
Paper ID #48840

Filling in the Missing Piece: Integrating Storage into CompOrg Courses

Xiangqun Zhang, Syracuse University

Xiangqun is a fifth-year Ph.D. student majoring in Computer & Information Science & Engineering. His
research interests mostly focus on solid-state drives and their applications in modern use cases, but he is
also passionate about teaching and pedagogy methods. He hopes his teaching could inspire more students
to become researchers in the computer science field.

Dr. Ziyang Jiao, Syracuse University

Dr. Jiao receives his Ph.D. in Computer & Information Science & Engineering from Syracuse University.
His research focuses on file and storage systems, solid-state drives (SSDs), flash memory, and sustainable
computing. His work is driven by a research philosophy that seeks to imbue minimal yet meaningful
knowledge into various layers of the I/O stack, thereby enabling a more efficient, synergistic, and adaptive
storage ecosystem.

Dr. Farzana Rahman, Syracuse University

Dr. Rahman, an Associate Professor of Teaching in the EECS department of Syracuse University. Dr.
Rahman has a strong history of being an excellent educator who is loved by undergraduate and graduate
students of EECS. In recognition of her outstanding teaching performance and inclusive mentoring, she
was awarded Syracuse University Laura J. and L. Douglas Meredith Program’s Teaching Recognition
Award in 2024, and College Educator of the Year award by Technology Alliance of Central New York
in 2023. Central to her teaching approach is an active-learning style, which pairs hands-on programming
exercises with challenging projects that demand students to cultivate skill in problem solving, debugging
and software engineering in general. She is dedicated towards creating equitable education and learning
experiences for all students by providing educational opportunities that are inclusive to–and supportive
of– women, genderqueer, non-binary, and underrepresented and minority (URM) students.

As a diversity spokesperson of the department, Dr. Rahman spearheads various DEIA initiatives. One of
her most impactful initiatives is Research Exposure on Socially Relevant Computing (RESORC), funded
by Google Research, to increase both the exposure and visibility of undergraduate research at EECS. With
more than 200 students participating in RESORC over the past 3 years, she has designed and facilitated
multiple virtual workshops to help undergraduate students develop computing identity, research skills,
practice teaching strategies, and explore research topics in computing and engineering domain.

Dr. Rahman’s research and mentoring initiatives has been supported by many funding agencies, including
the National Science Foundation, Google, NCWIT, Google TensorFlow, and American Association of
Colleges and Universities to develop effective pedagogy in undergraduate computer science (CS) education.
She is the winner of the NCWIT Extension Services (NCWIT ES-UP) award, ABI Systers PIO (Pass-It-On)
award, Google ExploreCSR Award, and NCWIT educator award. She published numerous peer-reviewed
articles in venues, including the Special Interest Group of the Association of Computing Machinery
(ACM SIGCSE), IEEE RESPECT, and IEEE Frontiers in Engineering Education, American Society for
Engineering Education (ASEE) conference. She has received funding from different funding agencies
research and mentoring initiatives directed toward developing effective pedagogy in undergraduate computer
education. She holds a Ph.D in computer science and specializes in a broad area of pervasive health
technologies, and computer science education.

Prof. Bryan Kim, Syracuse University

Bryan S. Kim is an Assistant Professor in the Department of Electrical Engineering and Computer Science
at Syracuse University. His research interests center around building performant, reliable, and scalable
memory and storage systems for data-intensive applications using emerging hardware technologies. His
work has appeared in top computer systems venues such as FAST, ATC, OSDI, and EuroSys, and his
research is supported through various projects, including the NSF CAREER award.

©American Society for Engineering Education, 2025



Filling in the Missing Piece:
Integrating Storage into CompOrg Courses

Abstract

The Computer Organization (CompOrg) course is fundamental for students to learn how different
computer components work as a whole. Different institutions may cover different topics, but they
usually share similar scopes, which include C programming, binary representation, assembly,
stack/heap, overflow, virtual memory, memory management, digital logic, and pipelining. On the
other hand, storage devices are vital to computer systems. The storage device topic is designated
a mandatory CompOrg topic in the latest Computer Science Curricula 2023, published in early
2024; still, it is usually overlooked by CompOrg courses, according to our review of existing
course offerings spanning 29 reputable US universities.

To fill in the missing piece in CompOrg, we designed a new programming assignment, SSDLab,
for our CompOrg course. SSDLab provides students with the opportunity to implement Flash
Translation Layer (FTL), a key component of the Solid State Drive (SSD) firmware. Furthermore,
we also provide written assignments, named StorageWrit, for students to learn how storage
latencies are calculated given a set of storage devices and file characteristics, including storage
type, latency, file size, etc. The goal is for students to learn the concept of modern storage
organization and write better code for higher I/O throughput in the era of big data by
understanding and identifying possible I/O bottlenecks in storage devices. We evaluated student
performance by creating exam questions corresponding to the assignments and finding the
correlation between assignments and exam questions. We then ask for student feedback on their
experiences and what they have learned with SSDLab. Our results show that the students learned
the new topic with similar effectiveness as those traditional topics in our course with our
programming and written assignments. Students who finished SSDLab showed 32% higher
grades in the corresponding exam question, and students enjoyed the hands-on experiences
brought by SSDLab despite its relative difficulty. The SSDLab project is available on GitHub at
https://github.com/zhxq/SSDLab.

Introduction

Computer Organization is a milestone for undergraduates: instead of learning how to use
computers as a tool to program in CS1 and CS2, they start to learn how different computer
components work as a whole. CompOrg courses are, therefore, designed to cover as many aspects
of computer systems as possible. Common topics in CompOrg courses include binary

https://github.com/zhxq/SSDLab


23
26

16

7

13
15

0

5

10

15

20

25

30

Rep
res

en
tat

ion

Asse
mbly

Virt
ual 

Mem
ory

Storag
e

Mem
ory M

gmt.
I/O

C
ou
nt

Topic

Figure 1: Topic distribution of the reviewed course offerings based on the recommended CompOrg
course packaging suggestions in CSC2023. Only technical topics that also exist in CSC2013 are
included. The memory hierarchy topic is split into VM and storage here.

representation, logic, assembly, CPU internals, memory hierarchy, virtual memory (VM1), and
OS/hardware interface[1], [2].

