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Immerse Students in AI-Infused Cybersecurity Through Software Process 

1. Introduction 

 

Cyberspace and the Internet have become an integral part of every nation, such as cities and 

coastlines. They serve as the backbone for today's economy because we perform all of our daily 

activities, including shopping and banking, on the Internet. [1]. Due to the COVID-19 pandemic, 

all organizations were compelled to transition online and must now adjust to the "always-on" 

environment to maintain connectivity with their consumers [2]. 

 

The expansion of the Internet, the rapid growth of cyberspace, and the always-on world have all 

played a significant role in the remarkable increase of cyberattacks observed in recent years. In a 

U.S. Senate hearing in March 2013, prominent intelligence experts warned that "in the future, the 

cyber threat will be the paramount threat to the nation," exceeding terrorism [3, 4]. This claim 

was reaffirmed in a 2019 survey of 200 worldwide CEOs and 100 senior investors with assets 

over one billion dollars, performed by the management consultancy EY [5 ,6]. The U.S. Agency 

for International Development Assessment estimates that the cost of cybercrime was $8 trillion 

in 2023 and could escalate to $23 trillion by 2027 [6]. 

  

Cyberspace faces a multitude of threats that are continuously evolving, originating from both 

cybercriminals and nation-state actors. Cybercriminals employ malware, a category of harmful 

software that include viruses, worms, trojans, spyware, bots, rootkits, ransomware, and others, as 

a means for cyberattacks [7]. The motivations behind cyberattacks encompass a wide array of 

illicit activities, including identity theft, data theft, espionage, and the disruption of essential 

operations [1]. Attacks may manifest on a variety of scales, ranging from minor incidents 

targeting the personal information of unsuspecting individuals on their home computers to 

significant operations, such as the one that incapacitated the CIA (Central Intelligence Agency) 

website for several hours in early February 2012 [8]. 

 

Cyberattacks are increasing in frequency and severity at an alarming rate. For example, in the 

early cyber period, malware threats were few, and basic pre-execution rules often detected them. 

However, the economic incentives have led the malware authors to create numerous automated 

malware development toolkits, enabling inexperienced attackers to generate or tailor their own 

malware by merely altering existing variants [7]. These automated malware toolkits enable cyber 

attackers to generate numerous mutated malware samples [7] and evade detection through 

techniques such as instruction virtualization, packing, polymorphism, emulation, and 

metamorphism from the commercial malware detection software [7, 9, 10]. To combat the 

exponential growth of cyberthreats, an efficient, robust, and scalable detection module is 

required. The old tools that rely on pre-execution rules are ineffective and impractical. We 

require tools based on advanced protection technologies that are capable of processing vast 

amounts of data and delivering long-lasting defense solutions against current and future attacks. 

Using AI/ML techniques to automatically learn models and patterns behind such complexity and 

to develop solutions to keep pace with cyberthreat evolution is one of the most prevalent 

approaches in the literature. 

 

In order to safeguard the nation's key infrastructures such as energy, communication, water, 

food, and healthcare systems, it is essential to hire qualified cybersecurity professionals. 
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Unfortunately, getting enough trained cybersecurity professionals is proving to be a major 

obstacle for both the public and commercial sectors. The size of the cybersecurity workforce 

shortfall increased by 19% annually, from 4 million in 2023 to 4.8 million in 2024, according to 

the first look at the ISC2 cybersecurity workforce survey 2024 [11].   

 

Universities teach students how to write computer software; but that is only a small part of what 

is required of graduates when they enter the workforce. Industry demands a much broader 

perspective: that of being equipped with technical skills in identifying requirements, designing a 

suitable solution, implementing the solution in software, validating that the software satisfies 

requirements; as well as being equipped with business skills such as estimating cost, monitoring 

progress, measuring effectiveness, etc. Students who are inculcated with such software 

engineering skills are more attractive to employers that just have software-coding abilities. 

