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Abstract
Computer Science courses often rely on programming assignments for learning assessment. Au-
tomatic grading (autograding) is a common mechanism to provide quick feedback to students and
reduce teacher workload, especially in large classes. However, traditional autograders offer limited
personalized feedback and often require all students to solve the same predefined problem, restrict-
ing creativity. In this paper, we address these limitations by developing an AI-based autograder
that (1) can grade diverse, open-ended assignments where students work on independent, creative
projects, enabling a new set of assessments in CS1 (introductory programming) courses, and (2)
provides personalized feedback using large language models (LLMs). We present the design of
a new assessment strategy in introductory programming courses where each student works on an
open-ended problem for their summative assessment. We design generalized scaffolds (project pro-
posal, schematic development, pseudocode, integration of files, and graphs) for these open-ended
assessments so that each student completes a project of desired complexity. Existing autograders
require rigid structure of inputs and outputs, and therefore, cannot grade such assessments. Our
tool, FlexiGrader, integrates code execution verification and unit testing tailored to the specifica-
tions of each student individually, followed by code analysis using LLMs to generate feedback and
grades. FlexiGrader is capable of handling submissions from large classes and ensures flexibility in
grading free-form assignments, making it easier for instructors to design and assess varied projects.
The input requirement of our tool is a cover sheet that student’s submit along with their code files.
The cover sheet includes a description of the project, paths to external files, and the inputs needed
to run the program. FlexiGrader provides options for the instructor to describe the grading rubric
and choose the criteria that will be graded by the AI model to allow flexibilty of a hybrid grading
approach where it may be desirable for some criteria to be human graded while other could be
graded by the AI model. We hypothesize that live implementation of FlexiGrader in CS1 class-
rooms can enhance student self-efficacy and creativity in CS education by fostering independent
project development. We plan to study this hypothesis in future research. Additionally, we discuss
the operational costs of our autograding system, its compatibility with existing frameworks, and
the current limitations of our approach. By enabling more creative and personalized assignments,
FlexiGrader has the potential to transform assessment practices in introductory computer science
courses.

1 Introduction
It is well established in computer science (CS) education literature [1], that learning-by-doing
and rigorous practice are effective for students to gain programming expertise. Consequently, the
formative and summative assessments in CS courses often take the form of programming tasks.
These assignments usually have fixed inputs and outputs, making them amenable to autograders —
software-based automated grading. Autograders provide immediate feedback to students, reduce
teachers’ workload, and if implemented carefully, can be fair to all students. These properties
make autograders effective for fostering a mastery learning framework [2] in CS education. For
example, students can keep on working on mastering a skill in an autograded formative loop until
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they get the desired grade.

We identify two main limitations to prevalent autograders — lack of personalization and inability
to grade open-ended assignments. While some autograders allow for the incorporation of personal
feedback from the teaching staff, they often do so at the cost of their efficiency. Some of the
most recent autograders also provide feedback messages to students on their programs, however,
they have not yet been applied widely and their educational outcomes are not yet fully measured.
Further, auto-graded assignments and their solutions must follow a pre-defined rigid structure that
limits the creative exploration. To enable richer hands-on experiences, instructors may choose to
assign open-ended projects. Learning-oriented assessment studies [3] have shown that such open
ended assignments are close to students’ interests and can lead to an increase in student engagement
and agency.

Recent innovations aim to address these limitations by integrating ML and NLP technologies into
autograding systems. These advancements enable tools to assess nuanced aspects of code, such
as design patterns, code readability, and logical structure [4]. For instance, ML models can ana-
lyze code comments and programming styles to provide more personalized and detailed feedback.
These systems balance the efficiency of automation with the depth of personalized evaluation,
particularly for open-ended and creative assignments [5]. Furthermore, peer grading systems and
ML-based similarity detection are being explored to handle diverse outputs in open-ended projects.
These innovations hold promise for fostering creativity and higher-order thinking in students, a do-
main where traditional autograders have fallen short.

