
Paper ID #48998

Integrating Image, Video, and Machine Learning into an IoT Learning Environment

Dr. David Hicks, Texas A&M University-Kingsville

David Hicks is an Associate Professor in the Electrical Engineering and Computer Science Department
at Texas A&M University-Kingsville. Before joining TAMUK he served as Associate Professor and
Department Head at Aalborg University in Esbjerg, Denmark. He has also held positions in research labs
in the U.S. as well as Europe, and spent time as a research scientist in the software industry.

Dr. Lifford McLauchlan, Texas A&M University - Kingsville

Dr. Lifford McLauchlan is an Associate Professor in the Electrical Engineering and Computer Science
Department at Texas A&M University - Kingsville, and has also worked for Raytheon, Microvision,
AT&T Bell Labs, and as an ONR Distinguished Summer Faculty at SPAWAR San Diego, CA. He has
over 55 publications covering areas such as adaptive and intelligent controls, robotics, an ocean wave
energy converter, green technology, education, wireless sensor networks and image processing. He is a
co-inventor on 3 US patents related to control systems. Dr. McLauchlan is a member of ASEE and was
the 2012-2014 Chair of the Ocean and Marine Engineering Division. He is also a member of IEEE (senior
member), SPIE, Eta Kappa Nu, ACES and Tau Beta Pi, and has served on the IEEE Corpus Christi Section
Board in various capacities such as Chair, Vice Chair, Secretary and Membership Development Officer.
Dr. McLauchlan has received the Dean’s Distinguished Service Award twice and the Dean’s Outstanding
Teaching Award once for the College of Engineering at Texas A&M University-Kingsville.

Dr. Mehrube Mehrubeoglu, Texas A&M University - Corpus Christi

Dr. Mehrubeoglu received her B.S. degree in Electrical Engineering from The University of Texas at
Austin. She earned an M.S. degree in Bioengineering and Ph.D. degree in Electrical Engineering from
Texas A&M University. She is currently an associate prof

©American Society for Engineering Education, 2025

Integrating Image, Video, and Machine Learning into an

IoT Learning Environment

Keywords: Internet of Things, IoT, Engaged Remote Student Learning, Image Recognition,

Machine Learning

Introduction

Internet of Things (IoT) technology continues to enable the design and development of a variety

of new types of applications and systems [3]. The advanced capabilities found in a modern smart

home provide numerous examples including the remote and automated management and control

of thermostats, lighting systems, and security devices [12]. More broadly, the data gathering and

control capabilities of IoT technology is also helping to fuel the development of significant

improvements of existing larger scale infrastructure related systems for important tasks such as

traffic management (smart signals) and power distribution (smart grids). As a result, the

importance of teaching IoT related concepts and technology to students in computer science,

electrical engineering, computer engineering and other relevant STEM education programs

continues to increase. As graduates from these programs enter the workforce they will require

knowledge of sensing devices, communication technologies, and control techniques to

successfully meet an ever-increasing demand for the design and support of IoT related systems

[1, 4, 15].

An ongoing project at Texas A&M University-Kingsville and Texas A&M University-Corpus

Christi, both Hispanic Serving Institutions, has focused on enhancing support for teaching IoT

related concepts and technology. The project has especially emphasized expanding support for

engaged remote student learning to accommodate learners that do not have ready access to lab

facilities, such as those with family or work obligations that make it difficult to attend class at a

time when labs are typically scheduled [2, 6, 13]. A learning toolkit approach has been adopted

in which a collection of basic IoT equipment and components has been assembled that can be

utilized by remotely learning students to complete IoT related exercises and assignments [7, 10,

16]. Students are provided with a learning toolkit at the start of a class and can then utilize it

throughout the semester to study IoT related materials and complete projects at a time and place

that fits their schedule.

The most recent iteration of the evolving IoT learning toolkit incorporates a camera module in

order to expand its capabilities and provide support for IoT projects that involve image and video

capture. This paper reports on the latest version of the toolkit along with a series of exercises

developed to teach IoT concepts and technology, especially those involving image and video

capture, to engaged remote student learners. The following section provides a brief look at the

evolution of the IoT learning kit during the course of the project. The focus then shifts to the

latest version of the kit, first with a look at the components it contains followed by a detailed

description of the new exercises and support materials developed to accompany it. The next

section discusses deployment plans for the kit along with its adaptability for students of differing

backgrounds. The paper concludes with a brief look at future plans for the IoT learning kit.