Modern computers store programs and other data in secondary storage. When starting a program,
it has to be loaded to the main memory from the secondary storage[3], and most applications will
interact with storage devices with data reads/writes. The storage will become a bottleneck if it is
slow, either inherently slow due to physical reasons (e.g., max disk head/platter movement speed)
or due to application workload characteristics[3]. Therefore, it is essential to understand how
storage devices work and make better use of them to improve application and system
performance.

However, storage devices, as the lowest level yet the most fundamental part of the memory
hierarchy[4], are often ignored in CompOrg courses in reality, at least in the USA. We reviewed
CompOrg course offerings from 29 reputable universities in the USA by extending the scope from
the work of Almansoori, et al.[5]. We chose these offerings because their course websites/syllabi
are available online. The course topics are listed in Table 1, with the topic distribution shown in
Figure 1. We find 7 offerings that briefly mentioned storage devices, ranging from a few sentences
to a few slides. On the other hand, 15 offerings mentioned I/O of any kind, 6 of which mentioned
storage-related I/O (i.e., file I/O, but not mentioning storage). No course offerings provided any
detailed discussion or assignments on storage devices to the best of our knowledge.

The previous ACM/IEEE Computer Science Curricula (CSC) published in 2013[1] listed storage
and VM with the same level of expected outcome in the same section, but storage was not
introduced at all for most course offerings, whereas VM enjoyed more attention, often as a main
topic, with lectures devoted to the topic. Looking forward, storage is listed as a CS Core topic for
CompOrg in the ACM/IEEE/AAAI CSC 2023 (released early 2024)[2]. This means future
computer science students must know storage. However, CompOrg is the only course where
storage is considered a CS Core topic; storage is also listed in the Operating Systems section, but

1VM indicates virtual memory (not virtual machine) in this paper.



Table 1: A review on CompOrg courses. In the Stor? column, × indicates no storage-related
topic is provided. — indicates the course mentions file I/O but is not directly related to secondary
storage devices. ✓ indicates there are discussions about secondary storage devices.

Institution Course No. Course Name Term Textbook Stor? Some Topics Covered besides Storage

Boston U CS 472 CompArch FA 23 [6] ×
binary, ASM, pipelining, parallelism, VM,
digital logic

CalTech CS 24 Intro to CompSys FA 22 [3], [4] ×
binary, ASM, process, malloc, VM,
threads

Columbia CSEE 3827 Fund. of CompSys SU 23 [7]–[9] × logic, FSM, ASM, pipelining, cache

Cornell CS 3410 CompSys Org. & Prog. SP 19 [10] ✓
logic gates, FSM, exception, concurrency,
pipelining, VM, I/O

CMU 15-213 Intro to CompSys SU 23 [11] — binary, ASM, malloc, VM, linking, excep-
tion, I/O, network, concurrency

FIU CDA 3102 CompArch FA 19 [7] ✓ binary, digital logic, ASM, pipelining, I/O

GA Tech CS 2200 Systems & Networks SP 16 [12] — ASM, control unit, pipelining, VM, paral-
lelism, I/O, filesystems, network

Harvard CS 61 SysProg & Machine Org. FA 22 [11] ✓
binary, ASM, VM, mem hierarchy, con-
currency

MIT 6.033 CompSys Eng. SP 22 [13] ✓
VM, network, reliability, distributed sys-
tems, DB, security, virtual machine

NYU CSCI-UA 0201 CompSys Org. SP 23 [11] ×
binary, C, ASM, linker, processor, VM,
malloc, concurrency

Ohio State CSE 2421 System I FA 23 [11] × C, I/O

Penn State CMPSC 312 CompOrg & Arch. SP 22 [14] ✓
binary, digital circuit, ASM, I/O, architec-
tures, VM

Purdue CS 252 Systems Programming SP 24 [15] — C/C++, linker, bash, I/O, concurrency,
SQL, socket, src ctrl

SD State COMPE 271 CompOrg FA 22 [16] × binary, ASM, C, pipelining, parallelism

Stanford CS 107 CompOrg & Sys. WI 23 [11] ×
binary, C, ASM, malloc, stack/heap, opti-
mization

U of Rochester CSC 252 CompOrg FA 22 [11] — binary, ASM, pipelining, I/O, VM, con-
currency, parallelism, syscall

UCB CS 61C Great Ideas in CompArch SU 23 [10] ×
binary, C, ASM, FSM, logic, VM, concur-
rency, compiler

UCI ICS 10 How Computers Work SP 18 [17] ✓ binary, network, concurrency, ASM, HCI

UCLA CS 33 Intro to CompOrg FA 22 [11] ×
binary, ASM, compiler, exception, VM,
concurrency, linking

UCSB CS 64 CompOrg & Dig. Logic WI 20 [7] × binary, ASM, digital logic, FSM, logic
UCSD CSE 30 Intro to CompSys WI 23 [4] × binary, C, ASM, C/ASM security

UMD CMSC 216 Intro to CompSys SU 23 [11] — C, malloc, binary, ASM, concurrency, I/O,
signals

UMich EECS 370 Intro To CompOrg WI 23 [18] ×
C, binary, ASM, linking, FSM, digital
logic, pipelining, VM

UPenn CIS 2400 Intro to CompSys FA 22 [4], [19] — binary, logic, ASM, processor, I/O, C,
malloc

UT Austin CS 429 CompOrg & Arch. FA 23 [11], [18] ✓
C, binary, ASM, digital logic, malloc,
pipelining, linking, I/O, DMA

UW Madison CS 354 Intro to CompSys SP 19 [11] × C, ASM, malloc, VM, concurrency
UWash CSE 351 The HW/SW Interface SU 23 [11] × binary, C, ASM, VM, malloc, process

Vassar CMPU 224 CompOrg FA 22 [11] ×
binary, ASM, logic, pipelining, malloc,
cache

WUSTL CSE 361S Intro to Sys. Software FA 23 [11] ×
binary, ASM, malloc, linking, VM, excep-
tion, signal



as a KA Core (recommended) topic. Furthermore, A recent news report shows that more high
school students, including those who are taking CS courses, do not even understand the notion of
file and folder; they have no idea of storage devices, while the older generation of people with
exposure to hard disk and floppy find these concepts intuitive[20]. Students only know that their
data are stored somewhere, but they do not know where and how their data are stored. This
further shows the necessity of integrating the storage topic into CompOrg courses, which, again, is
the only course students are guaranteed to learn about storage as defined by the latest CSC.