In this paper, we describe the development of a new autograder that can grade open-ended assign-
ments. We implemented such assignments for an engineering computing course at our university
with 207 students enrolled in the class. This resulted in 183 Python projects where each project
had unique goals, inputs, and outputs that were driven by students’ personal interests. Feedback
from student evaluations was positive and students reported an increase in their enthusiasm for
the course material. However, human grading of these open-ended assignments proved to be ex-
ceedingly time-consuming, requiring ∼ 20 hours of professors’ time and ∼ 60 TA hours to grade
effectively. Although such assignments could imbibe higher-order thinking in students, human
grading is not scalable. The development of the autograder tool in this paper is targeted at address-
ing this grading and assessment gap.

The growth of the educational technology industry has come up with autograders, which are widely
used in CS1/2 settings around the world. Some of the common products are: zyBooks [6], Pe-
rusall [7], CodeGrade [8], CodePost [9], Codio [10], Crowdmark [11], and Gradescope [12]. Most
of the above-mentioned advanced tools come with modern user interfaces and smoothly integrate
with learning management platforms allowing automatic creation of gradebooks. These tools fun-
damentally use unit-test-based core auto-grading methodology, where students’ work is scored by
multiple unit tests. Other advanced features that are rapidly becoming common for these tools
include API-based customization, in-class usage of autograder, and grading of handwritten assign-
ments. Most commercial autograder products provide end-to-end assessment solutions with code
review, data analytics, automated integrations, and code completion for students.

On the other hand, open-source autograders are available to instructors who require customized
solutions for their course needs. For instance, OtterGrader [13] provides an abstraction API for



grading Python and R assignments, thus enabling educators to create grading workflows particular
to their needs. A number of grading software have also been developed to suit other programming
languages, such as WebCAT [14] for C++ and Java, PrairieLearn [15] for C++ and Python, OK-
py [16], and nbgrader [17] for Python and Jupyter notebooks. Most existing autograders provide
absolute scores; however, questions such as: “Did the student produce code that adheres to recom-
mended best practices for the programming language?” cannot be evaluated using common unit
testing based autograders. Similarly, student feedback is limited to predefined messages from failed
unit tests, offering little guidance for improvement. The recently published Pedal framework [18]
attempts to address this limitation by using code structure analysis to provide better targeted pre-
built feedback. By identifying common anti-patterns observed in classrooms, pedal can provide
more nuanced feedback to students alongside feedback on rubric-based evaluations such as “Does
the code correctly use a for loop?”. Alternatively, another approach [19], combines program repair
techniques with automated grading to directly evaluate the logic and structure of student sub-
missions themselves. These innovations can effectively handle diverse solutions and demonstrate
a scalable approach for assignments in which students design unique projects, propose problem
statements, and implement customized solutions. However, to the best of our knowledge, none of
the existing autograder tools can fully evaluate open-ended assignments. Most available tools are
designed for well-defined tasks with known outputs and predetermined code structures.

2 Methodology
With the general availability of generative AI, summative assessments in CS1 have to be designed
with the understanding that the students can use these tools to complete the exams. Rather than
switching to timed in-person or similar “stricter” settings to prevent AI misuse, CS educators must
innovate the assessments such that generative AI tools can be used collaboratively. Open-ended
projects offer a path forward. Research has shown that projects as the main summative assesssment
in engineering and computing courses can have a greater positive impact on student learning and
career preparation than conventional exams [20]. With open-ended projects, the idea is to go one
step further. If a project problem statement is carefully designed by the instructor and provided
to the students, generative AI tools could have a much easier time finishing the project, especially
in CS1. Identifying a problem, exploring possible solutions, and defining what a good real-world
implementation would look like are the creative elements of any project. Therefore, we designed
open-ended project-based summative assessment exams for a CS1 course taught in Fall 2023 in a
course with total enrollment of 207 for which the description is shown in Table 1.



