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An Assessment of ChatGPT 4o's Performance on Mechanical 

Engineering Concept Inventories 

 

Abstract 

Large Language Models (LLMs) like OpenAI’s ChatGPT-4o show promise for 

enhancing engineering education through real-time support and personalized feedback. 

However, their reliability in interpreting the conceptual diagrams central to mechanical 

engineering remains uncertain. This study evaluates ChatGPT-4o’s performance on four 

concept inventories—Force Concept Inventory, Materials Concept Inventory, Mechanics 

Baseline Test, and Mechanics of Materials Concept Inventory—using assessments by 

two Mechanical Engineering professors based on correctness, depth of explanation, and 

application of theoretical knowledge. While ChatGPT-4o demonstrates the ability to 

provide robust explanations, it often lacks the contextual depth required for higher-order 

concept mastery, especially when reasoning from diagrams. These findings align with 

existing literature highlighting AI’s limitations in discipline-specific support. Future 

research should refine AI responses to better align with engineering problem-solving 

approaches and explore hybrid models integrating AI assistance with human instruction, 

potentially leading to more effective AI-augmented learning platforms in mechanical 

engineering education. 

 

1. Introduction 

Generative AI tools are becoming increasingly prevalent in college assessment. Students 

use AI tools for studying and test preparation, and instructors use AI tools for writing and 

grading assessments. With the development of Large Language Models (LLMs) to predict words 

from input text, interactive writing and assessment based on natural human language has become 

a promising new field of study in engineering education. Generative AI tools have the potential 

to support students in learning difficult material in STEM disciplines, as well as to help teachers 

assess learning of engineering concepts through their capability to process large amounts of text, 

respond to prompts, and engage in conversations. Such AI-driven educational tools have the 

potential to enhance student learning outcomes by offering personalized feedback, reducing 

cognitive load associated with technical problem-solving, fostering a more interactive learning 

environment,  boosting student engagement, and supporting self-directed learning.  AI-based 

educational tools have the potential to help students learn complex mechanical engineering 

concepts by answering questions about assessments and explaining mechanical engineering 

concepts. 

 

Concept inventories assess students’ ability to apply scientific principles to real-world 

problems. They are challenging because students must not only correctly identify the concept but 

also recognize its correct interpretation in a given context [1], [2]. Mechanical engineering 



 

concept inventories are also based on conceptual diagrams, which students must interpret before 

responding, and have been shown to be key to evaluating student understanding of core 

mechanical engineering concepts. This multi-step problem-solving method may be challenging 

for LLM-based tools, as it requires them to first recognize a diagram and then connect visual 

input with mechanical engineering conceptual information. 

 

The ability of emerging LLM-based tools to correctly reason with engineering problems, 

correctly apply concepts to real-world scenarios, and provide adequate justification to show the 

decision processes behind their answers is an ongoing topic in engineering education. Although 

AI tools have the potential to support teaching and learning for complex engineering concepts, 

they must be thoroughly evaluated on their capacity to correctly interpret and respond to 

fundamental engineering assessments. To address this need, our study aims to evaluate 

ChatGPT-4o’s performance in image processing, understanding, explaining, and applying key 

mechanical engineering principles. This study is guided by the following research question: “To 

what extent can we assess the AI’s ability in and deep understanding of mechanical engineering 

topics as measured by concept inventories?” 

 

2. Background / Literature Review 

2.1  Large Language Models in Engineering Education 

The integration of large language models (LLMs) into engineering education has 

emerged as a transformative approach. A recent systematic review of 370 studies to identify 

trends and opportunities in LLM applications, focusing on 20 high-quality papers, highlighted 

key areas, including knowledge acquisition and skill development, where LLMs have had the 

most significant impact. Their findings provide actionable recommendations for effectively 

embedding LLMs in engineering curricula while ensuring rigorous evaluation to meet 

educational objectives [3]. Another work emphasized ChatGPT’s role in enhancing creative idea 

generation and knowledge extension in mechanical engineering, underscoring its value in 

fostering innovation [4]. 