To bring students’ attention to storage, we decided to add storage topics to our CompOrg course.
We add six hours of lectures on storage-related topics, including hard disk drives (HDD) and solid
state drives (SSD). The first half focuses on the physical architecture of those storage devices,
while the second half focuses on the SSD firmware components. To evaluate students’
understanding of the new material, We designed a new programming assignment on a
pedagogical SSD simulator we developed. The assignment enables students to learn how SSDs
work by implementing the main component, flash translation layer (FTL), of the SSD firmware,
which allows them to understand how SSDs handle host I/O requests internally. We also design a
new written assignment, StorageWrit, for students to learn the latency calculation of storage
devices. Together, these assignments cover the most important aspects of storage devices.

To summarize, our main contributions are:

• SSDLab, a programming assignment for students to implement a flash translation layer,
which is a vital part of SSD firmware, on a pedagogical SSD simulator.

• StorageWrit, a written assignment for students to learn how HDD and SSD latencies are
calculated.

• A detailed analysis of students’ performance based on their assignment grades and exam
outcomes.

Background and Related Work

Storage in CompEd: Though storage device exists in virtually every single computational device,
the storage topic remains silent in the CompEd field. This is as true in 2025 as it was described by
Desnoyers in 2011[21]. Our survey shows no papers focused on storage devices in CompOrg
courses in ASEE, SIGCSE, and ICER conferences in the past 10 years. Our search with Google
Scholar does not show any research on the effectiveness of using SSD simulators to teach SSD
internals within the scope of CompOrg courses. Meanwhile, there are prior works covering most
other CompOrg topics, including virtual memory[22], [23], security[5], [24], [25], memory
management[26], [27], instruction set architecture[28], GPU[29], and textbook design[30]. This
further shows storage is indeed a missing piece from CompOrg courses and CompEd in
general.

Modern Storage Devices: HDD and SSD: HDD and SSD dominate the modern storage field.
HDD is mechanical and stores information on magnetic disk platters. A disk head moves around
to cooperate with rotating disk platters for data access. When overwriting data, the head can
simply overwrite in place at the original physical location as long as it is not damaged (e.g.,
scratched)[31]. Each I/O request requires a time-consuming disk head seek. This means random



requests are significantly slower than sequential requests for HDDs[3]. Due to the movement of
mechanical parts, HDD is considerably slower than SSD, which uses NAND flash chips to store
data without any mechanical parts[3]. However, NAND flash chips do not support in-place
updates like HDD platters. Therefore, SSDs require the flash translation layer, or FTL, in
firmware to create an illusion for supporting in-place updates from the host perspective during
data overwrites[32].

The responsibility of the FTL is two-fold: The first responsibility is to handle I/O requests by
translating logical addresses from the OS to physical addresses on flash chips. The smallest unit
for data writes is a page, whereas the smallest erase unit is an erase block, commonly containing
hundreds of pages[33]. When handling a WRITE request to a logical page, the FTL has to assign
the next free physical page in the current erase block[3]. The logical-to-physical (L2P) mapping
table keeps the mapping. Overwrites and file deletions will invalidate the old mapping and the old
physical page due to the out-of-place write behavior[34]. When an erase block is full, the FTL
chooses a free erase block for future writes[35].

The second responsibility of the FTL is garbage collection (GC). Since the smallest erase unit is
an erase block, when the number of free erase blocks falls under a certain threshold, the FTL has
to choose a victim erase block to vacate, which has at least one invalid physical page. The L2P
mapping will be updated when valid pages in the victim are relocated, and a physical-to-logical
(P2L) mapping table is required to determine the logical page number of the to-be-relocated
physical page from the perspective of the SSD controller[34]. The FTL then erases the victim,
which is a lengthy process compared to normal read/writes, and finally marks the victim as free
for future use[33]. Together, these two responsibilities create the illusion for the host that SSDs
support in-place updates.

In summary, SSDs are faster than HDDs for both sequential and random writes due to the removal
of mechanical parts[4]. However, SSDs require a more complex firmware than HDDs due to the
hardware peculiarities, and the GC process could temporarily affect SSD performance. As for
HDDs, they serve sequential requests faster than random ones because the head does not need to
seek locations for each request[3]. We believe that it is important for students to learn these to
write faster applications, and it is even more crucial if they are writing data-intensive or system
applications.

Existing SSD Simulators/Emulators:

Since SSD is a computer device with specialized hardware, several SSD simulators and emulators
exist to expedite academic research and prototype developments by overcoming the difficulty of
implementing SSD firmware on real hardware. Table 2 shows a list of existing SSD
simulators/emulators, where most are commonly used by the storage field. These tools, designed
to mimic real SSDs as closely as possible, are often huge. They aim to provide realistic latency
models for research and are well-acclaimed tools in the storage field. Many have been used for
numerous SSD-related works throughout the years[33], [35], [45]–[48].

However, we believe these tools are not suitable for pedagogical purposes in our course because
they are too complex for students. These tools are for experienced researchers in the storage field
who are more familiar with systems development. Our students, on the other hand, first learned C
in this course. They also know nothing about systems programming at this moment. Full-system



Table 2: A survey on existing SSD simulators and emulators. S denotes simulator, and E denotes
emulator in the S/E column. Lang column shows the main development language.