Table 1: Open-ended project description

Project Assignments Description
Milestone 1 Set up computer
Milestone 2 Propose project idea (or choose from pro-

vided list
Milestone 3 Create the program framework and I/O struc-

ture
Milestone 4 Integrate loops and required logic
Milestone 5 External data and personalize
Demonstration 1 Oral exam
Demonstration 2 Class/lab presentation
Demonstration 3 Skill quiz
Final Project Submission All files and cover sheets

The open-ended projects can be designed to be creative and exploratory in nature. We gave a set of
constraints to the students for their Python projects but the project goals, specific objectives, and
the technical approach were assigned as tasks for the students. The project constraints were:

All students must work on an independent Python project. This project must demonstrate the
following five key elements of Python that you learn in ME 021. An ideal project that grades 100
will

1. Control the program flow with branching and loops

2. Uses correct data structures for optimal computations

3. Uses functions for modular code

4. Loads data from files (real-world data is preferable) and writes outputs to files (if needed)

5. Documents the flow of logic with comments, docstrings, and user-friendly messages

Beyond these constraints, the students were given the independence to propose a project and de-
velop it for their exam. Two main challenges with this style of summative assessment are: lack of
clarity for the students on “what do I do?”, and the design of a fair grading strategy and rubrics.
To address the first challenge, we provided a list of Final Dataset project ideas to the students.1

The students were also encouraged to propose their own project ideas. Scaffolds were designed
carefully for the project so that students could make consistent progress and achieve the best re-
sults.

2.1 Milestone assignments as project scaffolds
A total of 5 milestone assignments were designed as scaffolds for this project-based summative
assessment shown in Table 1. The second scaffold was a “project proposal” assignment where the

1List of project ideas are available on GitHub.

https://ayush-pandey.github.io/documents/f23_me021_python_project_ideas.pdf


students proposed the project. The other milestone assignments addressed each of the constraints
in the exam instructions (adding branching, loops, functions, files, and visualization).

2.2 Categories of proposed projects
A total of 183 projects were proposed by the students. The projects can be classified into the
following categories: game design (tetris, tic-tac-toe, rock paper scissor, adventure games etc.),
computational apps (computing math formula, finance calculators etc.), data analysis (COVID-
19 data analysis, stock market analysis etc.), and simulations (bus tracker, diet simulator, class
registration system etc.). A full list of all projects is available online on GitHub [21].

2.3 Grading and rubric
The second challenge in this assessment design is the grading. A detailed grading rubric was shared
with the students before the exam, and a short summary of the rubric is shown in Table 2. Due to
space constraints, the details of each rubric item are not shown. In summary, we designed open-
ended project-based summative assessment exams for a CS1 course taught in Fall 2023 in a course
with total enrollment of 207. Note: not all students who were enrolled submitted a project.

Table 2: Rubric for open-ended assignment

Criteria Ratings Points
Execution: Does the code run? 20 if yes, 15 for logical errors, 10 if ∼50%

runs, 0 if not.
20

Branching: Does the code use if-else
and loops as needed?

15 if criteria satisfied, 10 if only one, 0 if
none.

15

Modularity: Does the code use func-
tions for modularity?

10 if modular, 5 if improper, 0 if none. 10

Structures: Does the code use data
structures as needed?

5 if appropriate DS, 0 if not. 5

Files/Advanced Features: Does the
code use files/advanced features?

10 if criteria satisfied, 5 if attempted, 0 if not. 10

Documentation: Is the code well-
documented?

5 if comments present, 5 if attempted, 0 if not. 10

Demo: Did the code demo the pro-
posal?

25 if yes, 20 if one missing, 15 if ∼50%, 10
if one feature only, 0 if none.