 

This paper explains our experience and takeaways in immersing students in real-world software 

engineering practices using a year-long undergraduate research project development. That is, 

rather than simply coding the cybersecurity research projects, they engineered the cybersecurity 

product. Our process walked students through producing a working solution by having them use 

an agile process called Collaborative-Adversarial Pair (CAP) programming [12] that specifically 

applies cutting-edge software industry techniques at each point in the software lifecycle. 

 

2. Need for Light-Weight Software Process 

 

There are several software development approaches in use today and the list expands 

continuously. Numerous developers employ personalized approaches in the development of their 

software, and others choose for commercially available methodologies. Several aspects are 

crucial in the process of selecting a methodology, including budgetary considerations, team size, 

project criticality, technology employed, documentation requirements, training needs, and 

available tools and approaches. The conventional project approaches commonly employed by 

developers are widely regarded as bureaucratic or predictive in character, and have been 

associated with a significant number of failure projects [13, 14]. The presence of tiresome tasks 

can significantly impede the efficiency of the design, development, and deployment processes, 

resulting in a deceleration of overall progress. 

 

A lightweight software process refers to a software development approach characterized by a 

limited number of rules and practices, or those that are straightforward to adhere to. The 

importance of addressing alterations in requirements, as well as changes in the environment or 

technology, is underscored by the necessity to exhibit flexibility and adaptability. In the context 

of lightweight software processes, it is common practice for developers to make adjustments to 

the process following each build or iteration. These adjustments are made in order to address any 

issues that may have arisen during the project, thereby establishing a continuous improvement 

cycle throughout the duration of the project. The subsequent points outline the primary benefits 

of lightweight techniques, as supported by scholarly sources [13, 14]: 1) They demonstrate a 

high level of adaptability, 2) Their focus is on individuals rather than procedures. They exhibit a 

tendency to collaborate with individuals rather than engage in oppositional behavior, 3) The 

utilization of dynamic checklists serves as a complement to them, and 4) The emphasis is placed 

on software rather than on documents. 
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The presence of numerous iterative cycles within lightweight techniques offers developers 

increased chances to thoroughly examine the project specification and adapt it to accommodate 

evolving business requirements. This system allows for the incorporation of additional 

requirements and modifications to the existing requirements list, hence enabling the adjustment 

of priority as deemed necessary. A further advantage of lightweight approaches is in their 

emphasis on generating value-added releases and mitigating architectural risk at the early stages 

of a project, a task that would pose challenges within the context of a heavyweight methodology. 

 

3. Research Project Teaching/Development Process 

Our project immersed students in real-world software engineering practices during their research 

project development. That is, rather than simply coding the cybersecurity research projects, they 

engineered the cybersecurity product. Our process walked students through producing a working 

solution by having them use an agile process called Collaborative-Adversarial Pair (CAP) 

programming [12] specifically to apply cutting-edge industry techniques at each point in the 

software lifecycle. The CAP model has been successfully used in the senior capstone project 

courses for the past 10 years. Moreover, the CAP method has been used as a pilot project by 

Neptune Technology Group Inc. in Plano, Texas, USA. The process used incrementally throughout 

the project development, starting with techniques that enhance writing code, and having an 

engineering activity, which addresses another lifecycle activity added each week. Students worked 

in an interactive environment in which they are instructed on new techniques and then mentored 

in the use of those techniques during the project development.  

 

The CAP process employs a synchronize-and-stabilize approach to development in which features 

are grouped into prioritized feature sets then built in a series of software cycles, one set per cycle 

(Figure 1).  

 

 
Fig.1. CAP Development Methodology 

 

https://www.hindawi.com/journals/isrn/2012/516184/fig1/
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Each cycle starts with the entire project team (student pair, project mentors, and faculty advisor) 

reviewing the features to be built. It is here that the customer requirements (the cybersecurity 

problem) are translated into product requirements by converting user stories into “developer 

stories,” which are essentially manageable units of work that map to user stories. Progress is 

tracked by two measures: the ratio of the number of user stories built to the total number of user 

stories and the ratio of the developer stories completed to the total number of developer stories to 

be built in the cycle. The first measure expresses progress to the customer; the second measure 

tracks internal progress.  

