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BYOE: Building Robust VR Learning Environments: Best
Methods to Visualize divergence-free Vector Fields

Introduction

The theory of electromagnetism (E&M), encapsulated in the four Maxwell’s equations, is at the
core of Electrical Engineering. When James Clerk Maxwell first published “A Dynamical Theory
of the Electromagnetic Field” in 1865, physicists found it difficult to grasp because the theoretical
framework seemed complicated. Mathematicians also found Maxwell’s work hard to understand
because the equations were described in physical terms. Students nowadays still encounter
difficulty grasping the principles pertaining to electromagnetism due to a lack of intuitive
familiarity with the phenomena. However, developing this intuition is limited by the 2D nature of
traditional display technologies, which cannot truly convey the three-dimensional (3D) nature of
E&M concepts. Advances in Virtual Reality (VR) and Augmented Reality (AR) display devices
hold great promise in helping students build a physical intuition regarding
electromagnetism.

Several studies have explored the use of AR for instruction, particularly to teach E&M concepts.
For instance, it has been shown that AR provided students with a better understanding of
Fleming’s rule than traditional 2D techniques [1]. Existing work demonstrates the ability to
render real-time magnetic field lines of magnetic dipoles in a 2D plane using AR [2]. This was
expanded on through the development of a 3D AR visualization tool for magnetic dipoles, tracing
magnetic field lines with a modified version of the Euler forward algorithm described below [3].
While these studies explored the use of AR to help visualize electromagnetic concepts, the work
presented in this study employs Virtual Reality, as it allows for control over the entirety of the
learning environment and has more accessible and available hardware than augmented
reality.

One of the four Maxwell’s equations, Ampere’s Law, states that distributions of electrical currents
seed magnetic fields. Understanding the abstractions built in this law of physics requires the
ability to visualize these vector fields and their interactions in a 3D environment. Numerical
methods exist for accurately tracing field lines in divergence-free fields [4–6], but are often
prohibitively computationally expensive to perform well in real-time. This paper discusses the
suitability of three numerical methods for interactive visualization of divergence-free vector fields
in VR, as well as approximation techniques that may be used in cases where these numerical
methods perform poorly.



Methodology

The development of a robust visualization technique to illustrate the concepts pertaining to the
generation of magnetic fields is the primary goal of this study, as the magnetic field is the only
field that appears in Ampere’s law (shown in Equation 1) in the absence of displacement currents
∂tE, such that static current densities (J) are the only sources of magnetic field. Note that µ0

represents the free space magnetic permeability.

∇× B = µ0(J+ ϵ0∂tE) (1)

Furthermore, the magnetic field belongs to a class of vector fields that are divergence-free, as
described by one of the four Maxwell’s equations, which states that magnetic monopoles do not
exist in nature. Consequently, every north magnetic pole is always accompanied by a south
magnetic pole, as shown in Equation 2.

∇ · B = 0 (2)

In general, the concept of field lines is a common and effective method of visualizing vector
fields, and it is particularly common in the literature for visualizing electric and magnetic fields.
Other techniques for visualizing vector fields are glyph plots and line integral convolutions.
While glyph plots and line integral convolutions [7] are effective methods for visualizing vector
fields in 2D, in 3D the glyph plots frequently become too cluttered, and the line integral
convolution does not translate well to a three-dimensional domain. Field line visualization adapts
well to 3D as the curves that describe the field line gain another degree of freedom.

For applications in virtual reality, the visualization method must be computationally efficient so it
can produce a visualization in real-time. This is particularly important for interactive educational
experiences, in which we seek to leverage the advantages of active learning. With the correct
choice of numerical integration method, field line visualizations are efficient enough to run in
real-time. It is necessary to use numerical integrators because a vector field in 3D can be thought
of as three first-order ordinary differential equations. The Euclidean x, y, and z components of the
vector field are the x, y, and z derivatives, respectively, of the differential equations. The solutions
of these differential equations describe the set of points that make up a field line with an initial
condition of a starting point. Three integrators are tested in this study: the Euler forward, Heun’s
method, and the fourth-order Runge-Kutta method (RK4), which have been adapted from the
algorithms described in Numerical solution of ordinary differential equations [8].