The potential of LLMs to redefine teaching practices was demonstrated through the 

assessment of an LLM-based chatbot in a graduate fluid mechanics course. The study identified 

significant advantages, including self-paced learning and instantaneous feedback, supported by 

intelligent prompting and integrations like Wolfram Alpha [5]. Undergraduate perspectives on 

LLM-based tools were explored, revealing diverse perceptions regarding their benefits and 

challenges. These findings contribute to discussions on balancing AI assistance with ethical 

considerations and human engagement [6]. 

Additional insights into the evolving role of generative AI tools, such as ChatGPT, in 

education, draw parallels between the adoption of generative AI and historical technological 

disruptions, emphasizing the need for responsible integration to address ethical and pedagogical 

challenges [7]. Complementing this discussion, another study outlined trends in engineering 



 

education research, providing context for the integration of digital technologies like LLMs [8]. 

Finally, the contributions of LLMs related to enhancing MATLAB programming and cross-

disciplinary knowledge acquisition were explored, highlighting their ability to improve student 

engagement and mastery of complex concepts [9]. 

2.2  The Role of AI Chatbots in Engineering Learning Environments 

AI chatbots are becoming central to adaptive and personalized learning strategies within 

engineering education. Research on AI chatbots has focused on areas such as activating prior 

knowledge, fostering motivation, and supporting self-directed learning. A thematic analysis of 

student interactions with chatbots in mechatronics and electronic engineering courses revealed 

both their potential benefits and limitations [10]. Similarly, another extensive overview of LLM 

advancements emphasized adaptive learning while addressing concerns about accuracy and 

inclusivity [11]. Generative AI’s potential to assist students in STEM problem-solving must be 

weighed against the challenges of multi-step reasoning and uncommon question formats [12]. 

Insights emphasized how LLMs could improve essay quality while highlighting the inadequacies 

of current AI detection systems [13]. These studies, together with analyses exploring the use of 

GPT-4 to analyze engineering faculty’s mental models of assessment underscores the growing 

need for ethical implementation frameworks and robust AI evaluation mechanisms [14]. 

2.3  Large Language Models in Mechanical Engineering 

The application of LLMs in mechanical engineering has opened new avenues for 

exploring conceptual understanding and professional practices. One pioneering study assessed 

LLMs’ capabilities in addressing mechanics-focused conceptual questions across topics such as 

Fluid Mechanics and Mechanics of Materials. GPT-4 exhibited superior performance over GPT-

3.5 and other models, particularly when prompts were designed to include explanatory contexts, 

underscoring the importance of prompt engineering [15]. Another investigation explored the use 

of generative AI tools like Bard and ChatGPT for mechanical engineering tasks, identifying 

opportunities and pitfalls in areas like computation and image generation [16]. 

Several new LLM frameworks have been proposed for instructional use in mechanical 

engineering. One innovative framework, MechGPT, was demonstrated to have potential using 

specialized LLMs for connecting disparate knowledge domains in mechanics and materials 

modeling. The study highlighted the use of ontological knowledge graphs for hypothesis 

generation and knowledge retrieval, providing visual and structural insights for research and 

pedagogy [17]. Similarly, the use of natural language processing tools in mechanical engineering 

education raised questions about academic integrity while also revealing potential for enhancing 

learning experiences [18]. Finally, MeLM, a multimodal mechanics language model, showcased 

its ability to address complex design and analysis problems, further expanding the scope of LLM 

applications in mechanics education [19]. These new frameworks can potentially support 

students’ mechanical engineering education learning, but first must demonstrate their capacity to 

handle complex material. 



 

2.4  LLMs for Assessment Use 

The intersection of LLMs and assessment practices in engineering education has sparked 

significant discussions about how artificial intelligence can support student learning. ChatGPT’s 

ability to pass exams highlighted its potential for reshaping traditional assessment practices. 