Background

The initial IoT learning toolkit designed during this project was a very basic one. It consisted of

a Raspberry Pi processor board [14] and a collection of sensors, actuators, resistors, and LEDs.

A set of exercises was developed to guide students through the process of utilizing jumper wires

and a breadboard to connect the necessary components of the toolkit to establish and test basic

IoT solutions [11]. Subsequently a second more extensive toolkit was designed based on an IoT

learning platform. A second series of exercises was also developed to introduce students to the

components and capabilities of the learning platform and how they can be utilized in designing

IoT solutions [8]. As described in [9], there are advantages and disadvantages associated with

both versions of the IoT toolkit, and both a student’s technical background as well as the

complexity of an IoT exercise or assignment to be performed are significant factors in choosing

between them.

Support materials were created to accompany the exercises developed for both versions of the

IoT toolkit. These materials provide students with examples and demonstrate the IoT concepts

being taught and how to incorporate the underlying technology into a programming solution.

The C programming language was utilized in creating materials to support the first set of

exercises, and students were also instructed to code their exercise solutions in C. Support

materials for the second set of exercises were based on the Python programming language and

students were instructed to use Python in coding their solutions. As discussed in [9], it is

anticipated that switching to the Python language will accommodate a broader variety of student

backgrounds and expand the potential use of the toolkit to additional engineering disciplines.

Augmenting the IoT Toolkit

More recently a new version of the IoT learning toolkit has been designed. In the development

of the new IoT toolkit the set of basic components that comprise the initial learning kit was used

as a starting point and augmented to incorporate a camera module. The Raspberry Pi board is

again utilized as the processor for the augmented learning kit. Its relative affordability and

variety of interfaces and connection capabilities, including one that can readily accommodate a

camera module, make it well suited for the task. The processor board for each kit will have an

updated version of the Raspberry Pi operating system preinstalled on its SD card.

A similar collection of sensors, actuators, resistors, and LEDs is also included in the augmented

kit along with a breadboard and jumper wires to connect components. Of course, the specific

sensors and actuators included can be adjusted as necessary to meet the needs of a particular

class or topic being taught. The camera module included in the new kit consists of the camera

itself along with a connector that is compatible with the processor board utilized in the kit (the

Raspberry Pi 4). The intent is to develop a budget friendly IoT learning toolkit that can provide

students with experience in a wider variety of IoT applications including those that utilize image

and video input.

IoT Exercises

A set of exercises has been developed to accompany the new toolkit and teach students how

images and video can be utilized in IoT solutions. The exercises will guide students in learning

how to integrate the camera module into an IoT solution and capture images and video for local

storage or to be sent to a cloud-based facility for storage and analysis. Students will also learn

about strategies for exploiting image recognition and other machine learning techniques in the

design of an IoT solution. The Python language was used in developing support materials for the

new exercises in order to broaden their applicability as described above, and students will be

instructed to utilize Python in coding their solutions.

This section examines the tasks associated with the new exercises and how they will be used to

teach students about the opportunities for incorporating image capture or video into an IoT

solution. Table 1 summarizes the topics covered by each of the seven new exercises. They start

with the basic tasks of assembling and checking the functionality of the toolkit components and

progress incrementally to provide students with experience in utilizing image capture in an IoT

application.

Table 1. Exercises for the Augmented IoT Learning Toolkit

Exercise Topics Covered

1. Introduction and

orientation

Unpack kit and connect components to processor board (monitor,

keyboard, mouse, and power supply).

2. Camera module

installation and test

Install camera module and utilize an operating system level

command to verify installation.

3. Programmatic image

capture

Learn how to utilize camera device from within a Python program

including the new programming libraries required.

4. Periodic image

capture

Include the camera module in an IoT solution to monitor a condition

through periodic image capture.