Name S/E Lang Side Notes
DiskSim[36] S C Extended for SSD from the original work[37], which has an 87-page manual.
FlashSim[38] S C Also extended from DiskSim.
SSDSim[39] S C About 15,000 lines of code (LoC).
FTLSim[40] S C, Py 2 About 1,000 LoC (~700 lines of C and ~300 lines of Python 2).
MQSim[41] S C++ About 13,000 LoC.
Amber[42] S C++ Built on full-system emulator gem5.
OSTEP[3] S Py 3 Pedagogical simulator in Python 3 from the OSTEP textbook. About 500 LoC.
VSSIM[43] E C Built on full-system emulator QEMU.
FEMU[34] E C Built on full-system emulator QEMU.
NVMeVirt[44] E C Kernel module, adopted from FEMU.

emulators are too difficult for students at this stage. Similarly, other large simulators with a
codebase of tens of thousands of lines or a nearly 100-page manual are too large for students to
handle. Two existing simulators are relatively feasible compared to others: The first is FTLSim,
but it was released in 2012 and written in C and Python 2, the latter of which is now obsolete[49].
The other possible choice is the SSD simulator from the OSTEP textbook commonly used in
operating system courses, but it is unsuitable for our course due to several reasons. The largest
concern is that it does not come with a grading system, limiting its application in a pedagogical
environment. On the other hand, the OSTEP SSD simulator does not take real or handcrafted
traces; it only accepts synthetic workloads generated by the simulator itself. This limits the ability
of students to craft their own traces to debug their code. Furthermore, it is written in Python 3, but
our course focuses on C as the programming language. This means all existing SSD simulators
and emulators are unsuitable for our needs.

Therefore, we have to create a new pedagogical SSD simulator for this course. The simulator
should be in user space and have an appropriate difficulty so the students can learn SSD internals
without putting too much effort into debugging[23]. Instead of focusing on data structures and
other implementation details, the simulator should abstract SSD features into intuitive helper
functions, and the students should be able to assemble their FTL using these functions. The
students should not need to read the whole code base to learn how to use the simulator; they
should be able to easily do so by reading the short list of helper functions and their descriptions,
and they should be able to write their C code as simple as pseudocode. The simulator should also
be able to perform autograding for the ease of the instructors. We keep these requirements in
mind when developing our simulator and assignment.

Design

SSDLab: SSDLab is the programming assignment for the storage topic in our course. It is based
on the pedagogical SSD simulator we developed since existing SSD simulators/emulators are for
academic and industrial use instead of pedagogical as discussed in § . We provide predefined data
structures, including the logical-to-physical (L2P) table, the physical-to-logical (P2L) table, and
table entries, to the students. These two tables will be initialized with empty entries automatically



Table 3: SSDLab function signatures. Table contents are from the assignment handout.

Helper Functions (Signature) Description

bool isFrontierBlockFull()
Checks if the current frontier block is full. Returns true
if it is full and false otherwise.

int getAvailPPN()

Gets the next available physical page number (PPN) from
the current open block. Returns a page number. Returns
-1 if there is no free page available.

bool isValidLPNMapping(int lpn)

Returns true if this logical page number (LPN) is in use
(having a valid mapping to a physical page number in the
mapping table). Returns false otherwise.

int getL2PMapping(int lpn) Returns the PPN given the LPN.

void setL2PMapping(int lpn, int ppn)

Sets the logical to physical page number mapping if PPN
≥ 0. Invalidates the mapping table entry for this LPN if
PPN is -1.

bool isValidPPNMapping(int ppn)

Returns true if this PPN is in use (having a valid map-
ping to a logical page number in the reverse mapping ta-
ble). Returns false otherwise.

int getP2LMapping(int ppn) Returns the LPN given the PPN.

void setP2LMapping(int lpn, int ppn)

Sets the physical to logical page number mapping in the
reverse mapping table, then marks the NAND page as
valid if LPN ≥ 0. Invalidates the reverse mapping table en-
try for this LPN, and sets the NAND page given the PPN
if LPN is -1.

void useNextFreeBlock()

Sets the frontier block to the next available free block. Re-
turns false if there are no available free blocks; returns
true if the operation is successful.

void markBlockFree(int block)

Erases the block; marks the given NAND block as free
and all NAND pages inside the block as free for future use
when a new block is needed.

int ppnFromBlockPageNum(int block, int page)
Returns the physical page number by giving the block
number and the page number inside the block.

int getBlockStatus(int block)

Check the block status. Returns the block status using an
enum value described below.

• BLOCK_FREE: indicates the block is free.
• BLOCK_FULL: indicates the block is full, and

data in the block cannot be updated.
• BLOCK_FRONTIER: indicates the block is cur-

rently the frontier block.

bool shouldGC()

Returns true if the number of remaining free blocks falls
below a certain percentage. You should call your GC func-
tion when the return value is true.

int countBlockInvalidPages(int block)
Returns the number of invalid NAND pages in the given
NAND block.

Functions to Implement (Signature) Description

int findVictim()

Finds a victim block and returns the victim block number.
If there are no eligible victim blocks (e.g., there are no full
blocks, or all pages in all full blocks are valid), return -1.

void gc(int victimBlock) Do GC on a given victim block.

void handleWriteRequests(int addr, int size)
handles the mapping table lookup by utilizing functions
above based on the memory request given as arguments.



without student intervention. We also provide helper functions (Table 3) so students can
implement the following three functions in a total of 50 to 60 lines of code.

Function handleWriteRequests(): SSDLab only accepts write requests since read
requests do not change any mapping information. When calling handleWriteRequests()
to handle a host write request to a logical page, the SSD FTL should assign a physical page using
getAvailPPN() if the frontier (i.e., currently being used) erase block is not full, which can be
checked by isFrontierBlockFull(); a new, free frontier block should be used by
useNextFreeBlock() if the current one is full. The FTL then sets the new L2P and P2L
mappings by using L2P/P2L setter functions with the new physical page number and invalidates
the P2L mapping of the old physical page if the request overwrites an existing page; this is
achievable by checking isValidLPNMapping() and getL2PMapping().

Subsequent functions gc() and findVictim(): Garbage collection, gc(), should be
triggered if the number of free erase block falls under a certain watermark[3], which can be
checked by the shouldGC() function. gc() chooses an erase block using a victim selection
algorithm, commonly greedy[40], defined by findVictim(). The greedy algorithm chooses
the full erase blocks with the largest number of invalidated pages by checking
countBlockInvalidPages(). All valid physical pages in the victim should be copied to
the current write frontier, which is similar to the algorithm of handling normal host writes, but
requires checking the P2L table for the logical page numbers of the physical pages using
getP2LMapping(). The victim erase block will be erased using markBlockFree().

