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Abstract

In this paper we consider how curricular complexity varies according to academic disci-

pline, both broadly across the wide variety of fields in higher education, and more nar-

rowly within the engineering discipline and specific engineering sub-disciplines. This work

involved collecting and analyzing all of the undergraduate curricula associated with all of

the undergraduate programs at thirty different universities. The universities involved in

this study included a broad cross-section of R1 and R2 institutions, as well as two HBCUs,

located in sixteen different states. We first describe the curricular complexity metric used

in this study. Next, we consider all curricula across all of the institutions involved in this

study, and we show that most curricula are distributed at the lower end of the complexity

scale with relatively fewer at the higher end of this scale; moreover, this distribution has

a long right-skewed tail. Furthermore, many of the high-complexity programs in the tail

correspond to engineering programs. Given the long tail associated with the distribution

of data in our study, the average curricular complexity value is easily skewed by a small



number of highly complex curricula. Thus, any statements made regarding the average cur-

ricular complexity value at a particular institution, or across any collection of institutions,

when all disciplines are considered, should be considered highly unreliable. However, if

we instead disaggregate programs according to discipline, the long tail behavior is signifi-

cantly moderated, and interesting distributions emerge. By characterizing the features of

these distributions, it becomes possible to make quantitative and comparative statements

about the complexities of particular disciplines, including engineering. By further disag-

gregating according to engineering sub-disciplines, we obtain distributions that resemble

well known distributions, such as the gamma distribution. This provides a means, for the

first time, to meaningfully compare and contrast the curricular complexity of the engineer-

ing field to those in other fields, as well as the complexities of the sub-disciplines within

the engineering field, e.g., civil engineering, chemical engineering, electrical engineering,

etc.

Introduction

A fundamental question related to student success is, are some academic programs inher-

ently more difficult to complete than others? If so, then additional questions immediately

follow. For instance, can we quantify the differences between academic program difficul-

ties? The ability to do so would allow us to formalize common beliefs that are often stated

without firm factual bases. For example, it is not uncommon for students to hear advice

regarding the difficultly of engineering programs; such as, engineering programs are the

hardest programs on campus to finish on time. In this paper we provide a framework for

addressing these questions that uses a formal method for measuring program curricular

complexity, applied to a large corpus of curricular data collected from thirty different uni-

versities. We demonstrate that it is indeed possible to quantify the complexity differences

that exist between the different academic program in our data set. Furthermore, we show

that it is possible to characterize these differences in statistically meaningful ways; that is,

in a manner that we believe should prove useful in guiding curricular design and reform

efforts aimed at facilitating student success.

Background

For this study, a data set consisting of all the undergraduate curricula at thirty one differ-

ent universities across the United States was collected and analyzed. These institutions

are all members of the Undergraduate Education at Research Universities (UERU) orga-

nization, the entity that managed this study. The universities involved in this study are

all public, with the exception of one private institution, and all have Pell grant-recipient

student populations that account for at least 30% of their overall student populations. The

institutional types also included flagship, land-grant, urban-serving, HBCU, HSI, R1, and

R2 universities. Each university participant uploaded the curricula associated with each

of their undergraduate academic programs to the website http://CurricularAnalytics.org.

The total number of curricula collected, across all institutions (accounting for degree con-

centrations/emphases) was 3,830.



In this study, a curriculum refers to the set of courses (along with the corresponding set

of course prerequisites) that, if successfully completed, would allow a student to earn the

degree associated with the curriculum. An example electrical engineering curriculum is

provided in Figure 1 (a). This curriculum is represented as a graph, where the vertices

are the required courses in the curriculum, and the directed edges (arrows) between the

vertices correspond to prerequisites. That is, the course on the source end of the directed

edge is a prerequisite for the course on the destination end. Directed edges drawn as dashed

lines correspond to co-requisites. The complexity of each curriculum was computed using a

unitless graph-theoretic metric imposed by the pre- and co-requisite relationships between

the courses in a curriculum. This metric, referred to as structural complexity, involves two

factors. First, each course c in a curriculum is assigned a blocking factor which is simply

the number of courses a student is precluded from taking, due to pre- and co-requisite

constraints, until they have successfully completed course c. In Figure 1 (b), the blocking
factor of the Calculus I course is 15. The second factor, called the delay factor is determined

by the longest pathway in the graph that includes course c. In Figure 1 (b), the delay factor
of the Calculus I course is 8. The structural complexity of a course c is determined by adding
its blocking and delay factors, and the structural complexity (or more simply complexity)

of a curriculum is determined by summing all the course complexities in a curriculum.