5. Event driven image

capture

Modify solution for previous exercise to perform image capture

when a designated event occurs.

6. Cloud-based

resource integration

Learn about integration of cloud-based IoT resources by sending

captured images to a ThingSpeak account.

7. AI-based API

integration

Integrate appropriate APIs needed to perform AI-based image

recognition/analysis.

Exercise 1. Introduction and orientation: The first exercise begins by tasking students to unpack

and connect the central component of the IoT toolkit: the processor board. They are instructed

on how to attach a keyboard, mouse, monitor, and power supply to the board in order to establish

an IoT development environment. Once the components are connected students power on the

processor board to ensure the preloaded Linux [17] based operating system boots correctly. As

in the exercise sets for previous versions of the IoT toolkit, students are then instructed to create

an IoT version of the classic HelloWorld program and ensure it runs correctly in their new

programming environment. A preinstalled Python Integrated Development Environment (IDE)

supports this task. Figure 1 shows the output produced by the HelloIoTWorld program after

being successfully run in an operating system console shell.

Figure 1. Output of HelloIoTWorld program.

Exercise 2. Camera module installation and test: In the second exercise students are asked to

install the camera into their IoT development environment and test its functionality. The camera

included with the augmented toolkit is the Raspberry Pi Camera Module 3 [14]. It includes both

the camera itself as well as a cable to connect to the processor board. Students are instructed to

carefully connect the camera to the processor board using the supplied cable. The camera is then

to be tested by ensuring it can capture an image correctly. To accomplish this students are asked

to open an operating system shell and issue the “rpicam-still -o test.jpg” command. If

the camera is installed correctly, invoking this command will open a window that displays the

contents currently viewed by the camera. After a brief delay the image currently viewed by the

camera will be automatically captured and stored in “jpg” format in a file named “test.jpg”.

Inspecting the contents of the file utilizing a file browser allows students to verify that the image

was captured and the camera is working correctly. Testing the camera this way utilizing the

“rpicam-still” operating system command enables the camera installation to be verified

before attempting to use it programmatically in subsequent exercises. Figure 2 illustrates a

processor board with the camera module correctly installed.

Exercise 3. Programmatic image capture:

The topic of the third exercise is for

students to learn how to access and utilize

the camera from within a Python program.

Support materials for this exercise explain

to the student the concept of importing

libraries into a Python program, and that

the “Picamera2” and “Preview”

libraries are needed to access and control

the camera for this exercise, and that the

“time” library is also required. Students

are then tasked with writing a basic

Python program that, when started, will

initialize the camera and place it into

preview mode so that a window is opened

that shows the image currently viewed by the camera. After a brief time interval has elapsed the

program should capture the image currently viewed by the camera and save it into a designated

file. After completing and running the program students are asked to view the contents of the

designated file to ensure the image that was viewed by the camera was successfully captured.

The code listing in Figure 3 illustrates a potential Python solution for this exercise. Though this

exercise is also a basic one with a brief solution, importantly, it does cover the steps that are

required to incorporate the camera device programmatically as part of an IoT solution.

Figure 3. Code listing of a Python solution for Exercise 3.

Exercise 4: Periodic image capture: The fourth exercise builds upon the solution to the third one.

It asks students to extend their basic solution to that exercise into a program that can monitor a

condition or situation visually by periodically capturing and logging images over a specified time

period. The logged image files are to be stored in a specific directory and named according to

the time and date at which they were captured. Figure 4 depicts a directory containing images

captured periodically and named appropriately.

Figure 2. Processor board with camera module installed.

The support materials for this

exercise describe an IoT

application scenario in which this

functionality is important such as

monitoring the status of crops in

an agricultural setting.

Depending on the class and

department in which the IoT

Toolkit is being utilized, if

necessary, supplemental

materials can also be provided to students covering the Python programming constructs required

to complete the exercise.