 

After the feature review, the student-pair moves into collaborative-adversarial mode. The 

developers/students work together collaboratively to identify how to architect and design the 

features. They use this time to clarify requirements and discuss strategy. They then walk through 

their design with the project advisor. After the design is approved, they move into their adversarial 

roles. One developer/student is assigned the responsibility of implementing the design, and the 

other developer/student is given the task of writing black-box test cases for the various 

components. The goal of the implementer is to build unbreakable code; the goal of the tester is to 

break the code. Note that the implementers are still responsible for writing unit-level white-box 

tests as part of their development efforts. Once both developers have completed their tasks, they 

run the code against the tests. Upon discovering problems, the pair resumes their adversarial 

positions: the tester verifies that the test cases are valid, and the implementer repairs the code and 

adds a corresponding regression unit test. In some cases, the test cases are not valid and are, 

themselves, fixed by the tester. 

 

At the conclusion of the test phase, the team moves to a postmortem step. Here, the team (including 

the project advisor) reviews the source code and the test cases. The purpose of the review is to (1) 

ensure the test cases are comprehensive and (2) identify portions of the code that are candidates 

for refactoring. The team does not walk through the code at a statement-by-statement level. This 

has been found to be so tedious that the participants quickly become numb to any problems. It is 

assumed that the majority of defects are caught in the black-box functional tests or in the white-

box unit tests. Any gaps in test cases are captured as additional developer stories; refactoring tasks 

are done likewise. These developer stories receive a high enough priority that they are among the 

first tasks completed in the subsequent software development cycle. 

 

A new development cycle begins again following the postmortem step. 

 

4. Participants and Research Projects 

 

4.1. Participants 

 

This research project involved the active training of 10 undergraduate students, primarily ROTC 

(Reserve Officers’ Training Corps) cadets from various universities within the state. Students 

were organized into five training groups or pairs. A pair of REU students worked on a project 

utilizing the CAP software development approach, under the close guidance of a project leader 

and in regular contact with one or more additional project leaders.  
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4.2. Research Projects 

 

Though research in intrusion detection has been around for several years, applications are always 

changing and morphing. Current intrusion detection processes suffer from several limitations 

when focusing on highly vulnerable network intrusions. First, with the increasing volume of 

network traffic -- existing intrusion detection processes fail to analyze the vulnerabilities in time 

to predict possible network intrusion(s) from the chain of actions of an intruder. Second, current 

intrusion detection systems produce a high volume of false positive alerts. And third, current 

approaches consider every sequence of network vulnerability to predict future intrusions rather 

than analyzing the comparatively significant sequences. Instead of teaching theoretical 

cybersecurity concepts it will be beneficial to allow the student(s) to be involved in the design 

and improvements to current and next generation time series intrusion detection systems. 

 

Network intrusion refers to unauthorized activity on closed digital networks. Network intrusions 

have become very common in the digital age and can be highly disruptive to the operations of 

any organization. Some of the popular Network intrusion attach vectors are flooding (e.g. Buffer 

overflow flow, DDoS), multi-routing or asymmetric routing (more than one route to the targeted 

network device), protocol specific attacks, trojan/malware and CGI scripts. Once an intruder is 

inside the Network, they can imperil the network and data security of the organization. Multiple 

Intrusion Prevention (IPS) and Intrusion Detection Systems (IDS) are available on the market. 

Machine Learning (ML) and Artificial Intelligence (AI) models can be trained to detect and 

prevent network intrusion and can be the first level of detection/prevention supporting the 

security personnel responsible for the network security of an organization [15]. Many researchers 

have published surveys and studies on the efficacy of using AI+ML for such network anomaly 

detection [16-18]. Through this research our plan was to obtain the answer for the question how 

we can use AI+ML to train, predict, and prevent network intrusion as a first layer of network 

security? 