However, challenges like inconsistencies and confidently incorrect responses underscore the 

necessity for expert oversight [20]. A study focusing on ChatGPT’s performance on mechanical 

engineering exams revealed that while GPT-4 significantly outperformed GPT-3.5, both models 

require improvements to handle text-only input limitations [21]. In the context of the 

Fundamentals of Engineering Exam, researchers showed that noninvasive prompt modifications 

enhanced ChatGPT’s mathematical capabilities, offering insights into how AI models can be 

adapted for professional and educational use [22]. Collectively, these studies emphasize the need 

for developing AI-resistant assessment methods while exploring the integration of LLMs as 

supplementary tools for improving student outcomes [23]. 

2.5  ChatGPT Domain Knowledge and Image Capability 

ChatGPT’s ability to adapt and reframe problems across academic disciplines has 

significant implications for interdisciplinary education. For example, a study demonstrated that 

ChatGPT could reframe probability and statistics problems to make them accessible and 

engaging for students in fields as diverse as biology, economics, and law. The findings revealed 

that in over 73% of cases, reframed problems were deemed to add educational value, 

highlighting ChatGPT’s potential to foster interdisciplinary understanding [24]. 

Another review identified emerging themes and knowledge management challenges 

associated with ChatGPT, emphasizing gaps in user satisfaction when applied to complex 

educational scenarios. While the model excels in generating know-what and know-how 

knowledge, it struggles with deeper conceptual understanding, emphasizing the need for refining 

AI applications in pedagogy [25]. Similarly, ChatReview, a ChatGPT-enabled NLP framework, 

demonstrated the potential of AI in studying domain-specific user reviews. The framework’s 

ability to generate sentiment-based insights across education, hospitality, and local businesses 

underscores its practical value while raising questions about data privacy [26]. 

In the domain of image analysis, GPT-4 demonstrated remarkable capabilities in 

processing visual data, such as identifying patterns in flowcharts and plots with high accuracy. 

However, limitations in recognizing individual privacy-sensitive images highlight the need for 

further refinements [27]. Finally, IQAGPT integrated vision-language models with ChatGPT to 

assess image quality, particularly in medical imaging. This system outperformed existing 

models, offering a promising approach to objective evaluation and radiological reporting [28].  

While generative AI and LLMs hold great potential for engineering education, their 

capabilities vary significantly, as does the level of guidance required to achieve acceptable 

performance. Few assessment frameworks exist to guide the use of LLMs in mechanical 

engineering, and no systematic study has evaluated their accuracy in answering conceptual 



 

questions relevant to ME students. Concept inventories are widely recognized as a measure of 

students' ability to understand and apply core ME concepts. Thus, our study assesses ChatGPT’s 

performance on a representative set of mechanical engineering conceptual knowledge, 

supplemented by external evaluation from ME instructors. Such an analysis was previously 

unfeasible, as LLMs with image recognition capabilities only became widely available with the 

release of GPT-4o in May 2024. 

3. Methods 

3.1  Instrument 

ChatGPT - GPT-4o, introduced by OpenAI in May 2024, is a groundbreaking 

multilingual and multimodal generative large language model. Notably, it is the first LLM 

capable of both processing and generating images, in addition to excelling at text and audio 

tasks. This innovative capability shows the potential of LLMs to interpret and generate complex 

mechanical figures. 

Our study used five assessments of mechanical engineering conceptual knowledge as 

data collection instruments. The Force Concept Inventory [29], [30] was developed and deployed 

to assess students’ knowledge of kinematics, Newton’s laws of motion, the principle of 

superposition, and kinds of force. Five questions in the Force Concept Inventory require students 

to draw a diagram for mechanical engineering analysis. The Materials Concept Inventory [31, 

32] assesses knowledge of the strength of materials concepts, including stress and buckling. The 

Mechanics Baseline Test [33, 34] measures the application of force, acceleration, speed, friction, 

and velocity concepts. The Mechanics of Materials concept inventory [35] includes problems 

with predicting failure, predicting deformation, predicting the location of failure, and material 

properties. Together, these concept inventories represent essential subjects that undergraduate 

mechanical engineering students must learn. Our study also included a 10-item undergraduate 

mechanical engineering classroom assessment developed by the instructor to assess conceptual 

knowledge using free-body diagrams.   