Exercise 5: Event driven image capture: In the fifth exercise students are presented with the task

of creating a Python program that utilizes the camera to observe a condition or situation and

capture images in response to some predefined event. The support materials for the exercise

describe a security-related scenario in which a camera should observe a building entrance and

log entries and exits by capturing images as people enter or leave. To simulate this scenario as

an exercise students are asked to create a Python program that integrates input from the camera

along with input from an appropriate sensor device, such as an IR sensor or motion sensor. The

program should continually monitor the sensor input. When the program detects that a

designated event has occurred, such as the presence of a person in front of the sensor, it should

use the camera to capture an image. The program should then reset and continue monitoring the

sensor and capturing images whenever the designated event occurs. The captured images should

be stored in a specific directory and inspected after the program has run to ensure that images are

correctly captured.

Exercise 6. Cloud-based resource integration: The topic of the sixth exercise is to integrate

cloud-based analytic resources into an IoT solution. Students will be instructed about how to

establish an educational account on a cloud-based platform such as ThingSpeak [18]. They will

then be asked to modify their solution code for Exercise 5 so that in addition to storing captured

images in the local file system a copy is also sent to their cloud-based ThingSpeak account. To

verify the images are being received and that the program is working correctly, students will also

be instructed to have their ThingSpeak channel display the most recently received captured

image onto a local window of their IoT development environment. It should be updated each

time the designated event occurs and a new image is captured. The support materials for this

exercise will provide students with an overview of the array of IoT related services typically

available through cloud-based analytic platforms.

Exercise 7. AI-based API integration: The seventh exercise will provide students with experience

in integrating basic Artificial Intelligence (AI) functionality into an application and how it could

serve as a building block in designing an IoT solution. The primary task of the exercise will be

the analysis of an image that is captured by the camera. The approach utilized in the exercise

requires configuration of a student’s IoT development environment in order to utilize an AI-

Figure 4. Directory containing images captured periodically.

based API (Application Programming Interface). Students from some disciplines will likely be

capable and comfortable in customizing their development environment, and benefit from the

experience. For students from other backgrounds the process might be more challenging.

Instructors can decide how much or little of the configuration process they would like for

students to perform and take care of any pre-configuration required as appropriate.

The primary development environment customization required is the installation of the

components necessary to integrate AI functionality into an IoT software solution. In this exercise

the Gemini APIs from Google will be utilized for image analysis [5]. This requires the

installation of the “google-generativeai” package into the development environment. To

do so students are instructed to open an operating system command shell and issue the following

commands:

“python -m venv ./my-environment/”

“source my-environment/bin/activate”

“pip install -q -U google-generativeai”

The first command creates a Python virtual environment into which the student can install the

required package. The second command activates the new Python virtual environment. The

third command performs the installation of the required package into the student’s virtual

environment, making it available for use within an application program.

Once the required development environment customization has been completed, students are

asked to create a Python program that will present a basic interface to the user consisting of one

window to display the image currently being viewed by the camera and another window that

consists of two buttons and an output field. The first button should allow the user to capture the

image currently being viewed by the camera. The second button should allow the user to request

that the captured image be analyzed and the results displayed in the output field of the user

interface. Once completed students should test their code to ensure the captured image is

successfully submitted for analysis and that the returned results are reasonable.

Figure 5a and Figure 5b illustrate a potential solution for this exercise. The interface providing

the two buttons and the output field is shown in Figure 5a. Figure 5b shows a window that

displays the image currently being viewed by the camera. In this case the “Capture” button was

pressed while the camera was observing a paper clip. The output text field below the buttons in

Figure 5a shows the result of the image being analyzed by the Google Gemini facility [5].

Figure 5a. User interface for an Exercise 7 solution. Figure 5b. Image observed by camera (a paperclip).

The support materials for the exercise describe the parts of the “google.generativeai”

API that are used to perform the image analysis, especially the “.GenerativeModel()”

method which allows for the specification of the model to be used for the analysis task and the

“.generate_content()” method to perform the image analysis. The “tkinter” library

is also described as a facility that can be used to create the graphical user interface for the

program [19].

Discussion

Like previous versions of the IoT toolkit developed during this project, the augmented toolkit

and exercises described in this paper will be deployed in engineering and computer science

capstone project classes at the two participating universities. The goal will be to teach IoT

concepts to these students, with a focus on opportunities to include image or video capture, and

increase their awareness of the important role this technology can serve in their class projects

and in solutions to engineering problems in general. Pre- and post-course surveys will be

utilized to assess student learning of IoT concepts and their awareness of opportunities to utilize

this technology in engineering solutions. The surveys will also serve to evaluate the toolkit itself

as well as the associated exercises and support materials.