Debugging & Grading: To help students debug, we provide compiled object files of sample
findVictim() and gc() answers. Students can check their implementation correctness using
the autograder after implementing handleWriteRequests() but before implementing their
own version of those two functions using these object files. The autograder can automatically
compile and grade with pre-compiled and/or student-written findVictim()/gc(), so students
can debug accordingly by knowing which of the three functions caused the error. A compiled
executable with the sample answer of all three functions is also provided, which the autograder
uses as a reference to grade a student’s implementation as a whole. We adopt real storage device
traces as workloads for grading purposes from the work of Lee, et al. published at SYSTOR[50]
and process them for the 1GiB SSDLab logical address space. We also provide a short trace with
around 100 write requests for students to get started. Students are also encouraged to craft their
own small traces to build their code ground-up and to debug their code in a controllable
manner.

80% of the grade is awarded for overall correctness: We check if all translations from P2L→L2P
and L2P→P2L match within a student’s implementation since different victim selection
algorithms and GC trigger policies may lead to different yet valid mapping table results. A
mismatch indicates data corruption. We also check if the number of student mapping table entries
matches with the sample executable to prevent manipulation and cheating. The rest 20% of the
grade is for code efficiency. A good victim selection algorithm and GC trigger policy can lead to



lesser write amplification, which is measured by write amplification factor (WAF)2:

WAF =
Host Write Pages + GC Write Pages

Host Write Pages

We use WAF as the efficiency metric and consider the student’s implementation with the best
WAF as 100% credit for this part. The grades for other students are linearly proportional to the
best WAF. We also created an automatic grading system to collect and grade all student
implementations based on the above grading rules.

StorageWrit: StorageWrit is a written assignment for students to calculate HDD and SSD latency
under different workloads. Although HDD and SSD are both storage devices, they have very
different underlying physical designs. HDD suffers from random workloads due to the
repositioning of the disk head for each random I/O request but performs better under sequential
workloads since the head only needs to be repositioned once per request. SSD, on the other hand,
has better performance for both workloads, but it is still slower with random workloads due to
extra metadata overheads[3]. The StorageWrit is aligned to these properties of common storage
devices: Students are required to calculate the HDD/SSD device latency under different
workloads given a device performance model.

The details of the assignment is as follows: For HDD, we ask for the time needed to fetch a 4MiB
file, given the HDD rotational rate, average seek time, and average capacity per track. The
question contains two different cases: the file being fully sequential (i.e., no need to seek every
time) and fully scattered on the disk (i.e., need to seek every time after reading a sector). For
SSD, we ask for the time needed to fetch a 4MiB file, given the SSD characteristics like the
bandwidth per chip, the number of chips working in parallel, flash memory page size, and flash
memory page latency. The question is also split into two cases where the file is sequentially or
randomly placed on SSD.

Implementation

Assignment Handout: For SSDLab, we provide a detailed handout covering the goal of the
programming assignment and all the information students may need. Students should be able to
complete their programming assignments without attending lab sessions by reading the handout.
We also strive to encourage students to read the handout by providing background stories. For
example, the SSDLab background is set at a fictional semiconductor company in the 2000s,
which is historically correct[51]. StorageWrit, on the other hand, is distributed as a part of a usual
biweekly written assignment.

Lecture, Lab Session, and Office Hours: There are three sessions per week for our CompOrg
course: two 1.5-hour lectures, in which we focus on the new knowledge points led by the
Professor, and a 1-hour lab session in which students work on their programming assignments led
by the TA. Besides lectures and lab sessions, we also provide at least one hour of office hours
every workday, which translates to at least five hours of office hours per week. We chose to
devote two weeks to storage-related materials because we found most other course offerings

2The only write amplification source in SSDLab is GC, so we only model GC-induced write amplification in
SSDLab. Real SSDs may have other sources of write amplification like wear leveling[3], [46].



shown in Table 1 provide none or only a few lines of information for storage. The first week is for
HDD/SSD physical internals, which is related to the latency calculation. The second week is for
SSD and FTL details. Our planned student workload per programming assignment is 50 to 60
lines of code in a duration of two weeks. Thus, we also provide two weeks of lab sessions to
discuss the programming assignment.

In the labs, we review the overall structure of the topics (i.e., how FTL handles requests) and
make sure students understand how to implement the assignments from a high level by asking and
answering questions about the key steps to implement the programming assignments. These
questions and answers are also tied to the function signatures we provide in Table 3: we do not
tell exactly which function to use when answering each question, but we describe the steps in
human language as close to the function signatures as possible. We also introduce the autograders
during lab sessions so the students can debug better with the autograder.

During office hours, students usually ask for answers to specific questions, including why their
implementations cannot compile, why their implementation is partially incorrect, how to run the
autograder, and how to improve the WAF for a better grade. We provide more tailored
instructions during office hours than during lectures and lab sessions. The usual approach is to
guide them to read the manual (i.e., the handout) so they will understand the expectations and
autograder usage better. For questions related to the code, we first discuss the expected behavior
as we do in the lab sessions and let the students discover the problem. If the student is stuck, we
will provide more explicit hints (e.g., which exact step they should be working on, what does the
step do, etc.) so the student can continue their work. We also teach them to use the autograder
wisely so that they can focus on one function at a time by using the pre-compiled version of
findVictim() and gc() when implementing their handleWriteRequests().

To make way for the storage topic, we removed the CPU pipelining topic from our course. The
CPU pipelining topic is covered by the Computer Architecture course in our department’s
curriculum. On the other hand, the Operating Systems course in our department’s curriculum
does not include the topic of storage. Again, CSC2023 suggests covering the topic of storage in
either the CompOrg course or the OS course[2]. By implementing storage in our course, we now
cover the missing storage topic in the department’s curriculum. Lastly, we want to emphasize
again that storage is considered mandatory in CompOrg while considered optional in OS as
suggested by CSC2023; thus, it is more favorable to implement the storage topic in our course
than in the OS course.

Evaluation

In this section, we evaluate our effort of integrating storage into our CompOrg course at Syracuse
University, NY, USA, during the Fall 2023 semester. A total of N = 37 students are enrolled in
this course at the end of the semester. We will analyze our efforts from different perspectives,
including student performance and feedback.