25

UI: Effective UI? 10 if yes, 0 if not. 10

Flexigrader is an LLM-based autograder designed to assess open-ended Python programming as-
signments. Python programming assessment is possible with off-the-shelf LLMs such as GPT. But,
there are various concerns about whether it is fair and reproducible for all students, accurate, and
provides meaningful feedback. These are even more significant concerns for grading assignments
where students independently explore their own ideas. Based on preliminary experiments with
LLMs for grading, we formulate the following specifications for any AI-powered autograder.



1. The autograder’s behavior must be reproducible such that if points are taken off for a stu-
dent’s mistake under a rubric item, then exactly the same points must be taken off for all
other students who made that same mistake.

2. The AI must not hallucinate and take off points for “made up” scenarios or error patterns that
did not appear in the students’ code or are not eligible according to programming language
rules.

3. The text feedback must be personalized, meaningful, and direct. Generic and long para-
graphs of text as feedback that does not convey much information would tend to dissuade
the students from using the autograder’s feedback to improve.

Note that these specifications are valid when we are grading students’ work beyond unit testing
frameworks, as required by independent assignments.

To achieve the tool specifications in the design of our autograder, we tested zero-shot, few-shot and
system messages (special instructions provided to the model to guide its behavior) on GPT as well
as fine-tuned LLMs such as CodeLlama and GPT. For training, we use 125 student Python projects,
each of which has unique goals and outputs. For these training data, we use human-graded scores
and feedback as the ground truth. We also compare the performance of the fine-tuned models
with the off-the-shelf LLMs. Finally, a crucial piece of our autograder is the integration with a
code execution framework that evaluates whether each code runs or not. For the final presentation
of the tool, we show integrated results with the execution framework to emulate a modular unit
testing-based process and LLMs for more nuanced code assessment.

2.4 Code execution framework
We design a code execution framework that runs students’ code and assigns scores, akin to a unit-
testing based autograder. The main difference in our execution framework and existing autograders
is its ability to grade students’ work on independent problem statements, code inputs, imports,
and outputs. To facilitate automated grading in this scenario, we ask students to submit a cover
sheet along with their assignment on the LMS. The first section on this cover sheet is on external
packages used. Students list out the names of all packages or files that their project depends on,
if any. The next section is on inputs. In this section, the students are asked to provide a sample
set of inputs needed to run their code, each separated by a new line. To enhance the reliability
of our execution framework, we employ an LLM to analyze the imports in the students’ code and
automatically generate a requirements.txt file for setting up a Miniconda environment when the
student does not provide one.

Our goal with the code execution framework is to develop a fully-functional and self-sufficient
autograder, as well as enhance the user-friendliness of our tool. This framework acts as the main
interface for the human grader. The grader needs to provide the following items to run the code
execution framework shown in Table 3 and Table 4:

• the directory path containing all project folders,

• a CSV file detailing the project proposals (short project descriptions of goals),

• the main Python file name,



• any external Python files,

• the rubric criteria,

• external packages (if any), and

• list of sample inputs (automatically extracted from the cover sheet in LMS)

Table 3: General structure of input data for the code execution framework for each student. Each
row represents a submitted Python file, its imports, and the inputs required for execution.

File Name Imports Input 1 Input 2 Input 3 Input 4
Student 1.py library1, library2 Value 1,1 Value 1,2 Value 1,3

Student 2.py library3 Value 2,1 Value 2,2 Value 2,3 Value 2,4

Student 3.py library4 Value 3,1 Value 3,2

Table 4: Generalized column headers used in the dataset. Columns marked with * indicate fields that
support multiple values (e.g., External Python File Name* can have multiple entries such as External
Python File Name 1, External Python File Name 2, etc.).

