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Evaluating Bluetooth Beacon Observations for Classroom Interaction
Detection

Abstract

Traditional classroom observation often rely on human observers in a process that can be labor
intensive, time-consuming, and may not fully capture individual student experiences. Sensing
technologies, such as Bluetooth Low Energy (BLE) beacons, offer a promising alternative by col-
lecting continuous, real-time data on student proximity and interactions. This paper evaluates the
use of BLE beacons as part of a real-time social interaction capture system, called IDEAS. In
a laboratory setting, the relationship between beacon signal strength (RSSI), distance, and ori-
entation was examined to validate a proximity detection metric. A preschool classroom study
further tested the ecological validity of the real-time location system by comparing interactions
detected by the automated system with those recorded by a traditional researcher-led method. In
order to align the differing sampling methods of IDEAS and the traditional researcher-led method,
we developed an algorithm to down-sample the beacon data. The results suggest a partial align-
ment between beacon-detected interactions and the ones detected via traditional observations. The
limited correspondence could be due to signal loss or inconsistencies in human observations. In-
corporating additional sensor modalities, such as audio from wearable recorders, may enhance the
system’s accuracy. These findings highlight the potential for systems like IDEAS to offer scalable
methods for capturing peer interactions and engagement through multi-modal sensor data. Build-
ing on approaches used in early childhood education research, incorporating sensing technologies
into engineering education could provide richer, continuous insights into student collaboration and
classroom dynamics.
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Introduction

Observations in engineering education (EE) play a fundamental role in assessing teaching ped-
agogies, student engagement and effectiveness of learning environments. Protocols, such as the
Classroom Observation Protocol for Undergraduate STEM (COPUS), are widely employed to cate-
gorize classroom activities systematically, document interactions between instructors and students,
and evaluate the adoption of evidence-based teaching methods [1]. These tools enable educators
and researchers to analyze behaviors and instructional strategies, providing valuable insights into
classroom dynamics.

In active learning environments, which emphasize student engagement through hands-on and
collaborative tasks, observational protocols serve to measure participation in group discussions,
problem-solving tasks, and other non-traditional teaching practices. Such observations are partic-
ularly relevant in engineering education, where instructional methods must often address the cog-
nitive demands of design thinking and problem-solving. Additionally, these methods help identify
challenges such as student resistance to active learning, a common barrier in STEM classrooms
[2].

Despite their benefits, many observational protocols have limitations. Some protocols struggle
to address the complexity of engineering classrooms, which frequently involve project-based and
problem-based activities that demand higher-order cognitive skills. Observer reliability and the
structured nature of protocols also present challenges, as variability in data collection and limited
adaptability to diverse contexts can reduce the effectiveness of these tools [1, 3]. Observations also
tend to be time and labor intensive, which could lead to high expenses [4].

The use of wearable sensing technologies to conduct observations could help address these is-
sues. Sensing technologies could provide the overall dynamics of the classroom as well as a more
individualistic student perspective. Sensing technologies could be deployed in classrooms to run
throughout the day, without the need for a human observer, reducing the cost of observations.

Previous research has primarily relied on ultrawide-band (UWB) Real-Time Location Systems
(RTLS) solutions, to track participant movements with high precision [5, 6]. However, despite
their accuracy, these systems are costly (approximately $14,000 per classroom) and require in-
vasive installation procedures, such as deploying Ethernet cables above classroom ceilings. Ad-
ditionally, system calibration complexities further limit its scalability, making it impractical for
multiple educational settings and widespread adoption.

