each sample may fit into more than one category, such as assessing a student's grade and 

engagement level simultaneously, thus improving educational strategies. 

While the Random Forest Classifier has been studied extensively in predicting student academic 

performance, there are few efforts in applying the Multi-Output Classifier to predict student 

learning outcomes. A recent study tried to use multiple output models utilizing learning data 

from the first six weeks of a course platform to predict students’ homework, experiment, 

midterm, and final scores six weeks later, achieving good results (Xue et al., 2023).  

Built on the above prior studies, this paper investigates some of the implementation issues for 

utilizing those two classifiers in analyzing student data aiming to provide some comparison and 

improvement for the utilization of those two classifier methods in educational settings. 

 

 



 

Methodology 

 

In this paper, datasets sourced from Kaggle containing student background information and 

academic engagement/performance data for college freshman students were processed using the 

two classifier models. Our analysis is based on a comprehensive dataset of 4,424 student records. 

The data used in this study includes information such as parent occupation, student financial 

status, scholarship status, student qualification upon admission, student employment status, 

tuition and fee information, morning or evening attendance, number of units enrolled and 

credited in the first semester, student grades in first semester, number of units enrolled and 

credited in the second semester, and student grades in the second semester. Although the initial 

dataset contained second semester grades, they were excluded from both model’s inputs to avoid 

bias by ensuring predictions were based on only pre-semester factors alone. In this study, a 

‘dropout’ refers to any student who left their studies at any stage, rather than those only at the 

end of the second semester. ‘Debtor’ and ’Educational special needs’ are binary indicators, 

indicating whether a student has unpaid fees or has been classified as needing extra educational 

support, respectively. Additionally, ‘Curricular units 1st sem (evaluations)’ refers to qualitative 

assessments such as conduct and participation, while ‘Curricular units 1t sem (grade)’ represent 

academic performance. 

The following are the general steps for implementing the Random Forest and Multi-Output 

classifier methods (Scikit-Learn, 2024) with our adaptations. 

Random Forest Classifier 

● Data Cleaning and Preparation 

The first step was preparing the dataset, focusing on selecting the most relevant features 

for predicting student performance: whether students dropped out. For this step, we 

needed to ensure that the data used to train the model accurately reflected patterns of 

dropout without being too closely tied to specific details that could skew the results. For 

example, columns related to second-semester grades and curricular unit data were 

removed because they directly indicated whether a student had dropped out or not.  

● Data Preprocessing 

In this step, data were split into two categories: vector X_2 contains all the predictor 

variables (the features), while vector y_2 holds the target variable, which is the dropout 

status (whether a student dropped out or not). By removing second semester student 

performance data, we ensured that the model wouldn’t be biased by data that was too 

closely linked to the target variable. Instead, the remaining features were intended to help 

predict dropout by identifying patterns that were more generalized across the entire 

academic experience. This approach helped ensure that the model would be more 

versatile and capable of predicting dropout across different scenarios. 



 

● Splitting the Dataset 

Once the data was cleaned and irrelevant columns were removed, the next step was 

splitting the dataset into two sets: training and testing. Seventy percent of the data was 

used to train the model and the 30% left was reserved for testing model performance. 

As a result, we split the data into two subsets: 

a) Training Set: This portion of the data is used to train the model, allowing it to 

learn the underlying patterns between the features (X_2) and the target variable 

(y_2), which in our case is student dropout status.  

b) Testing Set: After the model has been trained, it is tested on this portion of the 

data to evaluate how well it can predict outcomes for unseen instances. This 

simulates the real-world application of the model, where it will need to predict the 

dropout status of students who were not part of the training process. 

● Model Selection and Hyperparameter Tuning 

After splitting the dataset, the next step was model selection and hyperparameter tuning 

to ensure the model learns effectively from the training data and is ready to perform well 

on the test data. For a Random Forest Classifier, there are several key hyperparameters 

that shape how the decision trees in the forest grow and how they make predictions. In 

our model, we focused on four important hyperparameters: n_estimators (number of trees 

in the forest), max_depth (how deep each tree can grow), min_samples_split (minimum 

number of data points required to split a node), and min_samples_leaf (minimum number 

of samples that a leaf node or the final node in a tree should have).  