In Figure 1 (b), the complexity of the Calculus I course is 23, and the complexity of the

entire curriculum is 228. It can be shown that under certain mild assumptions, on average,

curricula with higher complexity take more time (i.e., are more difficult) for students to

complete.1

In order to consider how the complexities of academic programs vary across and within

different fields of study, each academic program considered in this study was classified by

the universities involved in the study using Classification of Instructional Programs (CIP)

codes. Every postsecondary school in the U.S. receiving federal student financial aid is

required to match their academic programs to CIP codes, and to periodically report specific

program data to the federal government.2

The CIP framework is a taxonomic coding scheme for classifying instructional programs

organized around three levels:

– Two-digit series: represents the most general grouping of programs. The standard

format for representing a two-digit CIP is as ##., where ## is a number between

01 and 99. E.g., 04. = Architecture and Related Services; 13. = Education; 14. =

Engineering; and 26. = Biological and Biomedical Sciences.

– Four-digit series: represents an intermediate grouping of programs that have compa-

rable content and objectives. The standard format for representing a four-digit CIP is

as ##.##., where ## is a number between 01 and 99. E.g., 04.04. = Landscape Ar-

chitecture, Environmental Design; 13.03. = Education, Curriculum and Instruction;

14.09. = Engineering, Computer Engineering; and 26.03. = Biology, Botany/Plant

Biology.

– Six-digit series: represents a detailed grouping of specific instructional programs.

The standard format for representing a four-digit CIP is as ##.####, where ## is a



(a)

(b)

Figure 1: (a) An example electrical engineering program curriculum, organized as a degree plan over eight
terms. The courses in the curriculum are shown as vertices, and the prerequisites are shown as directed

edges. (b) Highlighting the Calculus I course in this curriculum shows that Calculus I blocks 15 other courses

in the curriculum (shown in green), and the longest path in the curriculum that includes Calculus I (shown

as a blue dashed line) has length 8.
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Figure 2: Histogram of program complexities for (a) all of the undergraduate programs at

the University of Arizona, and (b) all of undergraduate programs at all institutions involved

in the study.

number between 01 and 99, and #### is a number between 0000 and 9999. E.g.,

04.0403 = Landscape Architecture, Environmental Design, Sustainable Design/Ar-

chitecture; 13.0301 = Education, Curriculum and Instruction, Curriculum and In-

struction; 14.0903 = Engineering, Computer Engineering, Computer Software Engi-

neering; and 26.0307 = Biology, Botany/Plant Biology, Plant Physiology.

Below, we use the term field of study, or more simply field, synonymously with the those

areas of study identified by the two-digit CIP series, and we use the term discipline to refer

to the areas of study identified by the four-digit CIP series. Finally, we use the term sub-

discipline to refer to those areas of study identified by the six-digit CIP series That is, a

field refers to a broad area of study encompassing many disciplines, and disciplines may

contain many sub-disciplines. For instance, the engineering field contains the chemical

engineering, civil engineering, computer engineering, etc. disciplines, and the computer

engineering discipline contains sub-disciplines such as computer hardware engineering,

computer software engineering, etc.

Complexity Distribution – All Curricula

Next we consider the various complexity distributions that emerge by treating the com-

plexity values in the data set as a random variable. First, we consider the distribution of

complexity values across all academic programs. A very similar distribution of program

curricular complexities is found at each of the institution involved in this study. Specifi-

cally, universities tend to offer many programs at the lower end of the complexity scale, and

relatively fewer programs with higher complexity. A typical example from the University

of Arizona is shown in the histogram provided in Figure 2 (a), where there are numerous

programs with complexities in the 50–250 range, and far fewer with complexities above

250.
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Figure 3: The empirical distribution (as a complementary CDF) Pr(X ≥ x) for the entire
data set plotted on (a) a doubly logarithmic scale, and (b) a semi-logarithmic logarithmic

scale.