A key aspect of the concept inventories is that they are meant to be reused by the 

instructors in different institutions and different classes (so that scores can be compared and 

validated inferences can be drawn [32], [36]. For this reason, the questions cannot be revealed 

in the open literature. Therefore, we are not displaying the questions (only summarizing the 

results). In addition, our testing was conducted with GPT-4o, which is not used by OpenAI or 

other LLMs to train their models. Interested readers can contact the relevant authors of the 

inventories to obtain access to them.  

 

3.2   Data Collection 

ChatGPT-4o’s responses were given in response to the AI’s image processing and 

interpretation of mechanical engineering conceptual diagrams. For each concept inventory and 

the mechanical engineering classroom assessment, we gave each question to ChatGPT, along 



 

with screenshots of images, and asked it to provide the correct answer along with an explanation 

of why it was correct. Two professors, Dr. A (Prof. Arun Srinivasa) and Dr. B (Prof. Kristi 

Shryock), independently graded the AI for correctness and for the quality of its responses. These 

grades produced four types of scores: Correct Answer with Correct Reasoning; Correct Answer 

with Incorrect Reasoning; Incorrect Answer with Correct Reasoning; and Incorrect Answer with 

Incorrect Reasoning. 

 

 
Figure 1. An example of a MEEN 225 mechanics problem (similar to an image-based Force 

Concept Inventory question) 

 

4. Results 

Questions are categorized into 5 datasets. Each dataset is marked with a number. The 

corresponding list is as follows: 

1. Force Concept Inventory, 

2. Materials Concepts Inventory, 

3. Mechanics Baseline Test, 

4. Mechanics of Materials Concept Inventory, 

5. MEEN 225-501 Fall 2016 Test 01. 

Additionally, questions in dataset 5 are divided into 2 sub-datasets: 

      5 (a). Multiple choice questions, 

      5 (b). Free-body diagram (FBD) drawing questions. 

To better analyze the dataset, we divided dataset 5 into 5(a) and 5(b). The first five 

questions resemble standard multiple-choice questions, while the last five require GPT-4o to 

generate Free Body Diagrams (FBDs) as images. Within these datasets, some questions include 

reference diagrams, while others do not. Accordingly, we further categorized them as image-



 

based or non-image-based. Figure 2 illustrates the distribution of question types across the 

datasets. 

 
Figure 2 Distribution of image-based & non-image-based questions  

 

GPT-4o generated responses that included both answer choices and reasoning. Two 

professors, Dr. A and Dr. B, evaluated its responses based on their expertise. They assigned 

scores as follows:  

• 1: Correct choice and reasoning. 

• 2: Incorrect choice but correct reasoning. 

• 3: Correct choice but incorrect reasoning. 

• 0: Incorrect choice and reasoning. 

Since Dr. B provided detailed explanations that aligned with standard answers, Dr. B’s 

evaluations were used as the baseline for comparison. 

To measure GPT-4o’s performance, we employed three statistical metrics: 

• Accuracy – Percentage of correct choices. 

• Cohen’s Kappa – Measures agreement between evaluators. 

• Agreement Percentage – Measures consistency between Dr. A and Dr. B, as well as 

between GPT-4o and the baseline (Dr. B). 

4.1 Accuracy 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐ℎ𝑜𝑖𝑐𝑒𝑠

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

Table 1 shows the accuracy of GPT-4o answers compared with the baseline (Dr. B). 

Table 1. Accuracy of GPT-4o answers in mechanical engineering 

Dataset Total Accuracy Image-based 

Accuracy 

Non-image-based 

Accuracy 



 

1 0.67 (20/30) 0.5 (10/20) 1 (10/10) 

2 0.7 (21/30) 0.67 (6/9) 0.71 (15/21) 

3 0.38 (10/26) 0.33 (8/24) 1 (2/2) 

4 0.39 (11/28) 0.39 (11/28) N/A 

5 (a) 0.6 (3/5) 0.6 (3/5) N/A 

5 (b) 0 (0/5) 0 (0/5) N/A 

 

Total accuracy is calculated by dividing the number of correct GPT-4o answers by the 

total number of questions in the dataset. It reflects the overall accuracy of GPT-4o's answers 

across different types of questions. Image-based accuracy only considers the percentage of 

correct answers in image-based questions. Similarly, non-image-based accuracy measures GPT-

4o's performance on questions that do not require images. The number in parentheses following 

the percentage, such as in dataset 1 (image-based accuracy 0.5, 10/20), indicates that, within 

dataset 1, there are 20 image-based questions, and GPT-4o answered 10 of them correctly 

according to Dr. B’s evaluations. 