● Model Training and Optimization 

To find the best combination of those hyperparameters, we used Grid Search, which is 

where we test all possible combinations of hyperparameters to see which one gives us the 

best results. It’s extremely useful, but can be computationally expensive, especially when 

there are a lot of combinations to check. But when done right, it’s worth the time because 

it helps us find the most effective setup for the model. Furthermore, this Grid Search 

function we used doesn’t just test all the combinations but also uses cross-validation, 

which means it splits the data into different parts and trains the model multiple times to 

get a better sense of how well it performs. As a result, this not only tells us how well the 

model performed on the training data but also makes sure it wasn’t just memorizing the 

data but was actually learning patterns that could be applied to new data. 

● Prediction and Model Evaluation on Test Data 

Once we obtain the best parameters from model training and optimization, we can then 

use them to evaluate the model on the test data to make predictions. This is where we see 

how well the model works on data it has never seen before, which is a good test of how 

the model will perform in real-world situations. For this step, a test accuracy score is 

calculated, which gives us an idea of how accurate our model is in predicting whether a 



 

student will drop out. A higher test accuracy means the model is doing a good job at 

generalizing the data and making accurate predictions. 

Multi-Output Classifier (Neural Network) 

The steps for implementing the Multi-Output Classifier are very similar to those for a single-

output classifier like the ones shown above for the Random Forest Classifier but with the 

addition of handling multiple target variables. 

To achieve this goal, in our case, the ‘Target’ object column is split into three binary columns: 

Target-Graduate, Target-Dropout, and Target-Enrolled. We use one-hot encoding, in which only 

one of the three columns can be true for a given sample. After that, we identify the five columns 

that will be predicted. These include the above columns as well as ‘Debtor’ and ‘Educational 

special needs’.  Then, a scan was done on the data to remove invalid and outlier ones. 

Accordingly, the dataset is split into train and test subsets with twenty percent of the data 

allocated to the test set, and eighty percent into the training set. Next, the data is corrected for 

class imbalance by duplicating samples that have a 1 in the ‘Debtor’ or ‘Educational special 

needs’ columns. Specifically, the ‘Debtor’ samples are weighted 4 times more than regular 

samples, while ‘Educational special needs’ samples are weighted 40 times more. The final effect 

of this correction is that 3618 synthetic samples are added to the training set, increasing the data 

size by 89.01%. This resulted in a ~30% and ~20% increase in positive sample identification for 

the ‘Debtor’ and ‘Educational special needs’ classes respectively. Finally, we use sklearn’s 

StandardScaler utility to normalize the mean and standard deviation of each column to 0 and 1, 

respectively.  

With these steps of data preparation done, we may then implement the Multi-Output Classifier 

model. Specifically, our Multi-Output Classifier (MOC) is composed of three dense neuron 

layers: the first, which uses the ReLU activation function, has 64 neurons; the second, which also 

uses the ReLU activation function, has 32 neurons; and the final layer, which uses the Sigmoid 

activation function, has 5 neurons. The ReLU (Rectified Linear Unit) activation function is the 

standard choice for dense layers because of its effectiveness and simplicity. It can be expressed 

mathematically as ReLU(x) = max(0, x). The Sigmoid activation function is used in order to map 

the values to zero or one for classification. It can be expressed mathematically as 

                  (1) 

It is chosen over the similar Softmax function because unlike the Softmax function, the Sigmoid 

function does not assume single-class output. Additional Dropout layers are inserted between the 

dense layers with a dropout probability of 0.2 in order to reduce dependence on a single input 

variable and aid generalization.  It uses the tensorflow library’s implementation of the Adam 



 

optimization algorithm, which is “computationally efficient and … well suited for problems that 

are large in terms of data and/or parameters.” (Kingma et al, 2017) The Adam algorithm is 

especially effective here because of its built-in weight decay, which mitigates the negative effect 

of including many low-correlation features. This weight decay works by incorporating the 

number of active weights into the loss function as shown below, incentivizing the model to “zero 

out” inputs that do not substantively affect the result. 