 

Time Series Intrusion Detection: This research topic involved developing time series intrusion 

detection systems that can determine highly vulnerable intrusions from network traffic. Though 

research in intrusion detection has been around for several years, applications are always 

changing and morphing (for example, the advent of cloud related services). Current intrusion 

detection processes suffer from several limitations when focusing on highly vulnerable network 

intrusions. First, with the increasing volume of network traffic -- existing intrusion detection 

processes fail to analyze the vulnerabilities in time to predict possible network intrusion(s) from 

the chain of actions of an intruder. Second, current intrusion detection systems produce a high 

volume of false positive alerts. And third, current approaches consider every sequence of 

network vulnerability to predict future intrusions rather than analyzing the comparatively 

significant sequences. The student(s) involved in the design and improvements to current and 

next generation time series intrusion detection systems. Student(s) leveraged currently developed 

intrusion detection processes to gather knowledge on existing vulnerabilities and their priority in 

terms of how they might affect the resources. [19-22] 

 

Predicting Network Intrusions with AI+ML: As is common with all AI+ML problems the 

requirement of the requisite amount and quality of the data is paramount to a successful outcome. 

Large datasets for developing ML and AI inferencing applications are publicly available. Most of 
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the datasets are well defined and well curated. Some of the examples are CTU-13 (Czech 

Technical University) dataset – which is one of the largest and more labeled existing datasets in 

the Cyber Security field for botnet detection, ADFA Linux datasets - consists of Linux-based 

system call traces of the normal and attack types and the UNB-CIC dataset –which is published 

by University of New Brunswick (UNB) related to Cyber Security almost every year, 

collaborating with the Canadian Institute for Cybersecurity. This dataset has been categorized 

based on the type of attack. Two training project teams worked with these publicly available 

datasets, one for intrusion detection which has traditionally been based on patterns of known 

attacks, but with modern deployments to include other approaches for anomaly detection, threat 

detection and classification based on machine learning principles such as LSTM/RNN classifiers 

[23] and the second team for malware analysis and spam and phishing detection. We used Fully 

Connected Feed Forward Neural Network (FNN) and Convolutional Neural Networks (CNN) for 

malware analysis and K-Nearest neighbor (KNN) and shallow neural networks (SNN) for 

spam/phishing detection. 

 

5. Summary and Conclusion 

 

Cyberattacks, ranging from identity theft to life-threatening threats, pose an increasing danger to 

our country. To hire enough qualified security personnel, the industry faces significant obstacles. 

One of the difficulties in addressing cyber workforce issues is the well-documented lack of 

STEM graduates who are qualified to work in the cyber field. Even though STEM careers in 

academia and industry increasingly require technical skills for dealing with cybersecurity, 

undergraduate computer science courses fail to provide students with the necessary training in 

cybersecurity areas that integrate theory and practice. Students' employability will be 

significantly enhanced if they possess such skills. The overall objective of this study was to 

promote discovery-based learning as opposed to passive listening. This was accomplished using 

an agile software engineering methodology called Collaborative-Adversarial Pair programming.    

Our process walked students through producing a working solution for real-world cybersecurity 

problems. 

 

Through this project ROTC and URM students received an entire year of training from R1 

research schools and an AI/cybersecurity startup. We established five intriguing and demanding 

research projects in cybersecurity. These were significant and hard enough to be of interest as 

undergraduate Cyber Security research projects, but participants with a good background in 

fundamental mathematics and an introduction to computer programming were able to 

comprehend the projects. The projects are Security in Vehicular Ad-Hoc Networks (VANETs), 

Time Series Intrusion Detection, Host Layers Cyber Security Modeling, Predicting Network 

Intrusions with AI+ML, and Privacy/Trust and Access Control in IoT Network. 
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