Description Main
Python
File
Name

Main
Python
File Code

External
Python
File
Name*

External
Python
File
Code*

Criteria
Descrip-
tion*

Criteria
Rating*

Imports Input*

Description
of the task
or project

Name of
the
primary
Python
file

Code
within the
main file

Name of
the
external
Python
file(s)

Code
within the
external
Python
file(s)

Description
of grading
criteria

Rating or
score for
each
criterion

Libraries
or depen-
dencies
used

Sample
inputs
provided
or inferred

With these, FlexiGrader automatically sets up individual Miniconda environments to import the
necessary packages and uses subprocesses to emulate user input, testing and capturing any issues
in the code. We query our language model to generate a score and feedback, which are then parsed
into a CSV, allowing the grader to easily input grades.

2.5 Data pre-processing
Multiple data pre-processing and annotation steps were required to curate the dataset for finetuning.
We anonymized student names and identifiers from the submitted files. However, even after an
initial round of anonymization, we noticed that students had used their names within the code.
So, we manually removed all references to student’s identifiers from their code and any other
external files that they submitted. Since the training dataset contains students’ work and instructors
comments/feedback on it, we also removed students’ names from the feedback. To effectively
train the LLM, we had to fill missing gaps in human feedback as not all students received feedback
on their work by the human graders. We incorporated feedback by going through each row in
our dataset and making sure it correlates to the assignment and adjusting any feedback that is
irrelevant or may confuse the model and pick up anti-patterns. In addition, we fleshed out some of
the comments so that the model can be descriptive in their responses as well.



Table 5: Comparison between Alpaca and GPT Prompt Structures

Alpaca Text Structure GPT Prompt Structure

"messages": [
{"role": "system"
"content": system_content},
{"role": "user"
"content": user_content},
{"role": "assistant"
"content": assistant_content}

]

{
"instruction": combined_content
"input": ""
"output": assistant_content
}

Note: combined content = system content + user content

2.6 Prompt engineering for effective finetuning
Prompt engineering is one of the most important part in designing LLM-based applications. We
applied common prompt engineering guidelines [22] published in the literature. Our prompt design
is concise and uses emphasized tags < >. in order for the model to recognize patterns and relative
importance. We used the Alpaca format [23] to create a consistent and structured prompt. For GPT
fine-tuning, we used a chat-based JSON Schema to structure the prompt Table 5, Table 6

An initial challenge with the prompt design were the non-ASCII characters that students used in
their code. Long context prompts also led to discouraging preliminary results. Thus, we ensure
that the prompt is straightforward yet descriptive enough to convey our intent and we removed all
non-ASCII characters in the manual dataset annotation process. We tested various prompts using
the zero-shot LLM and selected the one that provided the desired structure and response before
finetuning.

A limitation of the prompt is the restriction on code length, as large language models have a
maximum context window. As a result, we could only use 159 of the 183 Python projects in total,
which were divided between training and testing. One student in the dataset developed a long
project that did not fit the maximum prompt size and we had to remove this project’s grading from
the finetuning. This is an area of improvement for future designs of autograders.

2.7 Off the shelf LLM
We conducted experiments using two popular off-the-shelf LLMs: Claude and ChatGPT. We used
system messages to enforce a consistent structure across the models, ensuring uniform output
formatting that can be easily parsed into the gradebook Table 7.



Table 6: Feedback Comparison between Human and Models

system content user content assistant content

### Instruction:
[Guidelines for grading,
specifying criteria and
desired feedback.]

### CodeDescription:
<description>
[Brief description of
the project or task.]
</description>
### crtieria_{i}
<criteria>
[Desc. and eval. points]
</criteria>
### MainPythonFileCode
<code>
[Main Python file code
here.]
</code>
### ExternalPythonFile -
[filename].py code:
<code>
[Code from an external
file, if applicable.]
</code>

### Response:
[Feedback for each
criterion, including
scores and suggestions.]
Received Score - [List
of scores for each crit-
erion.]

Table 7: Example of system message format guideline

System Message

You are a grading assistant that strictly follows the output format
described below:

### Response:
Criteria_1: <score> out of <total>
Feedback: <feedback text>

Criteria_2: <score> out of <total>

Received Score - [<list of scores>]

Do not deviate from this structure. If additional criteria exist,
continue the numbering pattern.