These methods may be applied to systems such as assortments of infinitely long current-carrying
wires, as the solution for the magnetic field generated by one such configuration is relatively
simple, as shown in Equation 3 from [9]:

B =
µ0I

2πs
ϕ̂ (3)

where s represents the perpendicular distance from the wire, and ϕ̂ is the azimuthal basis vector,
and I is the current magnitude. When multiple sources (current-carrying wires) are present, the



resulting magnetic field is the sum of all fields sourced by each individual wire, according to the
principle of superposition. Therefore, it is possible to visualize the magnetic field associated with
a system containing an arbitrary number of infinite current-carrying wires in a VR environment.
The user may interactively manipulate the position of these wires, and the visualization will
update the solution for the magnetic field in real-time according to the updated position of each
wire. While the wires appear to have a finite length in the visualization, their associated magnetic
fields are modeled using the infinite wire solution (see Equation 3).

Below, we briefly describe the procedure employed by each of the methods tested. For a magnetic
field B(r), a field line is approximated by a polygonal chain, an ordered set of points with linear
connections. From that, the field line length sB = (N − 1)∆s, where N is the number of points
along the field line, and ∆s represents the step size.

Euler Forward

i. Begin at an arbitrary starting position r0 and with a magnetic field B(r). The associated field
line is determined from a maximum number of steps N and a step size ∆s.

ii. ri+1 = ri +∆sB(ri).

iii. The set of all points ri, with i ∈ [0, N − 1] make up a discrete approximation to a field line of
B(r).

Heun’s Method

i. Begin at an arbitrary starting position r0 and with a magnetic field B(r). The associated field
line is determined from a maximum number of steps N and a step size ∆s.

ii. ri+1 = ri + ∆s
2
(B(ri) + B(r̃i)), where r̃i = ri +∆sB(ri)

iii. The set of all points ri, with i ∈ [0, N − 1] make up a discrete approximation to a field line of
B(r).

RK4

i. Begin at an arbitrary starting position r0 and with a magnetic field B(r). The associated field
line is determined from a maximum number of steps N and a step size ∆s.

ii. ri+1 = ri + ∆s
6
(k1 + 2k2 + 2k3 + k4), where k1 = B(ri), k2 = B(ri +∆sk1

2
),

k3 = B(ri +∆sk2
2
), and k4 = B(ri +∆sk3)

iii. The set of all points ri, with i ∈ [0, N − 1] make up a discrete approximation to a field line of
B(r).

In order to trace magnetic field lines, numerical integration techniques are coupled with a set of
termination conditions. Since magnetic fields are divergence-free in nature, magnetic field lines
must close on themselves. This property is challenging to reproduce numerically; therefore, in
order to efficiently trace these magnetic field lines, the numerical integration method is subjected
to the following termination conditions: (i) if the integration reaches a predetermined maximum
number of steps, and (ii) if the field line reconnects with itself at its starting point. The latter is



Figure 1: A system of three infinite wires generating a magnetic field. Three field lines are traced
using A) Euler Forward, B) Heun’s method, and C) RK4

ensured by checking whether the first and last points on the field line are within a very small
distance and if the tangent vectors at the field line’s starting and end points are nearly
parallel.

To compare the numerical integration methods employed here, the local and global truncation
errors are evaluated for each method. The local truncation error is the error associated with the
one step of the numerical integrator as compared with the analytical solution. The global
truncation error is the accumulated local truncation error over all of the steps of the numerical
integrator. For Euler’s method, the local error is proportional to the square of the step size ∆s,
that is, O(∆s2) [8]. Heun’s method has a local error of O(∆s3) while RK4 has a local truncation
error of O(∆s5). It can be shown that if the local truncation error is O(∆sn) then the global
truncation error is O(∆sn−1), one order lower than the local error [8]. This means that for a small
step ∆s, Heun’s method has a smaller local and global truncation error than Euler’s method,
while RK4 yields yet smaller errors. Therefore, it is expected that RK4 would produce more
accurate field lines. However, numerical accuracy does not necessarily always correspond to
visually identifiable properties of field lines, such as reconnection. Figure 1 illustrates this point,
as Heun’s method more frequently met the reconnection termination condition when compared
with either Euler forward or RK4.