Because dataset 3 contains only two non-image-based questions out of the total 26 ones, 

its accuracy percentage is highly skewed and not representative. Therefore, focusing on Dataset 

1 and Dataset 2, their non-image-based accuracy is higher than their respective image-based 

accuracy. Overall, across all 86 image-based questions (excluding FBD questions), the accuracy 

is 0.44 (38/86), while for all 33 non-image-based questions, the accuracy is 0.82 (27/33). This 

result suggests that GPT-4o's accuracy is higher for non-image-based questions than for image-

based ones. 

Observing image-based questions only, accuracies are relatively higher in dataset 1, 

dataset 2, and dataset 4 and lower in dataset 3 and dataset 5 (consider both (a) & (b)). Therein, 

the accuracy of GPT-4o’s answers to image-based questions in dataset 5 is the worst. Thus, in 

this experiment, GPT-4o performs in accuracy relatively better in Force Concept Inventory, 

Materials Concepts Inventory, and Mechanics of Materials Concept Inventory, compared to 

Mechanics Baseline Test and MEEN 225-501 Fall 2016 Test 01. This result shows that GPT-4o's 

accuracy is relatively higher in image-based conceptual questions of mechanical engineering 

than in test questions. This is because compared to conceptual questions, test questions are 

revealed less on the Internet and GPT-4o’s training corpus contains less similar questions. 

Dataset 5(b) is atypical, as questions 6 to 10 require students to draw schematic diagrams 

(FBD) as a key part of their answers. However, instead of simple 2D schematic diagrams, GPT-

4o generates complex, detailed, and vivid 3D images for each question. This reveals some of 

GPT-4o's limitations in generating images for mechanical engineering. From a purely image-



 

generation perspective, the output appears visually rich. However, in mechanical engineering—

and engineering disciplines in general—beneficial diagrams prioritize clarity and simplicity to 

enhance key concepts and facilitate problem analysis. Therefore, 2-D representations are 

typically more beneficial than 3-D ones. Yet, GPT-4o cannot generate high-quality, 

professionally relevant mechanical engineering diagrams. These challenges emphasize GPT-4o's 

current limitations in generating professional technical illustrations. Consequently, it is not yet 

suitable for applications in instructional settings or as a reliable tool for generating professional 

mechanical engineering diagrams. 

4.2  Inter Rater Reliability 

To evaluate the consistency of ratings between two different professors and between Dr. 

B (the baseline) and GPT-4o, we adopted Cohen’s Kappa as the metric [36]. Cohen’s Kappa 

measures the inter-rater reliability of two or more raters while also accounting for the possibility 

of chance agreement. The formula for Cohen’s Kappa is as follows: 

𝜅 =
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
 

𝑃𝑜  represents the observed agreement as the proportion of items on which both raters 

agree. Observed agreement is calculated as: 

     𝑃𝑜 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

𝑃𝑒  represents the expected agreement by chance, which is the probability that the two 

raters would agree by chance alone. Expected agreement is calculated as: 

        𝑃𝑒 =  ∑(𝑃𝑟1(𝑖) × 𝑃𝑟2(𝑖)) 

𝑃𝑟1(𝑖) is the proportion of Rater 1 choosing the i-th category, and 𝑃𝑟2(𝑖) is the proportion 

of Rater 2 choosing the same category, summed over all possible categories 𝑖. Table 2 shows the 

ranges of possible values for Cohen’s Kappa and the strength of inter-rater agreement they 

represent. Values from 0 - 0.4 indicate low agreement, and values from 0.41 - 1 indicate high 

agreement. 