Figure 2 (b) shows the complexity histogram created by combining all of the curricular data

from all of the institutions involved in this study. This histogram resembles the power-law

distribution, an important probability distribution that has attracted significant scientific

interest, given its interesting properties, and its ubiquitous nature, arising in so many dif-

ferent areas of study, including physics, biology, computer science, and the social sciences,

just to name a few.3,4 The power law distribution is characterized by a long tail, i.e., most

samples will cluster around a smaller value, with occasional “black swan” events leading

to samples in the tail of the distribution that are far away from this cluster. The density

function of a power law distribution has the form

p(x) = Cx−α,

with exponent α > 1 (referred to as the scale parameter), where C is a constant, and it
is assumed x > xmin > 0; that is, the power law relationship only holds above the value
xmin. An important and unique characteristic of the power law distribution is its scale

invariance; that is, scaling x by a constant factor a will not change the fundamental shape
of the distribution,

p(ax) = C(ax)−α = a−αp(x) ∝ x−α.

This agrees with the observation that the complexity distributions at all of the individual

universities resemble to some extent Figure 2 (b).

Given that

log(p(x)) = α logx+ C,

where C is a constant. It follows that one way of detecting the possible presence of a power
law distribution is to plot samples drawn from a distribution on a log-log scale. If the these

samples fall on a line, there is evidence (a necessary but not sufficient condition) of the

power law distribution. Furthermore, the slope of this line provides an estimate of the value

α. A log-log plot of the entire curricular data set is shown in Figure 3 (a), and a best fit line
to these data points has slope −1.08. However, we should mention that the detection of
the power law in empirical data is a notoriously difficult problem, due to many factors that

influence real-world data sets.5 For instance, the fact that the data points in Figure 3 (a)



deviate from a line in the extreme tail of the empirical distribution may be attributed to the

fact that undergraduate curricula in the United States are limited in scale. In particular,

undergraduate curricula must fit into a four-year time-frame, and are generally limited

to 120 credit hours. Thus, the complexity values in the curricular data set are naturally

truncated at values above roughly 700. Indeed, the shape of Figure 3 (a) is similar to those

of truncated power law distributions.6,7

Another possible distribution that may explain this data set is the exponential distribution,

given by

p(x) = λe−λx,

where λ > 0 is referred to as the rate parameter. Because

log(p(x)) = −λx+ C,

data drawn from an exponential distribution should appear as a straight line on a semi-

logarithmic plot. In Figure 3 (b) we show the entire curricular data set plotted on a semi-

logarithmic scale, and we observe that the data points fall on a nearly straight line.

Thus, there is evidence the curricular data is either distributed according to a truncated

power law distribution or an exponential distribution. For the purposes of this research,

either distribution leads to the same conclusion. Specifically, both the mean of the expo-

nential distribution, and the mean of the power law distribution (if it exists), are highly

sensitive to outliers or extreme values, meaning even a single very large value can sig-

nificantly shift the calculated mean, making it more susceptible to changes in the data

compared to other measures like the median. That is, due to the skewed nature of these

distributions, the mean is heavily influenced by extreme values, leading to larger a differ-

ence between the mean andmedian. For this reason, the median is often considered a more

robust measure of central tendency in these cases, as it is less affected by outliers.

Why does this matter? Given the longs tails associated with the distributions described

above, the average curricular complexity value is easily skewed by a small number of highly

complex curricula. Thus, any statements made regarding the average curricular complexity

value at a particular institution, or across any collection of institutions, when all disciplines

are considered, should be considered highly unreliable. Thus, such comparisons are ill-

advised. However, we will show in the next section that comparisons between programs

within a given discipline do make sense, and therefore they can be useful in guiding cur-

ricular design and reform efforts.

Complexity Distribution – By Field

There are 36 unique two-digit CIP codes associated with the academic programs in this

study, each corresponding to a different academic field, as discussed earlier. Let us treat

the curricular complexities of all programs sharing a given two-digit CIP code as a random

variable. This will allow us to estimate the probability density functions associated with

the curricular complexities in each field. These estimates provide a principled means for

comparing the complexities of academic programs, across different fields, as well as among
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Figure 4: For the field of business, i.e., two-digit CIP 52., (a) the histogram of business pro-

gram complexities across all institutions, and (b) the KDE computed using this histogram.

For the field of engineering, i.e., two-digit CIP 14., (c) the histogram of engineering pro-

gram complexities across all institutions, and (d) the KDE computed using this histogram.

the various disciplines in a given field. The ability to quantify these distributions will al-

low us to answer questions such as,“Is my engineering program more complex than the

engineering programs at other similar institutions?” and “From a curricular perspective, is

engineering a more complex discipline than biology, and if so, by how much?”

In Figures 4 (a) and (c) we show the complexity distributions for all of the business and

engineering programs in our study, identified by the two-digit CIP series 52, and 14., re-

spectively. The qualitative complexity differences between these two fields is easy to see.