Assignment Analysis: When designing the SSDLab, we expect students to finish it by writing
50-60 lines of code (LoC) in two weeks, and we prove the feasibility by writing a sample
implementation with LoC within that range. Figure 2a shows the students’ LoC distribution for



SSDLab StorageWrit FTL Exam Latency Exam

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0
CD

F

(a) Lines of Code (LoC)
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Assignment/Exam Grade

Figure 2: CDF of LoC and grades. Note: exam grade CDFs contain grades of empty responses,
whereas assignment grade CDFs only contain the grades of those who submitted.

the 18 students who finish SSDLab3,4. All students are able to finish SSDLab between 40-72
LoC, i.e., ± 12 LoC around our expectation.

Figure 2b shows the assignment grades (solid lines) for SSDLab (blue) and StorageWrit (pink).
SSDLab has a strict grading rule: Any incorrect mapping table entry results in a 50% penalty.
About 70% of the students implement the mapping tables correctly. For those who get more than
80% of the score, the distribution can be categorized into two clusters in the CDF graph. The first
cluster receives around 85% of the total score, whereas the second is around 95%. This is caused
by different GC trigger conditions, which results in different WAFs. Those who receive around
85% trigger GC whenever the number of available erase blocks falls under a specific range, even
if the victim has only a few invalid pages; all valid pages in the victim have to be relocated to
another erase block, causing high write amplification. Modern SSDs have enough
over-provisioned space up to 28%[52], which means SSDs have more physical space than logical
capacity, and GC can be delayed if the victim only has a few invalid pages. A widely-used SSD
emulator, FEMU[34], skips GC when less than 1/8 of the total pages in the victim are invalid[53].
Those who receive around 95% employ similar lazy GC techniques.

The grades for StorageWrit are more uniformly distributed compared to SSDLab. The overall
grade for StorageWrit is lower than SSDLab because we only provided examples to calculate
HDD and SSD latencies in StorageWrit instead of explicitly discussing the topic step-by-step in
our lecture; the final grade CDF shows that we should discuss latency calculation in detail in
future course offerings. The students are also not able to confirm their answer correctness
automatically for StorageWrit, whereas the programming assignment autograder allows them to
check their implementation correctness easily. We discussed the solution in detail during the
lecture after the grades of StorageWrit were released as remediation.

3This does not include a student’s implementation since it has only one line of code.
4The submission rate for SSDLab is about 50% because we announced before SSDLab, the last programming

assignment (PA), that the lowest PA grade would be dropped.



Exam Results: The final exam contains two questions, one corresponding to SSDLab (mimic FTL
to handle WRITE and GC) and one to StorageWrit (calculate latency). Figure 2b shows the exam
question score CDFs in dashdotted lines. Interestingly, although students perform well overall on
SSDLab, their exam performance is lower than expected. Only 40% of students receive points for
the FTL question in the final exam. Although the course rule of skipping the lowest programming
assignment score causes a low submission rate of the SSDLab, it inadvertently creates a perfect
control group to compare the exam performance between those who submit (18 students, 48.6%)
and skip (19 students, 51.4%) SSDLab. The average FTL question grade for all students is 29%
lower than the overall final exam grade average. However, we see higher FTL question grades for
those who finished SSDLab. The average FTL question score of the 18 students who submitted
SSDLab is 19% lower than the overall final exam average, while the 19 students who skipped
show 39% lower. We also observe a Pearson Correlation Coefficient (PCC) of 0.55 between the
FTL question and SSDLab, further proving the help of SSDLab on understanding SSD internals.
We further find a significant correlation between SSDLab and FTL question grades for those who
submitted SSDLab using ordinary least squares (OLS) regression, yielding a coefficient of 0.720,
t-value of 2.631, and p-value of 0.018 (≤ 0.05), showing the effectiveness of SSDLab.

There are also gaps between assignments and the exam. The exam question asks the students to
manually place the data during incoming write requests and perform GC under given conditions.
In SSDLab, students implement the FTL without trying to place/relocate data manually. They
may understand the high-level structure by utilizing the helper functions, but they may fail to
follow every detailed step in the exam question. To reduce the gap between exam questions and
homework, the instructor should provide more written practice like StorageWrit, which shows a
better CDF in the final exam question despite students performing worse than the SSDLab, as
StorageWrit provides practice on paper, similar to its corresponding exam question.

Last but not least, in this semester’s final exam, we introduce an optional make-up midterm for
students to have a second chance for a better midterm grade. However, we find that the make-up
midterm negatively impacts the performance of the FTL question with a PCC of -0.36 between
the make-up midterm and the FTL question grade, showing that students may have to choose
between the FTL question and the make-up midterm due to time constraints. The FTL question
score of the students who skip SSDLab shows an even stronger negative correlation with the
make-up midterm, resulting in a PCC of -0.56, showing that they are more likely to bet on the
make-up midterm for a higher overall course grade. We also perform an OLS regression using the
grade of the FTL question as y, the grade of SSDLab as x1, and the grade of the make-up midterm
as x2. We see a coefficient of -0.5151 for the make-up midterm grade with a t of -2.430 and p of
0.021 (≤ 0.05), showing a significant negative correlation between the grade of the FTL question
and the make-up midterm, which further proves the side effects caused by the make-up
midterm.

Student Feedback: We distribute surveys for student feedback on the programming assignments
after the IRB request is approved and the assignment grades are out. Student feedback is mostly
positive on SSDLab. They find hands-on assignments interesting and enjoy the implementation
process, although SSDLab is considered the most difficult programming assignment in the course.
A student mentioned, “[SSDLab is the m]ost challenging project all year, but never felt
unobtainable.” Background stories in the assignment handouts lighten students’ moods and



motivate them to finish reading the handout in detail. Students thank the autograder and object
files for their help in debugging. The comments in the project template help students learn and
think about the steps required in the assignment. The code of the helper functions, along with
their comments, also shows their value in helping students to succeed. One student wrote, “For
SSDLab, I can also say that students should absolutely read the code comments and the
assignment description before/while writing the functions. They basically tell you directly what
the functions need to do and the steps involved to make them do that.” After the assignment,
students feel the assignment helped them to understand the topic; as one student wrote, “Go to
office hours for it, the solution isn’t that complicated, but getting to the solution requires a solid
understanding.”

The students also provide potential future improvements. The most valuable suggestion is to talk
about the lazy garbage collection technique for SSDLab explicitly; we send an email to students
regarding lazy GC and discuss this during the lab session, but we never explicitly discuss it during
the lecture. Students also ask for more resources and tips on debugging, which is reasonable
because the students only have two programming assignments in C before SSDLab. C is famous
for its steep learning curve, and we should provide more help with programming and
debugging.