Bluetooth Low Energy (BLE) systems offer opportunities for scalable RTLS. BLE-based systems
approach the real-time location problem from a peer-to-peer perspective. BLE antennae and BLE
beacons, worn by participants or affixed to environmental fixtures, establish a wireless data ex-
change network. From the data exchange patterns between beacons, a proxy for peer-to-peer phys-
ical proximity and orientation, called Received Signal Strength Indicator (RSSI), is computed. For
example, IDEAS (Interaction Detection in Early Academic Setting) is a multi-modal interaction
detection system that used wearable audio recorders and BLE beacons. IDEAS was developed for
a project in early childhood education to understand the evolution of preschool social networks
and it has been utilized to study the dynamics between a specific student and their classmates. It
does so by using voice recorders to gather speech data and it utilizes Bluetooth Low Energy (BLE)
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beacons to locate a student in proximity to another student [7]. Systems such as IDEAS could be
utilized in active learning engineering classrooms in gathering observations. It could evaluate how
often students interact with each other or what part of the maker space they utilize the most by
using beacons. In addition, IDEAS voice recorders and language processing abilities could help
study the language used by engineering students to communicate with each other.

This paper focuses on utilizing the beacons used by IDEAS to detect interactions among classmates
in a preschool setting. The purpose of this paper is to assess the accuracy and criterion validity
of the BLE sensing system using data gathered in laboratory and classroom settings. In the lab
setting, the beacons are tested at objectively measured distances and orientation angles to establish
associations with the received signal strength indicator (RSSI), the power of a wireless signal
received by a BLE beacon. In this paper, we adopt the RSSI as a proxy for proximity. The
criterion validity of the BLE sensing system in a classroom setting is assessed by comparing the
interactions detected by the beacons with the interactions detected with a traditional researcher-
based observation method. In order to do so, we study the alignment between both observation
methods.

Methods

IDEAS’ RTLS, available in https://github.com/hugonvilla/IDEAS_obs), enables
accurate measurements of relative proximity while leveraging an open-source software framework,
which enhances flexibility and adaptability across different research contexts. On the hardware
side, the RTLS employs wearable Puck.js BLE beacons equipped with accelerometers, which are
wirelessly connected to antennae affixed to classroom walls using removable Velcro strips. The
beacons worn by students are shown in Figure 1 below, where Figure 1a is the beacon sensor and
Figure 1b is the beacon placed inside of the vest worn by students. IDEAS employs an open-source
software called Pareto Anywhere to retrieve peer-to-peer RSSI data [8]. Pareto Anywhere has been
previously utilized in retail settings and for estimating hospital workers’ proximity in healthcare
studies [9, 10]. We use a support vector machine (SVM) algorithm to process the accelerometry
data to detect when students are wearing the beacons, allowing for the automatic marking of valid
temporal segments during data collection.

To associate RSSI with distance, two beacons are examined in a lab setting at various distances
from each other, with the RSSI between the two beacons collected by the IDEAS system. The
beacons are positioned to face each other, ensuring the angle between them is 0 degrees. Each
distance is maintained for 1 minute, during which the range of RSSI values is collected. A similar
test is conducted to determine whether the beacons need to face each other to be considered an
interaction. The test is performed in a lab, where two beacons are positioned at different angles,
and the RSSI value corresponding to each angle is measured by the IDEAS system. The distance
between the beacons is set to approximately 3 feet.

To study the validity of the beacons in a classroom setting, a peer-mediated intervention strategy is
utilized to help integrate a preschool target student, who is socially isolated, into the classroom by
pairing them with two designated peers. Socially isolated refers to students who are not engaged in
the classroom. This strategy is employed alongside two observation methods: IDEAS and Social
Network Observation (SNO).
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(a) Bluetooth beacon (b) Beacon in vest

Figure 1: Beacons worn in a vest by the students

SNO is a more traditional approach to observations, where a researcher observes the interactions
between the target student and their designated peers and then takes notes on the observed dynam-
ics [11]. The second method, IDEAS, involves students and teachers wearing beacons and voice
recorders to detect interactions between the target student and their peers [12]. By comparing the
data collected through these two observation approaches, the alignment between the datasets can
be evaluated.

SNO monitors the interactions between the target student and their designated peers over a series of
cycles. Each cycle is divided into two parts, with each cycle representing a single data point. The
first part involves observing the dynamics between the students, while the second part involves
taking notes on the observed interactions [12]. Figure 2 illustrates SNO being conducted over
30 cycles. Each cycle lasts 60 seconds, divided into 15 seconds for observation and 45 seconds
for note-taking. SNO categorizes each cycle based on the number of designated peers the target
student interacted with. For example, if the target student interacts with one designated peer, the
interaction is recorded as ”one” for that cycle.