In order to better visualize these differences, we used kernel density estimation (KDE) tech-

niques to estimate the probability density functions associated with these data sets. This

methodology uses kernel functions as weights in order to create a smoothed versions of the

histograms shown in Figures 4 (a) and (c). Specifically, let x1, . . . , xn denote i.i.d. samples

drawn from some unknown probability density f . Then, the kernel density estimator for f
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in the data set.

is given by

f̂(x) =
1

nh

n∑
i=1

Kn

(
x− xi

h

)
,

where K is a non-negative function known as the kernel, and h is a smoothing parameter
known as the width. The KDE for the fields of business and engineering are shown in

Figures 4 (b) and (d), allowing us to clearly see the differences between the means and

variances in these two empirical distributions.

We see in Figures 4 (b) and (d) that business programs are more tightly clustered around

170, while engineering programs tend to cluster around 325. That is, the engineering field

as a whole is inherently more complex than the business field. It also important to note that

engineering programs have much larger variability, as compared to the business programs,

as well as among all of the other fields identified by their two-digit CIP codes. To visualize

this, we selected nine additional fields from the data set, and plotted them all together,

along with the business and engineering fields, as shown in Figure 5. This figure clearly

shows the stark complexity differences between the curricula in particular disciplines. No-

tice that many disciplines have prominent peaks in their complexity distributions, but the

distribution for engineering is quite flat, demonstrating a large variance across this field.

Other fields with large variance include natural sciences, biology, and the health profes-

sions. For those fields with large variances, we suspect the variability may be attributable

to the particular disciplines that comprise the field. For the engineering discipline, this is

investigated in more detail in the following section. Figure 5 also makes clearly evident

the underlying structures that leads to the long-tailed distribution of data shown in Fig-

ure 2 (b), and also explains a possible generative model for the power law distribution

when considering all fields. Specifically, the power law distribution often emerges when

mixing data sources having a range of variances.8

Asmentioned previously, it is not advisable to compare curricular complexities when all dis-
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the University of Arizona, including Aerospace Engineering, complexity = 431; Electrical &

Computer Engineering, complexity = 336; Industrial Engineering, complexity = 210; Me-

chanical Engineering, complexity = 357; Mining Engineering, complexity = 223; Optical

Sciences & Engineering, complexity = 274; Systems Engineering, complexity = 177; Ar-

chitectural Engineering, complexity = 360; Applied Physics, complexity = 215; Biosystems

Engineering, complexity = 150; Chemical Engineering, complexity = 484; Civil Engineer-

ing, complexity = 307; Environmental Engineering, complexity = 282.

ciplines are considered together. However, because long-tails are not nearly as prevalent

in the field-specific empirical distributions shown here, we believe highly useful compar-

isons can be made at the discipline level. An example of such a comparison is provided in

Figure 6.

The plot in this figure should be interpreted as follows. First the box-and-whisker diagram

(also know as a boxplot) summarizes the data within a given field of study (two-digit CIP

category), in this case engineering. The box itself spans the lower (Q1) and upper (Q3)

quartiles of the data set, and the distance between these two is known as the interquartile

range (IQR). The line in the middle of the box denotes the median value of the data set,

which is roughly 340. Thus, 50% of the data lies below this line, with complexity scores less

than 340, and the other 50% lies above the line, with complexity scores greater than 340.

Furthermore, the data points below the box constitute 25% of the data set corresponding

to the lowest complexity scores, and the data points above the box constitute the 25%

of the data corresponding to the highest complexity scores. Thus, the box itself contains

the middle 50% of the complexity scores in the data set. The whiskers extending from

the box show range of the data, from minimum to maximum complexity scores, where



the data points above the maximum value are considered outliers. More specifically, the

whiskers extend to the farthest data point that is within 1.5 times the IQR, with data points

outside this range considered outliers. Finally the notch in the box indicates the most

likely values of the median value. The size of the notch is directly proportional to the IQR,

and inversely proportional to the square root of the number of samples in the data set.

The notch itself provides an approximate 95% confidence interval for the median of the

entire population of programs with this two-digit CIP. That is, it provides a rough estimate

of the confidence we should have when using the sample median as an estimate of the

population median. Thus, the notch in this plot is useful for comparing the samples drawn

from different fields of study. If the notches from two different fields of study do not overlap

on the complexity axis, it is an indication the median complexities values for these fields

of study are different.