Potential Improvements

From the comparison between the assignment grades and final question grades, we believe the
integration of storage into our CompOrg course is mostly successful, but we should improve the
integration with more possibilities for SSDLab and better course organization to further reflect
student achievements in the exam as well as the assignments.

Modern SSDs are far more complex than the model we provide in class. A real SSD has multiple
flash chips that work in parallel for faster throughput[33], but our simulator and assignment only
consider the simplest SSD without any internal parallelism because we think this is too complex
for students to understand and implement within a short time period. Data consistency and
integrity should also be covered since they are the requirements of a storage device, but
unfortunately, we did not have the time to cover them in our course; we will consider discussing
them at a high level (e.g., the definition and the necessity) in the future. We should also integrate
SSDLab with other related topics in the course (e.g. error correction code) to create connections
between different topics. Meanwhile, more types of SSDs are now available on the market. For
example, traditional SSD purely depends on the decision of the FTL when selecting a physical
page to write to, but some recent SSD types allow host-SSD coordination on data placement to
reduce write amplification[32], [52]. Due to the student workload we have expected (50-60 LoC
in two weeks), we did not include the scopes above because it will be too much burden for the
students. However, we hope to provide these features in the future so the instructors may have a
more diverse range of possible assignments for the students and the students have more flexibility
and design choices during implementation.

The implementation of course rules may have repercussions. We identify that announcing the
lowest grade would be dropped before the last programming assignment, SSDLab, is very likely
the cause of its low submission rate. The make-up midterm during the final exam further



amplifies the negative effect and causes the low overall average score on the FTL question, as
students prefer abandoning the question for the make-up exam. We will be more cautious in the
future when carrying course rules with new topics.

Conclusion

In this paper, we show the gap between the high importance of the storage topic and its low
adoption rate in CompOrg courses. To help solve this problem, we integrate storage topics in our
CompOrg course with lectures, SSDLab, and StorageWrit. However, we still see room for future
improvements, which we will address in later course offerings. Our pilot experience shows that
integrating storage into CompOrg courses requires non-trivial efforts and cautious designs.
Although the SSDLab programming assignment is harder than all other programming
assignments in the course, as students reported, students mentioned they have learned a great
amount from the SSDLab. Students who finished SSDLab also showed a 32% higher score in the
corresponding final exam question. We hope this paper sets a foundation and encourages future
research on integrating storage in CompOrg courses.

Acknowledgement

This research was supported in part by the National Science Foundation (CNS-2008453) and has
been approved for IRB exemption by Syracuse University (IRB #23-394).

References

[1] The Joint Task Force on Computing Curricula ACM & IEEE Computer Society, Computer
science curricula 2013, https://ieeecs-
media.computer.org/assets/pdf/CS2013-final-report.pdf, (Accessed
on 02/08/2024), Dec. 2013.

[2] A. N. Kumar et al., Computer Science Curricula 2023. New York, NY: ACM, 2024.
[3] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems: Three Easy Pieces,

1.00. Arpaci-Dusseau Books, Aug. 2018.
[4] S. J. Matthews, T. Newhall, and K. C. Webb, Dive into systems,

https://diveintosystems.org/, (Accessed on 01/31/2024), 2019.
[5] M. Almansoori, J. Lam, E. Fang, K. Mulligan, A. G. Soosai Raj, and R. Chatterjee, “How

secure are our computer systems courses?” In 2020 ACM Conference on International
Computing Education Research, ser. ICER ’20, New York, NY: ACM, 2020, pp. 271–281.
[Online]. Available: https://doi.org/10.1145/3372782.3406266.

[6] D. A. Patterson and J. L. Hennessy, Computer Organization and Design MIPS Edition
(The Morgan Kaufmann Series in Computer Architecture and Design), 6th ed. Oxford,
England: Morgan Kaufmann, Dec. 2020.

https://ieeecs-media.computer.org/assets/pdf/CS2013-final-report.pdf
https://ieeecs-media.computer.org/assets/pdf/CS2013-final-report.pdf
https://diveintosystems.org/
https://doi.org/10.1145/3372782.3406266


[7] D. A. Patterson and J. L. Hennessy, Computer Organization and Design MIPS Edition
(The Morgan Kaufmann Series in Computer Architecture and Design), en, 5th ed. Oxford,
England: Morgan Kaufmann, Sep. 2013.

[8] M. Morris Mano, C. R. Kime, and T. Martin, Logic & Computer Design Fundamentals,
5th ed. Upper Saddle River, NJ: Pearson, Mar. 2015.

[9] D. Harris and S. Harris, Digital Design and Computer Architecture. Elsevier, 2013.
[10] D. A. Patterson and J. L. Hennessy, Computer Organization and Design RISC-V Edition:

The hardware software interface, en. Oxford, England: Morgan Kaufmann, May 2017.
[11] R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s Perspective.

Pearson, 2016.
[12] U. Ramachandran and W. D. Leahy, Computer Systems: An Integrated Approach to

Architecture and Operating Systems. Upper Saddle River, NJ: Pearson, Jul. 2010.
[13] J. H. Saltzer and F. Kaashoek, Principles of Computer System Design: An Introduction.

Morgan Kaufmann, 2009.
[14] L. Null, Essentials of Computer Organization and Architecture, en, 5th ed. Sudbury, MA:

Jones and Bartlett, Feb. 2018.
[15] G. A. J. Rodriguez-Rivera and J. Ennen, Class notes,

https://www.cs.purdue.edu/homes/grr/SystemsProgrammingBook/,
(Accessed on 01/31/2024), Oct. 2014.

[16] F. Vahid and R. Lysecky, Introduction to computer systems and assembly programming -
zybooks, https://www.zybooks.com/catalog/computer-systems-and-
assembly-programming/, (Accessed on 01/31/2024).

[17] H. Abelson, K. Ledeen, H. Lewis, and W. Seltzer, Blown to Bits, en, 2nd ed. Boston, MA:
Addison Wesley, Nov. 2019.

[18] D. A. Patterson and J. L. Hennessy, Computer Organization and Design ARM Edition (The
Morgan Kaufmann Series in Computer Architecture and Design). Oxford, England:
Morgan Kaufmann, Mar. 2016.