Figure 2: Data gathered by SNO over a 30 minute period

An issue arises when attempting to align the data gathered through SNO with the data collected via
IDEAS. As mentioned earlier, IDEAS samples every three seconds, resulting in 600 data points
to represent 30 minutes of observing the interactions between the designated peers and the target
student, as shown in Figure 3. The blue line represents the interactions with the first designated
peer, while the red line represents the interactions with the second designated peer.

An algorithm is developed to down sample the IDEAS data points to be represented in 30 data
points in total to be compared to the SNO. In this paper, down-sampling refers to the reduction of
the amount of data in a set. This aligns with the meaning of down-sampling commonly used in data
processing and signal processing. The algorithm has two major variables, x1 that represents the
number of samples extracted from the 20 IDEAS data points and x2 that represents the maximum
percentage of missing data (Nan) values allowed in x1 samples. This algorithm iterates between
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Figure 3: Data gathered by IDEAS over a 30 minute period

20 IDEAS data points at a time for data gathered from both designated peers assigned to the target
student. These 20 IDEAS data points represent 60 seconds of observation time. At each iteration,
the steps shown in algorithm one is performed.

Algorithm 1 Process IDEAS Data Points
Require: x1: Number of samples extracted, x2: Percentage threshold for NaN values
Ensure: Single data point representation for each x1 samples

1: for each set of x1 samples extracted from 20 IDEAS data points for both peers do
2: Count the number of NaN values in the x1 samples
3: if NaN values exceed x2 percentage then
4: Represent the entire x1 samples with a single data point set to 0
5: else
6: Represent the x1 samples with a single data point set to 1
7: end if
8: end for

After down-sampling the beacon data for both designated peers, the data from both peers are added
together to create a dataset comparable to the SNO dataset. Figure 4 shows the down-sampled
IDEAS dataset for both designated peers combined. In this case, x1 was set to 5 samples, and
x2 was set to 70%. This mimics a similar observation style to SNO, where the first 5 data points
correspond to the first 15 seconds of observation conducted by the researcher.

Figure 4: Data gathered by IDEAS translated into SNO format

Equation 1 is used to measure the alignment between the SNO data and the down-sampled IDEAS
data. The equation calculates the mean squared error, MSEj , between the two datasets for each
observation. The variable yi represents the number of designated peers observed by SNO, ŷi rep-
resents the number of designated peers observed by the down-sampled IDEAS data, and n is the
number of data samples, which is 30.
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MSEj =
1

n

n∑
i=1

(yi − ŷi)
2 (1)

To interpret the MSEj values calculated for each observation, Equation 2 is used to compute the
average mean squared error, MSE, across the 12 observations for the IDEAS and SNO data. The
variable m represents the total number of observations collected.

MSE =
1

m

m∑
j=1

(MSEj) (2)

Results

In a lab setting the correspondence between distance and RSSI has been established. Figure 5a
is a box plot that showcases that a specific distance corresponds to a range of RSSI values. The
central mark corresponds to the median, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the ’o’ marker symbol. This
demonstrates the capability of beacons to interact at different distances. The maximum RSSI
value considered by IDEAS for an interaction between two beacons is -75 dB, corresponding to
a distance of approximately 7 feet. Figure 5b illustrates the four angles and their corresponding
RSSI ranges. This demonstrates that an interaction is detected at different orientations even when
a beacon is perpendicular to the other.

(a) Association between distance and bea-
con RSSI

(b) Association between angles with bea-
con RSSI

Figure 5: Association between objectively measured distance (in feet) and orientation angles (in
degrees) with beacon RSSI.

