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Abstract 

  

 

The rapid advancements in Artificial Intelligence (AI) are transforming the educational 

landscape, offering new opportunities to enhance learning and teaching experiences. This work-

in-progress research focuses on the application of Deep Knowledge Tracing (DKT) and 

Feedforward Neural Networks (FNN) to model and predict student performance effectively. The 

models were evaluated using two datasets, EdNet and Student Performance, to track and analyze 

students' learning progress. The DKT model demonstrated strong predictive performance on the 

EdNet dataset, achieving a test accuracy of 94.34%, while the FNN performed well on the 

Student Performance dataset within its tabular context.  SHAP-based interpretability techniques 

were applied to validate the model’s predictions, revealing critical factors influencing 

performance, such as prior grades and socio-economic variables.  

  

While this study primarily focuses on the development and evaluation of predictive models, 

future work aims to integrate these models into an AI-powered educational platform. This 

envisioned system will provide personalized learning experiences for students and actionable 

insights for educators by leveraging explainable AI (XAI) techniques. By bridging the gap 

between predictive modeling and real-world educational applications, this research lays the 

groundwork for intelligent, adaptive, and transparent educational technologies. 

 

Keywords: Deep Knowledge Tracing, Artificial Intelligence, Explainable AI(XAI). 

 
 

1. Introduction and Related Work 

 

Recent advancements in Artificial Intelligence are set to drive transformative changes across 

various domains, including healthcare [1], environmental sciences [2], business management [3], 

and most notably, education [4]. The keyways AI is being used in the field of education include 

personalized learning, Intelligent tutoring systems (ITS), optimizing administrative processes, 

and enhancing accessibility and engagement. By tailoring learning experiences to individual 

student needs, AI-powered systems have the potential to increase engagement, improve 

academic performance, and provide more equitable access to education. 

 

Among the emerging AI-driven methodologies, Deep Knowledge Tracing (DKT) [9] has 

gathered attention as a robust approach for tracking and predicting a student's evolving 

knowledge state. DKT leverages sequential data, such as a student’s interactions with learning 

materials, to predict future performance and enable adaptive learning experiences. However, 

while DKT offers strong predictive capabilities, its black-box nature and lack of interpretability 

limit its adoption in real-world educational systems. 

 



While approaches like the three-layer knowledge tracing model proposed by Y. Lu et al. [11] 

aim to enhance trustworthiness in intelligent tutoring systems, they fall short in providing 

sufficient transparency in model predictions. Similarly, the work by Ma et al. [12] underscores 

that although prior studies have successfully integrated AI into Intelligent Tutoring Systems 

(ITS) and adaptive learning platforms, achieving a balance between high model performance and 

explainability remains a persistent challenge. 

To address these limitations, recent efforts have explored the integration of Explainable AI 

(XAI) methods, particularly SHAP (SHapley Additive exPlanations) [8], which can uncover the 

most influential features driving a model's predictions. The combination of predictive accuracy 

and interpretability is thus crucial for building effective and trustworthy AI-powered learning 

systems. 

This study explores the effectiveness of predictive modeling in two different educational data 

settings. We evaluate models on both a sequential interaction dataset (EdNet) and a static tabular 

dataset (Student Performance) to understand how different architectures, such as FNN and DKT, 

perform under varying data structures. Rather than comparing these models head-to-head, the 

goal is to assess each model’s suitability within its appropriate context and to examine how 

explainability techniques like SHAP can enhance their interpretability. 

 

2. Methodology 

 

This research evaluates the performance of DKT and FNN on two datasets: EdNet and Student 

Performance, focusing on predictive accuracy and feature-level interpretability. By applying 

SHAP, we analyze the key determinants of student performance, such as prior grades and socio-

economic variables, providing actionable insights for educators and researchers. 