Table 2. Interpretation of Cohen's Kappa Values [37] 

Kappa Statistic Strength of Agreement 

< 0.00 Poor (systematic disagreement) 

0.00-0.20 Slight 

0.21-0.40 Fair 

0.41-0.60 Moderate 



 

0.60-0.80 Substantial 

0.80-1.00 Almost Perfect 

 

In our analysis, we assessed the consistency of ratings both between the two professors 

and between Dr. B (baseline) and GPT-4o, as shown in Table 3. Given that GPT-4o assumes all 

of its responses are correct, Cohen's Kappa relies entirely on Dr. B’s evaluation. As a result, the 

Kappa value would be 0 for all datasets, which makes the comparison meaningless. Therefore, 

we used the agreement percentage as a more meaningful metric when comparing Dr. B’s 

evaluations with GPT-4o’s performance.  

Table 3. Cohen’s Kappa and Agreement Percentage for Two Professors and Dr. B vs. GPT-4o 

Dataset 2 professors (𝜅) Dr. B vs. GPT-4o 

(𝜅) 

2 professors 

(Agreement) 

Dr. B vs. GPT-4o 

(Agreement) 

1 0.94 (Almost 

Perfect) 

0 0.967 (29/30) 0.67 (20/30) 

2 1 (Perfect) 0 1 (29/29) 0.7 (21/30) 

3 0.79 (Substantial) 0 0.88 (22/25) 0.38 (10/26) 

4 1 (Perfect) 0 1 (28/28) 0.39 (11/28) 

5 (a) 1 (Perfect) 0 1 (5/5) 0.6 (3/5) 

5 (b) 1 (Perfect) 0 1 (5/5) 0 (0/5) 

 

The high Cohen's Kappa values between the two professors indicate strong consistency, 

demonstrating their high reliability on the correct answers and problem explanations. For the 

datasets 1, 2, 4, and 5, this consistency remains robust whether Dr. A or Dr. B is considered the 

baseline. This is also reflected in the agreement percentages. For dataset 3, both professors show 

a substantially slightly lower level of consistency (88% agreement), but we place more trust in 

Dr. B’s expertise based on the reasons discussed earlier.  

 

When comparing GPT-4o to Dr. B, higher agreement is observed in datasets 1, 2, and 

5(a). However, dataset 5(a) should be interpreted with caution due to its small sample size. 

Datasets 3 and 4 exhibit lower agreement, and dataset 5(b) reveals significant discrepancies. 

Considering Dr. B’s expertise in mechanical engineering, his evaluations are regarded as more 

reliable. Therefore, GPT-4o's performance is considered less reliable in datasets 3, 4, and 5, 

which involve the Mechanics Baseline Test, Mechanics of Materials Concept Inventory, and 



 

MEEN 225-501 Fall 2016 Test 01. Overall, GPT-4o's performance in solving professional 

mechanical engineering problems is modest, based on the results of this assessment experiment. 

 

4.3 Examples of FBD generation  

According to the above results, GPT-4o has less understanding and reasoning ability in 

mechanical engineering schematic diagrams than word descriptions. The possible reason is 

training corpus has more resources for word reasoning and less for image reasoning. Especially 

professional mechanical engineering background diagrams. Fine-tuning may improve this 

limitation. 

GPT-4o follows a fixed, general approach to image generation and lacks the adaptability 

required for mechanical engineering applications. For example, in dataset 5(b), Question 7 asks 

to "Draw the FBD for the T-bar AB." The question with the provided reference image is shown 

in Figure 17(a). A comparison between the image and description generated by GPT-4o (Figure 

17(b)) and the ideal solution (Figure 17(c)) highlights its limitations in producing precise, 

engineering-specific diagrams.

 
Figure 5 (a) Question 7 in dataset 5(b). (b) GPT-4o answer and description. (c) ideal answer. 

 
Figure 6 (a) Question 9 in dataset 5(b). (b) GPT-4o answer and description. (c) ideal answer. 