To compare the data gathered by SNO to data gathered by IDEAS x1 is set to 5 data points and x2

to 70% in algorithm 1, as seen in Figure 6. This configuration results in an MSE of 0.9167. Fig-
ure 6 illustrates the down-sampling process across all twelve observations, where the blue graph
represents the SNO observation, and the red graph represents the down-sampled IDEAS beacon
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observation. The x-axis represents the data points, while the y-axis indicates the number of desig-
nated peers the target student interacted with.

Figure 6: SNO (blue) and down-sampled IDEAS (red) data for the 12 observations.

To further investigate, a three-dimensional plot of the MSE is created, as shown in Figure 7a.
The range of x1 values is from 5 to 20 data points, which represents 15 to 60 seconds. The
range of x2 values is from 0% to 100%. By adjusting Figure 7a, Figure 7b is generated which is
used in determining which values of x1 and x2 result in the lowest MSE. The Lowest MSE is
represented by the dark blue while the highest MSE is represented by the yellow in the gradient
color bar of Figure 7a and Figure 7b. Upon close examination of both Figures 7a and 7b, the x1

and x2 values that resulted in the lowest MSE were x1 = 10 and x2 = 70%, which produced an
MSE of 0.8778. This corresponds to increasing the observation period to 30 seconds, doubling
the observation period used in the SNO dataset.

Discussion

There are multiple explanations for the lack of perfect alignment between the IDEAS beacon inter-
action detection and the interactions detected by the SNO. In certain cases, when the SNO identifies
interactions involving one or both designated peers but the beacons do not register these interac-
tions, it may suggest that Bluetooth packets between the beacons are being lost due to technical
issues. On the other hand, the reduction in MSE when x1 was increased to 10 data points could
suggest that the SNO observers were not strictly adhering to the 15 second observation period. This
may be attributed to the human ability to multitask, allowing observers to simultaneously observe
and take notes. Another aspect to consider is that some observations have a high MSE value,
such as observation 11, that could be leading the MSE to be higher as seen in Figure 6. Further
research is needed to determine methods to reduce MSE across the 12 observations. One potential
approach is to examine the incoming and outgoing speech gathered by the voice recorders in the
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(a) Three dimensional plot of the MSE (b) Two dimensional representation of
MSE plot

Figure 7: Three dimensional plot of the MSE with respect to x1, number of samples extracted
from IDEAS’ 20 samples, and x2, percentage threshold for NaN values.

IDEAS system for the target student and their designated peers. The additional data from the voice
recorders could compensate the lost data from the beacons. There is a possibility by combining
multiple sensors to gather observation data, sensing technologies such as IDEAS could provide us
with more robust data.

To ensure that IDEAS did not disrupt classroom activities, a survey was administered to 40 preschool
teachers to assess how students interacted with wearing the sensors throughout the day and whether
the teachers encountered any issues due to IDEAS. The survey utilized a Likert scale to measure
responses, where 1 corresponded to ”strongly disagree” and 5 to ”strongly agree.” The majority
of responses from the teachers were positive. Most teachers reported that students were able to
continue their normal classroom activities while wearing the vests shown in Figure 1. Majority of
teachers also reported that the days when IDEAS was used to gather observations felt like typical
school days, and they did not have to alter their classroom routines or modify what they wanted to
say during those times.

While IDEAS has been used to study preschool social networks, its potential to support research on
early engineering thinking or engineering education remains an area for further exploration. The
review by Lippard et al. (2017) highlights several challenges in assessing engineering thinking
in early childhood, including the lack of standardized assessment tools, limited understanding of
how engineering thinking naturally develops, and the need for longitudinal data to connect early
experiences with later outcomes [13]. By using beacons and voice recorders to track proximity,
movement, and language use, systems like IDEAS may offer a promising method for collect-
ing continuous data related to engagement in problem-solving or collaborative tasks. However,
given the observed discrepancies between beacon-based data and human-coded observations, such
systems should be used to supplement rather than replace traditional observation methods. With
further optimization and integration of multimodal data sources, tools like IDEAS may approxi-
mate observational data more reliably in classroom settings. As an open-source platform, IDEAS
can be extended or customized, which may allow researchers to adapt it for higher education or to
capture more nuanced aspects of student interaction.
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