 

2.1. Datasets 

 

This study utilizes two publicly available datasets: EdNet-KT1 and the Student Performance 

dataset, selected for their complementary characteristics. EdNet-KT1, part of the larger EdNet 

corpus collected from a Korean online learning platform, contains over 131 million student 

interactions. We sampled 200 session log files from KT1 for exploratory data analysis, revealing 

a mean session length of 23.4 and a median of 11, making it highly suitable for sequential 

modeling. KT1 logs question-answer interactions with associated timestamps, bundle identifiers, 

and elapsed time, enabling the use of models like Deep Knowledge Tracing (DKT) that rely on 

temporal dependencies. In contrast, the Student Performance dataset includes 649 students from 

Portuguese secondary schools, with structured features such as prior grades (G1, G2), parental 

education, study time, and school support. The final grade (G3) was binarized for classification 

into high (≥10) and low (<10) performers. As it lacks time-based logs, this dataset was used with 

non-sequential models such as Feedforward Neural Networks (FNN). Together, these datasets 

allow for the evaluation of predictive modeling in both sequential interaction and static tabular 

learning environments. 

 

 

 



2.2 Data Preprocessing 

 

For the EdNet dataset, preprocessing involved several steps to prepare the data for modeling. 

Initially, missing values were removed to ensure data consistency. Numerical transformations 

were applied using label encoding to convert categorical features, such as question_id and 

user_answer, into numerical representations. Additionally, a new binary column, correct, was 

created to indicate whether a student answered a question correctly or incorrectly. For the DKT 

model, student interactions were grouped by user ID, generating sequences of questions and 

correctness, which were then padded to uniform lengths for input into the model. 

 

Preprocessing the Student Performance dataset focused on feature scaling and data preparation 

for classification tasks. Numerical features, including prior grades and attendance, were 

normalized to ensure consistent input. The dataset was split into training and testing sets using an 

80-20 ratio to enable robust evaluation. In cases where class imbalance was observed, techniques 

such as oversampling or weighting the loss function were considered to ensure balanced 

learning. 

 

2.3 Model Training 

 

To model and predict student performance, two approaches were employed: FNN and DKT 

model.For the EdNet dataset, the FNN consisted of an embedding layer to map question_id to 

dense vectors, followed by dense layers with 128 and 64 units activated by ReLU functions. The 

output layer employed sigmoid activation to predict the binary correct label. The model was 

trained using the Adam optimizer with a binary cross-entropy loss function, a batch size of sixty-

four, and over 10 epochs. A 20% validation split was used to monitor model performance, and 

overfitting was mitigated through early stopping based on validation loss. 

 

The DKT model for the EdNet dataset leveraged an LSTM-based architecture to manage 

sequential data. The model began with an embedding layer for question_id, followed by an 

LSTM layer with 128 units to capture temporal dependencies in student interactions. Dropout 

(30%) and L2 regularization were applied to prevent overfitting. The model was trained over 50 

epochs, with early stopping and a learning rate scheduler (ReduceLROnPlateau) employed to 

optimize training and halt when validation performance plateaued. These techniques ensured 

robust generalization and reduced the risk of overfitting. 

The Student Performance dataset followed a similar modeling pipeline, with slight adaptations to 

manage its tabular nature. Key features such as G1, G2, and absences were fed into the models. 

For the DKT model, sequences of student data were padded to uniform lengths, and dropout 

layers were utilized to maintain model robustness. Both models were evaluated using the same 

hyperparameters as the EdNet dataset. 

 

2.4 Evaluation Metrics 

 

The models were evaluated using standard classification metrics, including accuracy, precision, 

recall, and F1-score, to ensure a comprehensive assessment of performance. Additionally, SHAP 

analysis was conducted to interpret the model predictions and identify key contributing features, 

such as the impact of prior grades and socio-economic factors on student performance. The 



combination of high performance and interpretability underscores the practical applicability of 

these models in educational settings. 

Metrics: 

Accuracy =  
𝑇𝑃+𝑇𝑁

TP + TN + FP + FN
 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

   Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score =  2  ×  
Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

Pr 𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

3. Results and Discussion 

 

 

We evaluated the performance of two datasets, EdNet and Student Performance, using two 

models: FNN, and DKT. The results focus on model accuracy, precision, recall, F1-score, and 

interpretability through SHAP analysis. Additionally, training and validation trends are presented 

to demonstrate model convergence and generalization capabilities. 