 

From a general image perspective, the generated illustration appears suitable, as it 

includes key elements such as "free body," "T-bar," "A, B," and "force." The image is 

surprisingly rendered in 3-D, incorporating intricate details and key features. However, simply 

assembling these components without proper consideration results in an absurd image from a 

mechanical engineering standpoint—particularly evident in the inclusion of a human figure in 



 

Figure 18 (c). A proper FBD should be simple and clear, enabling students to extract essential 

components from the given scenario and accurately represent external forces and constraints.  

Under these circumstances, a 2-D schematic diagram would likely be far more useful. 

This outcome reflects a rigid, generalized approach to image generation that does not align well 

with the needs of most engineering problems when applied directly. Figure 18 presents the image 

generated for Question 9 in Dataset 5(b). Although Figure 18(b) seems better than the figure for 

question 7, GPT-4o model still fails to idealize the diagram and does not effectively highlight the 

key forces. Specifically, in the generated image in Figure 18(b), the question 7 stem and image 

clearly require that the answer is supposed to focus on the ABC rod; however, the generated 

image depicts a complicated device structure rather than one single rod. It marks many 

unnecessary or irrelevant forces everywhere across the device structure. However, from Figure 

18(c), only NA, NB, NC, 300 N force, and 4000 N-m should be marked. 

 

4.4  Error analysis 

Appendix A contains the question numbers for one of the concept inventories, and the 

professor’s comments on the accuracy of GPT-4o. As can be seen from that analysis, GPT-4o 

has some wrong answers and in some cases wrong explanations. 

 

5. Discussion  

A close examination of the results of the concept inventories (including the reasoning 

presented by GPT-4o) indicates that in the majority of cases, GPT-4o is able to provide reliable 

reasoning and correct choice for the answers, However, there are several cases involving 

reasoning from graphs and images where the reasoning provided by GPT-4o is correct but 

nevertheless the wrong answer is chosen. This kind of error can be seen consistently in many 

similar cases, and in particular in reasoning for materials related questions. While the sample size 

is too small to draw general conclusions, it is plausible that selecting answers to multiple choice 

questions by converting a general reasoning to a specific answer which is not probabilistic is 

challenging for LLMs, since they are based on probabilistic sentence completion strategies. LLM 

performance on educational assessment improves when questions are well-structured, with 

assessment of open-ended questions proving difficult for AI systems [38]. A similar behavior 

was also noted in the study by Abedi et. al [5] in their graduate fluid mechanics class. They state 

that (p. 23) “There are situations where GPT-4o makes accurate assumptions and applies correct 

mathematical equations but falters during the execution of mathematical operations, resulting in 

erroneous answers.” They went on to observe that “GPT-4o struggled with problems that needed 

information from tables or images” (p. 23).  

A key aspect of LLM performance was their complete failure on the system isolation free 

body diagram questions, which were included in the Mechanics Baseline Test. In this case, both 

the question and answer are pictorial, and interpreting both appears to be beyond the capabilities 

of current LLMs.  



 

Implications for AI-based tutoring:  

The results show that LLMs have high reliability when the questions are primarily 

textural. In all cases, if such LLMs are to be used for tutoring or answering student conceptual 

questions, there needs to be a hybrid approach with a TA or instructor in the loop to tag 

anomalous behavior. A typical case where a multiple choice conceptual quiz is generated and a 

Retrieval-Augmented Generation (RAG) based agent, which has been provided the answers, can 

be used to verify and correct student reasoning, combined with a Reinforcement Learning with 

Human Feedback (RLHF) strategy. It is also possible to leverage the generative capabilities of 

LLMs to produce questions that are “similar to” the concept inventory questions and use this to 

help deepen student insights. 

Implications for pedagogy:  

Given these considerations, a two-pronged strategy can be implemented to channel the 

potential of AI in education, while addressing ethical issues related to cheating and undermining 

the learning process. Converting real-world situations into idealized images and then reasoning 

with them is a critical part of the mechanical engineering curriculum. Given that LLMs are 

currently unreliable for these tasks, instructors can pose more of these questions, having 

confidence that the students may not be able to use an LLM to answer them. Even if an LLM is 

able to carry this out in the future, describing the real-world situation with sufficient accuracy to 

the system is a time-consuming task (and requires considerable skill) that it is unlikely to be used 

for cheating.  