2.8 LLM finetuning
For finetuning, we chose popular models that excel in analyzing code. Based on literature re-
view [24], we found that the Llama is appropriate choice for our autograding task as they have
versions that specialize in code generation and is also open-source. For instance, CodeLlama



Python 34B scored 53.7 on the HumanEval benchmark, demonstrating its strong code understand-
ing.

For the finetuning, we divide the dataset into training-test subsets, as per the best practices of
training machine learning models. We use ∼ 80% of the student assignments for training, ∼ 20%
of the assignments were used for the test set.

2.9 Metrics for comparing autograder performance
Our autograding task differs from some of the existing autograders that score 0 or 1 on whether
a unit test for a rubric passed or not since our rubric criteria are set at multiples of 5, with some
criteria being scored between 0 to 20, while others being scored between 0 to 10 or 0 to 5 to
subjectively grade student learning. In this setting, we need more metrics than just Accuracy and
MAE to evaluate our model so we use a Weighted F1-Score and BERT Score for comparing the
text feedback given by the graders and the model. So, we define the following metrics to measure
the performance of the autograder. These metrics can be generally applied to other autograders
that grade with non-binary scoring types.

• Precision: The fraction of scores given by the model that exactly match the human scores
i.e. Precision = TP

TP+FP
where TP denotes the number of true positives and FP denotes the

number of false positives.

• Gross Precision: The fraction of students’ who received the same total score by the auto-
grader as by the human grader. GP = T/Ttot where T is the number of students who got the
same grade and Ttot is the total number of students.

• Error exceedance rate: The frequency of autograder errors that exceed the specified delta
threshold, ∆. EER =

∑N
i=1 ei
N

, where N is the total number of scores given by the autograder,
ei is an indicator function that equals to 1 if the autograder errors in scoring is more than ∆.

• Recall: The fraction of human scores that the model correctly identifies as positive i.e Recall
= TP

TP+FN
where TP denotes the number of true positives and FN denotes the number of false

negatives.

• Weighted F1-Score: The harmonic mean of Recall and Precision adjusted to account for
class imbalances by assigning weights to each class’s score according to its proportion of
true instances in the dataset. The computation involves two main steps:

1. Compute the F1-score for each class c

F1c = 2× Precisionc × Recallc
Precisionc + Recallc

where Precisionc and Recallc are the precision and recall of class c.

2. Compute the weighted sum of all the classes’ F1-scores:

F1weighted =
C∑
c=1

nc

N
· F1c

where

– C is the total number of classes

– nc is the number of true instances in class c

– N is total number of instances



– F1c is the F1-score for class c

• Mean Absolute Error (MAE): The average of the absolute differences between the predicted
and true values, defined as MAE = 1

n

∑n
i=1 |ŷi − yi| where n is the total number of samples,

ŷi is the autograder score, and yi is the human score .

• BERT Score (CLS-based): Given two text phrases, a candidate text (model feedback) x
and a reference (human feedback) x̂, we first obtain a single embedding for each text by
extracting the CLS token representation from the final layer of a pretrained BERT model
(bert-base-uncased):

zx = BERT CLS Embedding(x), zx̂ = BERT CLS Embedding(x̂),

where each of zx and zx̂ is a vector in Rd (e.g., d = 768 for bert-base-uncased).
The CLS token is a special classification token prepended to every input sequence in BERT.
It is designed to serve as a holistic summary of the entire input sentence making it viable
for our task for cxomparing sentences’ meanings. We then define our “BERT Score” (in this
CLS-based approach) as the cosine similarity between these two embeddings:

BERT Score(x, x̂) =
zx · zx̂

∥zx∥ ∥zx̂∥
.

The dot in the numerator denotes the dot product of the two vectors, and ∥·∥ is the Euclidean
norm.