 

 

3.1. Feedforward Neural Network on the EdNet Dataset 
 

The FNN achieved a test accuracy of 81.94% and a test loss of 0.4118, demonstrating moderate 

predictive performance. The training and validation accuracy and loss graphs (Figure 1a, 1b) 

illustrate smooth convergence, with training accuracy reaching 82% and validation accuracy 

stabilizing at 81%, while both losses steadily decrease over 10 epochs. The classification report 

(Table 1) highlights a weighted F1-score of 0.82, indicating overall reliability in predictions, 

with particularly high precision for "Incorrect" responses. However, the relatively lower recall 

for "Correct" responses suggests some limitations, likely due to imbalances in the dataset or the 

simplicity of the mode. 

 

 
 Figure 1. (a): Training and Validation Accuracy over Epochs (b) Training and 

Validation Loss over Epochs 

 



 

 

Metric Incorrect Correct Macro Avg Weighted Avg 

Precision 0.86 0.69 0.78 0.81 

Recall 0.89 0.62 0.76 0.82 

F1-Score 0.88 0.65 0.77 0.82 

Table 1: Classification Metrics for Feedforward Neural Network on EdNet Dataset 

 

 

3.2. Deep Knowledge Tracing (DKT) on EdNet Dataset 

 

The DKT model demonstrated superior performance on the EdNet dataset, achieving a test 

accuracy of 94.34% and a test loss of 0.1373, significantly outperforming the FNN. The model’s 

training and validation accuracy and loss graphs (Figure 2a, 2b) reveal rapid convergence, with 

validation accuracy stabilizing near the test accuracy, and validation loss remaining low 

throughout training. These trends indicate effective learning with minimal overfitting. 

The classification report (Table 2) highlights the model's robust performance across both 

"Correct" and "Incorrect" categories, with balanced precision, recall, and F1-scores. The macro 

F1-score of 0.82 underscores the model's overall reliability, with notable improvements in recall 

for correctly predicting "Correct" responses compared to the FNN. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a): Training and Validation Accuracy over Epochs (b) Training and Validation 

Loss over Epochs 

 

 

Table 2: Classification Metrics for Deep Knowledge Tracing (DKT) on EdNet Dataset 

 

Metric Incorrect Correct Macro Avg Weighted Avg 

Precision 0.96 0.73 0.85 0.94 

Recall 0.98 0.62 0.80 0.94 

F1-Score 0.97 0.67 0.82 0.94 



3.3. Feedforward Neural Network on Student Performance Dataset 

 

The FNN performed well on the Student Performance dataset, achieving a training accuracy of 

88.92%, validation accuracy of 91.92%, and test accuracy of 91.92%. As shown in Figures 3a 

and 3b, training and validation trends converged smoothly over 50 epochs, with minimal 

overfitting. Validation accuracy stabilized near the test accuracy, while losses decreased steadily, 

reflecting strong generalization capabilities. 

 

The classification report (Table 3) highlights the model's reliability, with a precision of 97% and 

an F1-score of 95% for high-performing students, and a recall of 87% for low-performing 

students. Overall, the macro F1-score of 87% and weighted F1-score of 92% demonstrate its 

balanced performance. Predicted grades closely matched actual grades in regression tasks, with 

minor deviations (Table 4). SHAP analysis further validated the model by identifying prior 

grades (G1, G2) and parental education (Medu, Fedu) as key predictors, aligning with 

established educational research. 