On the other hand, as previously mentioned, LLMs can serve as valuable assistance to 

instructors, much like nurse practitioners assist doctors or surgeons, by helping craft assessments 

and evaluate specific components. This support allows instructors to focus on more creative and 

engaging ways to interact with the class, such as leveraging LLMs for tasks like short-answer 

grading [39, 40]. For instance, a typical task such as finding the forces in a structure involves all 

aspects of reasoning: (1) identifying and simplifying the real-world system and converting it into 

an idealized pictorial representation (truss or frame or other idealized body), (2) estimating loads, 

(3) converting the graphical to symbolic representations, (4) solving the resultant systems and 

then, (5) inferring suitable information about the real world from the idealized solutions. 

Currently due to difficulties in evaluating each of these steps in large classes, most of these steps 

are not practiced or evaluated independently with only the visible end result being assessed. 

LLMs offer the chance to help guide the students to develop the reasoning behind the steps, 

without overwhelming them or the instructors.  

 

6. Limitations 

Our study only tested the capability of ChatGPT-4o, as the newest model released by 

OpenAI. However, other chatbots using different LLMs released by companies such as Gemini 

or Anthropic have similar capabilities and may excel ChatGPT-4o in answering concept 

inventory questions. These models may vary in their mechanical engineering knowledge base as 



 

well as their image processing capabilities. For future work, we plan to test other LLMs using the 

same approach and compare their abilities. Even as models and tools continue to be developed, a 

quantitative comparison will allow us to develop benchmarks for guiding future tool selection. 

 

7. Future Work 

Our study has three areas for future work we wish to explore. First, we plan to expand 

this evaluation approach to mechanical engineering assessments in other subject areas. We are 

also interested in testing LLM capabilities at different levels of undergraduate and graduate 

knowledge. In this way, we can continue to determine the level of support that AI tools can 

provide on advanced engineering concepts. Second, we will continue collecting scores and 

feedback from additional professors, including teaching assistants, to further judge the reliability 

of our evaluation method. This will give a more detailed look at how different instructors 

perceive the LLM output, and how they view its reasoning capabilities. Finally, we plan to 

evaluate LLM tools’ mechanical engineering conceptual performance on classroom assessments 

in other domains. While concept inventories are standardized, informal classroom assessments 

are a wealth of information about student learning for AI-based feedback. 
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Appendix A 

Mechanics of 

Materials Concept 

Inventory (problem 

number) 

Professor’s comments 

2 Misinterpreted tensile load, generic answer not specific to the situation 

3 It needs Moment of Intertia. Same problem, generic answer not specific to the problem 

4 Misinterpreted the graph, but otherwise the explanation (given the misinterpretation of  

figure 4) is correct  

5 It is not due to stress concentration  

6 Here the Beam is under bending so the  Moment of Intertia has to be accounted for. 

7 

 

8 

 

9 Missed the Bending due to transverse load requires Moment of Intertia 

10 

 

11 

 

12 Clear misunderstanding of the relation between CS shape and Moment of Intertia 

13 Answer is correct but reasoning is completely wrong  

14 

 

15 

 



 

16 same error as the tapered bar in 4.  

17 There was no moment in the bar.  

18 Misinterpreted the graph as a cantilever bam problem 

19 same error as problem 18 

20 

 

21 same as 18 

22 The explanation was correct but it misunderstood what was the top of the beam  

23 partially correct reasoning but misunderstood location of maximum toque  

24 same as 18. Persistently mischaracterizes free ends (unable to recognize) 

25 The logical reasoning is correct but interpreting points on the graph corresponding to 

different cases is incorrect  

26 Uses  incorrect (but popular) definition of stress so it gives the popular answer not the 

correct one  

27 

 

28 mischaracterized the problem since it was not able to identify the relation between axial 

and bending loads  

29 I think that the explanation is not quite correct because it didn’t specifically state that the 

stress will be proportional to the load since the dimensions are the same. So technically 

the explanation is Passable but not complete 

 

 

 