As described previously, including the camera module in an IoT application does add some

complexities to a student solution for an exercise, assignment, or project. In addition to

physically installing the camera device, students must also configure their IoT development

environment to ensure the availability of the new libraries required to access and interact with

the camera programmatically. Further customization is also needed if AI functionality is to be

included in an IoT solution, such as the creation of a virtual Python environment and installation

of required libraries as discussed in the previous section. Although these additional complexities

might prove challenging for some students, depending on their academic discipline or

background, instructors can adjust descriptions provided in the exercise support materials and the

amount of pre-configuration that is done for students accordingly.

Conclusion and Future Work

The latest version of the IoT learning toolkit has been targeted to assist students in learning about

IoT concepts and technology with an emphasis on image capture techniques. A series of

exercises have been developed to assist remotely learning students engage with this material and

become familiar with how these capabilities can be utilized in IoT solutions. Students also learn

about incorporating basic AI functionality in the final exercise of the series. Deployment of the

IoT learning toolkit in engineering and computer science capstone courses will provide feedback

for evaluation and improvement purposes for both the toolkit itself as well as the exercises and

supporting materials.

An additional set of exercises is planned for the augmented toolkit. It will provide students with

further experience in utilizing camera input as part of an IoT solution. This will include

incorporating video capture as well as image capture and analysis into an application. Additional

AI and Machine Learning (ML) content is also planned for the next iteration of exercises.

Students will learn about AI models and the difference between accessing an external model

through an API (Exercise 7) and the possibility of running a model locally on-device. With a

continued emphasis on affordability lower cost hardware options will be explored for the toolkit

such as the Raspberry Pi AI Kit [14].

Acknowledgement and Disclaimer

This material is based upon work supported by the National Science Foundation through Grant

No. 2044255. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the National

Science Foundation.

References

[1] Farha Ali. 2015. Teaching The Internet of Things Concepts. In Proceedings of the WESE'15:

Workshop on Embedded and Cyber-Physical Systems Education (WESE'15). Association

for Computing Machinery, New York, NY, USA, Article 10, 1–6.

https://doi.org/10.1145/2832920.2832930

[2] Anastasi, G.F., Musmarra, P. (2022). Teaching IoT in the Classroom and Remotely. In:

Casalino, G., et al. Higher Education Learning Methodologies and Technologies Online.

HELMeTO 2021. Communications in Computer and Information Science, vol 1542.

Springer, Cham. https://doi.org/10.1007/978-3-030-96060-5_7

[3] Balaji, S., Nathani, K. & Santhakumar, R. IoT Technology, Applications and Challenges: A

Contemporary Survey. Wireless Pers Commun 108, 363–388 (2019).

https://doi.org/10.1007/s11277-019-06407-w

[4] L. C. B. C. Ferreira, O. C. Branquinho, P. R. Chaves, P. Cardieri, F. Fruett and M. D.

Yacoub, "A PBL-Based Methodology for IoT Teaching," in IEEE Communications

Magazine, vol. 57, no. 11, pp. 20-26, November 2019, doi: 10.1109/MCOM.001.1900242.

[5] Gemini Developer API. [online]. Available at: https://ai.google.dev/gemini-api/docs.

(Accessed: January 9, 2025).

[6] C. Grabowski, M. Rush, K. Ragen, V. Fayard, and Karen Watkins-Lewis, “Today’s Non-

Traditional Student: Challenges to Academic Success and Degree Completion,” Inquiries

Journal, Vol. 8, No. 03, pp. 1-2, 2016.

 [7] K. Habib, E. Kai, M. Saad, A. Hussain, A. Ayob and A. Ahmad, “Internet of Things (IoT)

Enhanced Educational Toolkit for Teaching & Learning of Science, Technology,

Engineering and Mathematics (STEM)”, 2021 IEEE 11th International Conference on

System Engineering and Technology (ICSET), Shah Alam, Malaysia.