 

 
Figure 3. (a): Training and Validation Accuracy over Epochs (b) Training and Validation 

Loss over Epochs 

 

 

 

 

 

 

Table 3: Classification Metrics for Feedforward Neural Network on Student 

Performance Dataset 

 

Student 
Actual Grade 

(Denormalized) 

Predicted Grade 

(Denormalized) 

1 11 9.92 

2 15 14.11 

3 8 7.21 

4 10 10.94 

5 10 10.54 

Table 4: Predicted Vs Actual Grades 

Metric Low High Macro Avg Weighted Avg 

Precision 0.73 0.97 0.85 0.93 

Recall 0.87 0.93 0.90 0.92 

F1-Score 0.79 0.95 0.87 0.92 



 

3.4. Deep Knowledge Tracing (DKT) on Student Performance Dataset 

 

The DKT model demonstrated strong performance on the Student Performance dataset, 

achieving a test accuracy of 94.34% and a test loss of 0.1373, indicating effective optimization 

and minimal overfitting, with low and stable validation loss reflecting the model's generalization 

capabilities. 

 

The classification metrics (Table 5) emphasize the model’s ability to differentiate between high- 

and low-performing students. For low-performing students, the model achieved a precision of 

96%, recall of 98%, and an F1-score of 97%, ensuring reliable identification. Although 

performance for high-performing students was comparatively weaker, with an F1-score of 67%, 

the overall weighted F1-score of 94% highlights the robustness of the model. Feature importance 

analysis using SHAP (Figure 4) identified prior grades (G1 and G2) as the most significant 

predictors, followed by parental education (Medu, Fedu) and attendance (absences), aligning 

with established educational research on academic performance determinants. 

 

 

Figure 4. SHAP Dependence Plot Showing Key Feature Contributions to Model Output 

for Student Performance Dataset 

 

Metric Low High Macro Avg Weighted Avg 

Precision 0.96 0.73 0.85 0.94 

Recall 0.98 0.62 0.80 0.94 

F1-Score 0.97 0.67 0.82 0.94 

 

Table 5: Classification Metrics for Deep Knowledge Tracing (DKT) on Student 

Performance Dataset 

 



3.5 Discussion 

 

The results demonstrate the effectiveness of both the FNN and DKT models in predicting student 

performance across two datasets, with DKT consistently outperforming FNN in terms of 

accuracy and generalization. On the EdNet dataset, DKT achieved a significantly higher test 

accuracy and better balance across performance metrics, underscoring its ability to model 

sequential data effectively. On the Student Performance dataset, both models delivered high 

overall accuracy, with FNN excelling in precision and recall for high-performing students, while 

DKT provided more balanced predictions for low-performing students. SHAP analysis further 

validated the interpretability of the models, highlighting the critical influence of prior grades and 

parental education. These findings suggest that leveraging advanced models like DKT, combined 

with explainability techniques, can offer valuable insights for educational interventions and 

personalized learning strategies, paving the way for data-driven improvements in academic 

outcomes. 

 

4. Conclusion and Future Work 
 

This study evaluated Deep Knowledge Tracing (DKT) and Feedforward Neural Networks (FNN) 

on two educational datasets, EdNet and Student Performance, to assess their predictive 

capabilities and interpretability through SHAP. By applying both models across sequential and 

tabular data types, we found that DKT performed best in modeling temporal learning behaviors, 

while FNN excelled at leveraging structured academic and demographic information. Rather 

than direct alternatives, the two models offer complementary strengths, and SHAP-based 

analysis revealed common influential features such as prior grades, attendance, and parental 

education. 

These findings inform our broader vision of an AI-powered educational platform that integrates 

both behavioral and contextual modeling to deliver personalized learning support. Such a system 

would interface with existing Learning Management Systems (LMS) through APIs to provide 

real-time insights for both students and educators. Future work will focus on refining the DKT 

model, addressing class imbalance, and testing the platform across more diverse datasets. 

Practical testing will be a key component, involving real-world classroom settings to evaluate 

usability, gather feedback, and ensure the system aligns with educational needs. Pilot studies 

with students and educators will guide interface refinement and assess the platform's 

effectiveness in fostering personalized learning. Additionally, ethical AI practices, including 

privacy safeguards and explainability, will remain a priority to ensure trust and fairness in 

decision-making. By bridging predictive modeling with real-world applications, this research 

lays the foundation for a transformative AI-driven educational ecosystem. 
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