Next, the blue outlined shape on this plot is an empirical probability distribution function

obtained by applying kernel density estimation techniques to the sample data. If this shape

is cut in half along the central axis of the boxplot, and then the left half is rotated (clock-

wise) by 90 degrees, you will obtain the shape of the empirical probability distribution

function for the data set shown in Figure 4 (d). This portion of the diagram is useful for

determining the number of modes that might exist the distribution of the actual popula-

tion. For instance, in the plot shown in Figure 6 appears to have two modes, one with a

peak at approximately 300 complexity points, and another at approximately 400 complex-

ity points.

Finally, the data points themselves are plotted, using a function that randomly scatters

them about the central axis of the box plot according the empirical probability distribution

function. If these points were not scattered in this fashion, they would plot one on top of

the other along the central axis. In other words the placement of these data points along

the horizontal dimension has no meaning, other than to make them visible. Specifically, by

scattering them, it is easy to compare the red data points, corresponding to the programs

at a given institution, to those belonging to the other institutions in this study. We contend

this plot will provide useful information curriculum designers and curriculum committees,

as they work to modify and improve their curricula.

Complexity Distribution – Engineering Disciplines

In order to better understand the large complexity variance in our data set for the engi-

neering field, we next consider the complexities of disciplines within the engineering field,

according to their four-digit CIP codes. Figure 7 shows the KDEs associated with the six dif-

ferent engineering disciplines, constructed in the same manner as described above. From

this figure, it is easy to see how the combination of engineering discipline complexities pro-

duces the widely dispersed complexity distribution for the entire engineering field shown

in Figure 4 (d). Furthermore, in this data set the specific engineering disciplines are much

more defined. For instance, the systems/industrial engineering programs tend to cluster

around a particular complexity value that is quite different from that of the chemical engi-

neering programs. Similarly, the civil engineering programs appear to be less complex than

the mechanical engineering programs. Each of these engineering disciplines had 15–25
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Figure 7: The KDEs for the complexity distributions associated with six different engineer-

ing disciplines in the data set.

programs in our data set. Thus, at the moment we are reluctant to say more about these

particular distributions of engineering disciplines. Our intention is to collect additional

data for the purpose of performing more detailed discipline-specific analyses. Finally, it

is worth noting that the discipline specific distributions in engineering have shapes that

more closely resemble a Gaussian distribution. Thus, additional data collection may allow

us to better quantify these distributions, allowing us to answer question about the means

and variances of the complexities of civil engineering programs, chemical engineering pro-

grams, etc.

Discussion

In this paper we provided a methodology for quantifying the complexity of academic cur-

ricula on field-specific and discipline-specific bases. We also demonstrated the care that

should be taken when comparing program complexities. Specifically, comparisons between

the curricular complexities of academic programs make little sense unless academic fields

are taken into account. This was demonstrated by showing the collection of curricular

complexities across all programs in this study resemble a truncated power law or an expo-

nential distribution (or perhaps some combination of the two); that is, a distribution with

statistics that are highly sensitive to outliers.

We also showed that reliable within-field comparisons across institutions are possible, and

we provided a box scatter plot demonstrating how the complexities of the engineering pro-

grams at one institution compare to those at all of the other institutions in the study.

We showed that according to a reliable curricular complexity metric, engineering programs

tend to be among the most complex academic programs on a campus, and the complexity

variability for the engineering field is larger than that of any other academic field. We

showed the large complexity variability in the engineering field is likely attributable to the



complexities of the disciplines within the engineering field. Furthermore, the distributions

of the engineering disciplines tend to have shapes with a Gaussian appearance. If the

parameters of these discipline-level distributions can be determined through additional

data collection, it would lead to very powerful capabilities with respect to the study of

academic programs. For instance, it would allow for meaningful comparisons between the

complexity statistics of the same discipline at different institutions.

It is interesting to note the similarities that exist between the programs from the same

disciplines at the different institutions in our study. One explanation for why academic

fields and disciplines across universities tend to have more in common, with regards to

their curricular structure, than do the collection of curricula within a single institution is

provided by Lombardi.9 Specifically, he notes that the faculty at American universities

organize themselves according to guilds defined by their academic specialties. “Moreover,

within each university, each faculty guild serves as the local branch of a national guild of

the same specialty. For example, all professors in a university history department belong

to the same national guild, even though the local university employs them. The national

guild establishes the intellectual standards for their work; the local university deals with

their employment and work assignments.9”
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