                     (2) 

Results 

 

Correlation Heatmap analysis 

 

Figure 1: Heatmap Visualizing Data Correlations 



 

Before implementing the two classifier models, we used the Seaborn library to generate a 

heatmap visualizing the correlations between different variables in the dataset as it would 

provide valuable insights on the validity of the dataset. As Figure 1 shows, the most immediately 

apparent feature (color coded in red) are the two squares at the intersections of the “Curricular 

units” feature families. This illustrates that students who score well on the exams in the first 

semester are likely to keep up their performance during the second semester. For another 

example, the heatmap also shows us that the “Tuition fees up to date” column will be 

instrumental in predicting which students are in debt.  

Data Imbalance Correction 

 

Figure 2: Illustration of Data Imbalance 

In a typical test dataset, the ‘Debtor’ and ‘Educational special needs’ columns are severely 

imbalanced. In particular, students with educational special needs make up only 1.2% of the 

dataset (Figure 2). The lack of data here ultimately makes it very hard to predict if a student has 

special needs or not across the large number of input features. However, we can take steps to 

mitigate the effect of this lack by increasing the weight of the imbalanced classes. With only 41 

instances in ESN, multiplying them by ~100x to equalize the columns would skew the other 

predictions towards whichever features happened to be overrepresented in the ESN samples. 

Instead, we manually choose constants to multiply the number of samples to a reasonable 

proportion of the total, keeping in mind that a false positive inadvertently notifying an instructor 

to a student possibly having educational special needs should be strongly disincentivized. The 

‘Debtor’ samples weigh 4 times as much, while the ‘Educational special needs’ samples weigh 

40 times more than a normal sample. 



 

 

Figure 3 : Illustration of Data Imbalance Correction 

After correcting the imbalance, as shown in Figure 3, the final class makeup has a reasonable 

distribution. Note that the rare samples that belong to both minority classes are duplicated in both 

rounds, increasing the final number of samples in ‘Educational special needs’. 

Hyperparameter Optimization and Model Configuration 

To make sure our model works well, we focused on fine-tuning a few important settings, known 

as hyperparameters, for the Random Forest classifier. These settings help the model strike the 

right balance between being too simple or too complex. 

● max_depth: 10 

By limiting how deep the trees in the Random Forest can grow, we prevent them from 

getting too complicated and fitting the training data too closely. A depth of 10 ensures the 

trees are still able to make meaningful decisions, but they won’t overfit. 

● min_samples_leaf: 4 

This setting makes sure that each decision node in the trees has enough data to work with 

before making a prediction. With at least four samples in each leaf node, the model 

avoids making predictions based on small or unreliable data groups. 

● min_samples_split: 10 

This parameter ensures that the model only splits nodes when it has enough data. A 

minimum of 10 samples before splitting keeps the tree from getting too specific and 

overfitting to small details that aren’t likely to hold up in new data. 

● n_estimators: 200 

The model uses 200 trees in the Random Forest. Having a larger number of trees helps 

the model make more accurate predictions because the predictions of all the trees are 

averaged together, which smooths out any individual errors. 



 

The hyperparameters were chosen with the goal of making the model both powerful and flexible, 

ensuring it could predict dropout rates effectively without becoming too specialized for just the 

training data. 

Accordingly, we used 5-fold cross-validation to check how well our model could perform on 

different sets of data. This method splits the data into five parts and tests the model on one part at 

a time, which helps make sure the results as shown in table 1 are reliable. 

Cross-Validation Performance and Test Accuracy 

 
Table 1. sklearn.metrics.classification_report output for Random Forest classifier 

● Test set accuracy (85.9%) 

When we tested the model on the data it hadn’t seen before, it performed similarly with 

an accuracy of 85.9%. This score suggests that the model isn’t just memorizing the 

training data but learning general patterns that work well on new data. This consistency 

indicates that the model is likely to be reliable in real-world scenarios, not just on the data 

it was trained on. 