Each of these numerical integration techniques comes at a different computational cost. A
meaningful measure of the relative cost of each of these methods is the number of times it needs
to evaluate the magnetic field at a given point in each iteration step. While other operations are
performed in each method, determining the value of the magnetic field at a given point requires a
large number of floating point operations (FLOPS). The Euler forward method requires one of
these function calls in each step, Heun’s method requires two calls, while RK4 requires four
function calls. This makes RK4 the most computationally expensive method and Euler forward
the least computationally expensive method.

Numerical integrators work and perform well for cases such as a system of infinite
current-carrying wires. However, in some cases, it can be challenging to create field line
visualizations using these aforementioned methods. For instance, the magnetic field vector needs
to be calculable at every point in the domain space, and stability conditions need to be met for



Figure 2: Magnetic field lines generated from a current-carrying loop approximated with ellipses.

large enough step sizes for the algorithms to perform in real-time efficiently. An example
illustrating a scenario where such difficulties can arise is provided by the current-carrying wire
loop depicted in Figure 2. In this case, the calculation of the magnetic field and the subsequent
visualization of magnetic field lines proves to be challenging, as it requires computing elliptic
integrals of the first and second kind [10], a computationally expensive task, especially since it
must be performed frequently. Therefore, for a system in which the current loop’s position in
space changes, real-time computation of the magnetic field using either Euler forward, Heun’s
method, or RK4 is unfeasible, as these methods have demonstrated poor performance. In such
cases, it may be necessary to resort to alternative methods, such as a precomputed and
approximated set of field lines.

Summary and discussion

For the purpose of educational visualizations, the instructional value takes precedence over the
display of exceedingly accurate numerical solutions. It is, however, essential to convey the core
concepts with clarity. Therefore, certain approximations can significantly enhance the
performance and interactivity without compromising the fundamental concepts. For example, in
the case of a current-carrying loop wire, approximations can be made to simplify the exact shape
of the field lines while preserving its essential characteristics. They may be approximated as
nested ellipses looping around the wire, as shown in Figure 2. This approach maintains the
intrinsic rotational symmetry of a current-carrying loop’s associated magnetic field while
ensuring that the shape and centers of the field lines remain visually accurate. This simple
approximation avoids the computationally intense process of numerical integration and enhances
real-time interactivity.

For the purpose of visualizing magnetic field lines in an interactive real-time VR environment, we
found Heun’s method to be the best performing out of the three numerical integration techniques
tested. Heun’s method provided a combination of accuracy and low computational cost that made



it best suited for producing visualizations of magnetic field lines with reasonable fidelity.
Typically, VR frameworks must display at least 120 frames per second (FPS) to eliminate motion
sickness [11]. Heun’s method consistently maintained a frame rate above 120 FPS, while RK4
occasionally dropped below this threshold. Although RK4 is associated with a lower truncation
error, it was found to be computationally demanding and less suitable to perform in real-time in a
virtual reality environment.

The methods for visualizing magnetic fields used in this study can be applied and ported to any
other divergence-free vector fields. For example, incompressible fluids exhibit a divergence-free
flow velocity [12], similar to the behavior of magnetic fields. Therefore, visualizing streamlines
through these fluids, the equivalent of field lines for magnetic fields, may be approached in a
similar manner. This makes these numerical methods relevant to a broader range of educational
visualizations, particularly in physics and engineering fields. Beyond electromagnetism, similar
approaches can be applied to fluid dynamics, aerodynamics, and plasma physics, where
understanding vector fields is essential. By leveraging these techniques, educators can create
interactive simulations that enhance students’ conceptual understanding of complex phenomena,
such as airflow over surfaces, heat transfer in fluids, and electric and magnetic field
interactions.
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