[8] D. Hicks, L. McLauchlan, M. Mehrubeoglu and H. K. R. Bhimavarpu, "Expanding Remote

Student Learning-Internet of Things Applications and Exercises," 2023 IEEE Frontiers in

Education Conference (FIE), College Station, TX, USA, 2023, pp. 1-8, doi:

10.1109/FIE58773.2023.10343065.

[9] Hicks, D., & McLauchlan, L., & Mehrubeoglu, M., & Bhimavarapu, H. K. R. (2024,

June), Expanding Support for Engaged Remote Student Learning of Internet of Things

https://doi.org/10.1145/2832920.2832930
https://doi.org/10.1007/978-3-030-96060-5_7
https://doi.org/10.1007/s11277-019-06407-w
https://ai.google.dev/gemini-api/docs

Concepts and Technology Paper presented at 2024 ASEE Annual Conference & Exposition,

Portland, Oregon. 10.18260/1-2—47384.

[10] M. Kusmin, M. Saar and M. Laanpere, "Smart schoolhouse — designing IoT study kits for

project-based learning in STEM subjects," 2018 IEEE Global Engineering Education

Conference (EDUCON), Santa Cruz de Tenerife, Spain, 2018, pp. 1514-1517, doi:

10.1109/EDUCON.2018.8363412.

[11] L. McLauchlan, D. Hicks, M. Mehrubeoglu and B. Zimmer, “Work-in-Progress: Internet of

Things Enabling Remote Student Learning,” 2022 ASEE Annual Conference and

Exposition, Minneapolis, MN, USA, June 26-29, 2022.

[12] Dragos Mocrii, Yuxiang Chen, Petr Musilek, “IoT-based smart homes: A review of system

architecture, software, communications, privacy and security”, Internet of Things, Volumes

1–2, 2018, Pages 81-98, ISSN 2542-6605, https://doi.org/10.1016/j.iot.2018.08.009.

[13] National Center for Education Statistics, “Characteristics of Postsecondary Students,” The

Condition of Higher Education 2019, Ch. 2, pp. 1-5, May 2019. Online:

https://nces.ed.gov/programs/coe/pdf/Indicator_CSB/coe_csb_2019_05.pdf (Accessed:

5/9/2023).

[14] Raspberry Pi Official Documentation Site, [online]. Available at:

https://www.raspberrypi.com/documentation/. (Accessed: January 9, 2025).

[15] N. Silvis-Cividjian, "Teaching Internet of Things (IoT) Literacy: A Systems Engineering

Approach," 2019 IEEE/ACM 41st International Conference on Software Engineering:

Software Engineering Education and Training (ICSE-SEET), Montreal, QC, Canada, 2019,

pp. 50-61, doi: 10.1109/ICSE-SEET.2019.00014.

[16] Mariana Aki Tamashiro, Marie-Monique Schaper, Ane Jensen, Rune Heick, Brian

Danielsen, Maarten Van Mechelen, Kasper Løvborg Jensen, Rachel Charlotte Smith, and

Ole Sejer Iversen. 2023. Teaching technical and societal aspects of IoT - A case study using

the Orbit IoT Kit. In Proceedings of the 2023 ACM Designing Interactive Systems

Conference (DIS '23). Association for Computing Machinery, New York, NY, USA, 1236–

1247. https://doi.org/10.1145/3563657.3596092

[17] The Linux Foundation. [online]. Available at: https://www.linuxfoundation.org/projects.

(Accessed: January 9, 2025).

[18] ThingSpeak for IoT Projects, [online]. Available at: https://thingspeak.mathworks.com/.

(Accessed: January 9, 2025).

[19] Tkinter – Python interface to Tcl/Tk. Available at:

https://docs.python.org/3/library/tkinter.html. (Accessed: January 14, 2025).

https://doi.org/10.1016/j.iot.2018.08.009
https://www.raspberrypi.com/documentation/
https://doi.org/10.1145/3563657.3596092
https://www.linuxfoundation.org/projects
https://thingspeak.mathworks.com/
https://docs.python.org/3/library/tkinter.html