 

 
Figure 4: ROC Curve illustrating True Positive Rate vs False Positive Rate 



 

The ROC curve displayed in Figure 4 shows the Random Forest Classifier’s performance, 

achieving an area under the curve (AUROC) of 0.90. This high AUROC value indicates that the 

model successfully distinguishes between dropout and non-dropout students with a high degree 

of accuracy. The steep rise in the curve reflects a high true positive rate with minimal false 

positives, showing that the model effectively identifies true dropouts while minimizing false 

alarms. Such performance validates the model’s ability for educational dropout prediction, 

highlighting its effectiveness in early identification of students who are at risk of dropping out. 

These results confirm that the Random Forest model is strong at predicting dropout rates and is 

generalizing well, meaning it’s not overfitting or underfitting. 

Comparison of Actual vs. Predicted Dropout Status 

We then compared the model’s predictions with the actual dropout status of students to see 

which situations the model correctly assessed. This helps us understand where the model can 

improve. 

● Recall Analysis                                                                                                                  

The recall values for the ‘Target-Dropout’ classification overall reflect the practical 

impact of the model. With a recall of 94.5% for students labeled as 0.0 (none-dropouts), 

the model consistently identifies those who are likely to remain enrolled, ensuring 

minimal misclassification of these students. For students labeled as 1.0 (dropouts), the 

recall of 67.9% highlights the model’s capability to correctly predict 67.9% of actual 

dropouts. While there is room for improvement in identifying more actual dropouts, this 

performance is meaningful within the context of early intervention efforts. By effectively 

capturing most dropout cases, the model supports targeted decision-making and enables 

the ability to take cautionary measures. 

Multi-Output Classifier (Neural Network) Results 

Table 2. Results from Multi-Output Classifier 

 

The final accuracy scores for the five output variables ‘Target-Graduate’, ‘Target-Dropout’, 

‘Target-Enrolled’, ‘Debtor’, and ‘ESN’ (Educational special needs), from running the Multi-

Output model, were 85.65%, 86.44%, 83.50%, 85.88%, and 94.24%, respectively.  

 



 

 
Figure 5: Illustration of True Negatives Identified 

 

From table 2 and Figure 5, we can see that all five columns have very high accuracy for 

identifying negative variables but vary in how well they can identify positive samples based on 

class imbalance. Because of this class imbalance and lack of samples, the positive recall scores 

were low: 86.96%, 73.72%, 18.06%, 54.37%, and 20.00%, respectively. Note that the positive 

recall of ‘Education special needs’ is exactly twenty percent because the test dataset only 

contained ten positive samples. More careful data collection could solve the positive recall issue 

for ESN student prediction. Target-Enrolled is deemphasized in accuracy rating because of its 

similarity to Target-Dropout. Finally, the recall of negative predictions was high, an important 

metric given the impact of making incorrect positive assumptions about a student’s financial or 

ESN situation. Because of the high negative recall, we can feel relatively confident about the 

accuracy of this model’s prediction when it predicts that a student belongs to an additional-

resource group.  

Feature Importance and Insights 

One of the advantages of using a Random Forest classifier is that it helps us understand which 

factors are most important in predicting dropout. By looking at which features have the most 

influence, we can gain insight into what causes students to drop out. 

The top features that the model found connecting to student dropout include: 

● Curricular units 1st sem (approved) (importance: 0.2538) 

Whether students completed their first semester successfully is a big indicator of whether 

they’re at risk of dropping out. Those who fail or struggle early in their studies are more 

likely to disengage and drop out later. 



 

● Curricular units 1st sem (grade) (importance: 0.1692) 

The grades students earn in their first semester are another strong predictor. Low grades 

suggest that students might be struggling academically, which can lead to frustration and 

dropout. 

● Tuition fees up to date (importance: 0.1467) 

Financial issues also play a big role in dropout risk. Students who fall behind on tuition 

payments may be forced to leave due to financial constraints, making this feature a key 

predictor. 

● Age at enrollment (importance: 0.0608) 

The age at which a student enrolls can also affect dropout risk. Older students might have 

more challenges, like balancing school with work or family obligations, which could 

impact their ability to stay enrolled. 