Note that we report these metrics as a percentage score by multipying the fractions by 100.

3 Results
We show the inference results of the finetuned models in Table 8. An important finding is that non-
finetuned models outperform the finetuned models with Claude 3.5 Sonnet being the best.

Table 8: Model overall scores

Model Weighted
F1-Score (%)

Recall
(%)

Precision
(%) Gross

Precision (%)
Error

Exceedance Rate (%)

MAE BERT
Score (%)

Training
Time (sec)

Inference
Time (sec)

CodeLlama-34b
Finetuned

16.52 19.05 6.96 27.92 72.18 4.32 85.79 1980 1886.02

GPT4o Finetuned 56.07 19.52 19.88 53.25 46.75 2.47 83.72 1031 544740

GPT4o-mini
Finetuned

23.92 16.91 15.28 25.97 74.03 4.40 83.85 682 384960

GPT3.5 Fine-
tuned

27.96 14.46 13.51 28.57 71.43 4.25 82.5 465 3848760

GPT4o Base 68.86 22.66 22.79 71.43 28.57 1.68 78.95 N/A 1.00

GPTo1 Base 67.03 23.84 21.03 70.78 29.22 1.66 75.11 N/A 1.50

GPTo1mini Base 63.73 22.52 16.93 68.71 31.29 1.94 77.40 N/A 2.50

Claude 3.5 Son-
net Base

71.91 26.14 25.36 73.38 26.62 1.53 80.39 N/A 1.00

Finally, we note that the feedback from CodeLlama-34b is human-like as it has the highest BERT
Score overall meaning the model’s feedback was semantically similar to the human grader. More-
over, CodeLlama excelled in delivering concise, to-the-point feedback, which may be beneficial for
quickly identifying key issues in the code. However, GPT models offered more extensive critiques,



highlighting a broader range of improvement opportunities and providing detailed explanations of
how to enhance the code Table 9. This comprehensive feedback could be valuable for students, as
it not only identifies errors but also serves as a learning tool, guiding them toward better coding
practices and deeper conceptual understanding.

Table 9: Feedback Comparison between Human and Models

Criteria Human GPT-4 CodeLlama-34b Claude

Branching (10/15)
Doesn’t
contain for/
while.

(10/15) The code
contains
branching
statements using
multiple if
conditions to
handle different
user inputs and
program flows.
However, it lacks
any form of loop
(such as for or
while) which is
required to fulfill
the looping
aspect of this
criterion.

(10/15) There is
no while/ for in
your script.

(15/15) The code
effectively uses
both branching
statements
(if-else) and
loops. Multiple if
statements are
used for input
validation and
control flow (e.g.,
checking
restaurant choice
validity, order
completion).
While loops are
used for the main
program loop and
order-taking
process. The
implementation
is appropriate
and
well-structured.

Modularity (0/10) The
entire script
is a
sequence of
instructions
executed
linearly,
without any
functions.

(0/10) The
submitted code
does not contain
any function
definitions. All
the logic is
written in the
global scope
without modular
separation.
Introducing
functions would
improve code
organization,
reusability, and
readability. . .

(5/10) There is
no function in
your script.

(10/10) The code
demonstrates
excellent use of
functions with
four well-defined
functions:
display menu(),
take order(),
and main().
Each function
has a clear
purpose and is
properly
implemented
with appropriate
parameters and
return values.



Criteria Human GPT-4 CodeLlama-34b Claude

Structures (0/5) A list
of list for
materials is
not
optimal. In
fact, a
dictionary
is a much
better data
structure
here.

(5/5) The code
appropriately
uses lists to store
material
properties. The
materials list of
lists is a suitable
data structure for
managing
multiple
materials and
their associated
attributes. This
organization
allows for
efficient lookup
and iteration,
which is
particularly
useful when
comparing user
input to available
materials.

(0/5) int(5) is
not the best way
to store data.