● Curricular units 1st sem (evaluations) (importance: 0.0526) 

Performance on evaluations in the first semester shows how well students are managing 

the course content, and those struggling here might be at a higher risk of dropping out. 

These more relevant features align with known factors that influence student retention and 

dropout, confirming that the model is making decisions based on meaningful and relevant data.  

Although the model performed well, there are still ways to improve its accuracy and reliability. 

Some of these improvements could include: 

● Reducing False Positives: 

The model sometimes incorrectly predicted that students would drop out when they 

didn’t. By refining the model to reduce these false positives, we could avoid unnecessary 

interventions or misleading predictions. 

● Adding More Features: 

Including more data, such as attendance patterns, social engagement, or mental health 

indicators, could help the model make even better predictions. These factors might reveal 

deeper insights into why students drop out. 

Conclusion 

Within our study, the Random Forest Classifier (RFC) has proven its effectiveness for predicting 

single-output outcomes in educational data. Its learning approach, which builds multiple decision 

trees and aggregates their predictions, allows it to handle diverse features, ranging from 

numerical performance metrics to also categorical factors. This method is particularly effective 

in avoiding overfitting, making it an ideal choice for large, complex datasets typical in 

educational contexts.  

RFC’s ability to rank features by importance also adds an additional layer of insight, as it can 

help educators identify the key factors connecting to student success or failure. For example, in 

our analysis, RFC was able to determine certain aspects that were key predictors of dropout 

risks. With this information, institutions could then create early warning systems for at-risk 

students, helping provide early interventions such as tutoring or mentorship. By focusing on the 



 

factors that matter most, RFC enables more efficient resource allocation and allows people to 

take early measures to help students stay on track. 

However, the limitation of RFC is that it often assesses each outcome in isolation. Educational 

success is connected to a multitude of factors, including emotional, behavioral, and social factors 

as well as academic performance. RFC overall excels at predicting specific outcomes, such as 

whether a student will drop out or pass a course. However, it has difficulty handling related 

outcomes simultaneously, which is where the Multi-Output Classifier (MOC) offers an 

advantage. 

In addition to predicting a single outcome, for example whether a student would drop out, the 

Multi-Output classifier (MOC) can make additional predictions: whether the student is in debt 

and whether the student has educational special needs (ESN) in our case. This could allow 

educators to offer resources that are specific to these disadvantaged groups to those who need 

them most. For instance, a student whose actions suggest they are struggling with debt could be 

offered an on-campus work opportunity or receive information about scholarships. Similarly, a 

student who exhibits behavior that indicates they may have educational special needs could 

receive resources designed to help specifically ESN students. Crucially, students should not be 

confronted with the model’s predictions but rather approached casually about additional 

opportunities, such as through an automated email like those ones students already receive. 

While both RFC and MOC offer significant insights into assessing student performance, several 

challenges remain. One of the primary obstacles is the quality of the data used for training 

models. Missing values, inconsistencies, and biases in the dataset can all impact accuracy and 

skew the fairness of predictions. It is essential to ensure that the data is both cleaned and 

preprocessed properly, with an emphasis on eliminating any potential bias that could 

disproportionately affect underrepresented student groups. 

Future Work 

For future work, we plan to test the two classifier models on various types of student learning 

data, for example, the live student engagement and performance data obtained from a learning 

management system, as it would assist course instructors to better assess student academic needs. 

Using our own data instead of an online dataset might also help address severe class imbalance 

issues. Additionally, it may be worthwhile to build hybrid models that combine RFC’s feature 

selection with MOC’s multi-output prediction, as it would allow for more precise predictions and 

a deeper understanding of how different aspects of student engagement and performance are 

interrelated. Furthermore, it may be worthwhile to incorporate some qualitative data, such as 

teacher assessments, student feedback, and classroom observations, within the analysis. This 

could further improve the models’ accuracy as current RFC and MOC predominantly focus on 

quantitative variables, but the inclusion of more qualitative insights could help capture the full 

spectrum of student experiences. 
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