(5/5) The code
makes
appropriate use
of data structures.
It uses a nested
dictionary for the
menu (restaurant
as the outer key,
menu items as
inner keys),
which is an
excellent choice
for this data
organization.
Lists are used
appropriately for
enumeration, and
strings for text
display.

Advanced
Features

(5/10)
Partial
points for
the
encryption
algorithm.

(0/10) The code
does not
incorporate file
reading/writing,
graphing,
multiple
modules, or other
advanced
features. The
project solely
focuses on
console
input/output and
basic encryption
logic without
leveraging any
advanced Python
features. As a
result, this
criterion is not
satisfied.

(5/10) no file use. (0/10) The code
does not utilize
file operations or
other advanced
features. The
menu data is
hardcoded; this
could be
improved by
reading from a
CSV file, as
mentioned in the
project
description.



Criteria Human GPT-4 CodeLlama-34b Claude

Document (0/5) There
is no
comment in
your script.

(0/5) The code
lacks comments
or docstrings.
There are no
inline comments
explaining key
lines of code, and
no docstrings for
functions (noting
that no functions
are defined
either). Good
documentation is
important to
explain logic and
improve
maintainability.

(0/5) There is no
comment in your
script.

(5/5) The code is
well-documented
with clear
comments. It
includes a title
comment and
function-level
comments
explaining the
purpose of each
major
component.
These are
meaningful and
aid in
understanding
the code’s
structure and
logic.

Demo (15/25) A
basic set of
features are
imple-
mented.
The printed
history
does not
make sense
because
only the
results are
printed.

(25/25) The code
accurately
reflects the
project
description. It
implements all
key features such
as arithmetic
operations,
trigonometric
calculations,
history viewing,
and saving
history to a file.
This
comprehensive
coverage
indicates that
most of the
proposed features
are successfully
demonstrated.

(15/25) A basic
set of features are
implemented.

(20/25) The code
implements most
of the core
features,
including
restaurant
selection, menu
display,
order-taking, and
total calculation.
However, it
doesn’t
implement the
CSV file reading
feature
mentioned in the
project
description.
Overall, the
implemented
features work
well and offer
good
functionality.

3.1 Tool availability
FlexiGrader is open-source under the MIT license. The dataset used to train the model contains
student data and cannot be released publicly to meet the research compliance regulations at our



university. However, in the future, we plan to release a blueprint that contains fully de-identified
student data so that other instructors can adopt our models for similar assessments in their CS1
courses.

3.2 Impact of autograders on student learning
We anticipate that student self-efficacy could be enhanced in courses that use AI-powered auto-
graders such as the one discussed in this paper. An important premise to this assumption is that
students are often driven by their agency to learn [25]. Therefore, working on independent assign-
ments for which they get fair grades/feedback could lead to enhanced confidence and self-belief
in completing programming tasks beyond the classroom. Another hypothesis worth exploring is
the impact on student engagement with long-term vs short-term (the conventional weekly) assign-
ments. Specifically, are the students more engaged in learning the material when they are working
on a project that is based out of their interests and/or personal data that they collect as compared
with fixed weekly assignments for the class? Studying this question at an MSI is even more crucial
as students are often dedicating very limited amount of time to school due to family and work
responsibilities. The role of our autograder on providing detailed, personalized, and regular feed-
back on such open-ended assignments would be crucial to explore. Such feedback would high
throughput compared to human grading and might present more creative learning opportunities. A
longitudinal study of student reflections and group interviews could provide useful data to study
this question.

4 Conclusion
We present FlexiGrader — an LLM-based grader that can automatically grade flexible, indepen-
dent, and open-ended assignments. We tested different state of the art code generation and evalua-
tion large language models and studied their performance in grading this unique assessment style.
In conclusion, based on our data analysis and software deisgn, we present a tool that is ready to be
adopted for other CS1 courses along with a code execution framework that mimics conventional
unit-testing based grading but for open-ended assessments.
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