[19] Y. Patt and S. Patel, Introduction to Computing Systems: From Bits & Gates to C/C++ &
Beyond, 3rd ed. Columbus, OH: McGraw-Hill Education, Oct. 2019.

[20] M. Chin, Kids who grew up with search engines could change STEM education forever -
The Verge, https://www.theverge.com/22684730/students-file-
folder-directory-structure-education-gen-z, (Accessed on
01/31/2024), Sep. 2021.

[21] P. J. Desnoyers, “Teaching operating systems as how computers work,” in 42nd Technical
Symposium on Computer Science Education, ser. SIGCSE ’11, New York, NY: ACM,
2011, pp. 281–286. [Online]. Available:
https://doi.org/10.1145/1953163.1953249.

[22] A. Qasem, “Yoda: A pedagogical tool for teaching systems concepts,” in 53rd Technical
Symposium on Computer Science Education - Volume 1, ser. SIGCSE 2022, New York,
NY: ACM, 2022, pp. 613–618. [Online]. Available:
https://doi.org/10.1145/3478431.3499322.

[23] S. Silvestro, T. T. Yuen, C. Crosser, D. Zhu, T. Korkmaz, and T. Liu, “A user space-based
project for practicing core memory management concepts,” in 49th Technical Symposium
on Computer Science Education, ser. SIGCSE ’18, New York, NY: ACM, 2018,

https://www.cs.purdue.edu/homes/grr/SystemsProgrammingBook/
https://www.zybooks.com/catalog/computer-systems-and-assembly-programming/
https://www.zybooks.com/catalog/computer-systems-and-assembly-programming/
https://www.theverge.com/22684730/students-file-folder-directory-structure-education-gen-z
https://www.theverge.com/22684730/students-file-folder-directory-structure-education-gen-z
https://doi.org/10.1145/1953163.1953249
https://doi.org/10.1145/3478431.3499322


pp. 98–103. [Online]. Available:
https://doi.org/10.1145/3159450.3159581.

[24] M. Almansoori, J. Lam, E. Fang, A. G. Soosai Raj, and R. Chatterjee, “Textbook
underflow: Insufficient security discussions in textbooks used for computer systems
courses,” in 52nd Technical Symposium on Computer Science Education, ser. SIGCSE ’21,
New York, NY: ACM, 2021, pp. 1212–1218. [Online]. Available:
https://doi.org/10.1145/3408877.3432416.

[25] J. Walker, M. Wang, S. Carr, J. Mayo, and C.-K. Shene, “A system for visualizing the
process address space in the context of teaching secure coding in c,” in 51st Technical
Symposium on Computer Science Education, ser. SIGCSE ’20, New York, NY: ACM,
2020, pp. 1033–1039. [Online]. Available:
https://doi.org/10.1145/3328778.3366894.

[26] B. P. Railing and R. E. Bryant, “Implementing malloc: Students and systems
programming,” in 49th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’18, New York, NY: ACM, 2018, pp. 104–109. [Online]. Available:
https://doi.org/10.1145/3159450.3159597.

[27] J. Clements and S. Krishnamurthi, “Towards a notional machine for runtime stacks and
scope: When stacks don’t stack up,” in 2022 ACM Conference on International Computing
Education Research - Volume 1, ser. ICER ’22, New York, NY: ACM, 2022, pp. 206–222.
[Online]. Available: https://doi.org/10.1145/3501385.3543961.

[28] S. A. Zekany, J. Tan, J. A. Connelly, and R. G. Dreslinski, “RISC-V reward: Building
out-of-order processors in a computer architecture design course with an open-source
ISA,” in 52nd Technical Symposium on Computer Science Education, ser. SIGCSE ’21,
New York, NY: ACM, 2021, pp. 1096–1102. [Online]. Available:
https://doi.org/10.1145/3408877.3432472.

[29] C. Corsi, R. Geist, and D. Lingerfelt, “A virtual graphics card for teaching device driver
design,” in 45th Technical Symposium on Computer Science Education, ser. SIGCSE ’14,
New York, NY: ACM, 2014, pp. 555–560. [Online]. Available:
https://doi.org/10.1145/2538862.2538895.

[30] S. J. Matthews, T. Newhall, and K. C. Webb, “Dive into systems: A free, online textbook
for introducing computer systems,” in 52nd Technical Symposium on Computer Science
Education, ser. SIGCSE ’21, New York, NY: ACM, 2021, pp. 1110–1116. [Online].
Available: https://doi.org/10.1145/3408877.3432514.

[31] D. S. Clementsen and Z. He, “Vertical partitioning for flash and HDD database systems,”
Journal of Systems and Software, vol. 83, no. 11, pp. 2237–2250, 2010, ISSN: 0164-1212.
[Online]. Available: https://doi.org/10.1016/j.jss.2010.06.044.

[32] J.-U. Kang, J. Hyun, H. Maeng, and S. Cho, “The multi-streamed solid-state drive,” in 6th
USENIX Workshop on Hot Topics in Storage and File Systems, ser. HotStorage ’14,
Philadelphia, PA: USENIX Association, Jun. 2014. [Online]. Available:
https://www.usenix.org/conference/hotstorage14/workshop-
program/presentation/kang.

[33] S. Yan et al., “Tiny-tail flash: Near-perfect elimination of garbage collection tail latencies
in NAND SSDs,” ACM Trans. Storage, vol. 13, no. 3, Oct. 2017, ISSN: 1553-3077.
[Online]. Available: https://doi.org/10.1145/3121133.

https://doi.org/10.1145/3159450.3159581
https://doi.org/10.1145/3408877.3432416
https://doi.org/10.1145/3328778.3366894
https://doi.org/10.1145/3159450.3159597
https://doi.org/10.1145/3501385.3543961
https://doi.org/10.1145/3408877.3432472
https://doi.org/10.1145/2538862.2538895
https://doi.org/10.1145/3408877.3432514
https://doi.org/10.1016/j.jss.2010.06.044
https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/kang
https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/kang
https://doi.org/10.1145/3121133


[34] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and H. S. Gunawi, “The case of
FEMU: Cheap, accurate, scalable and extensible flash emulator,” in 16th USENIX
Conference on File and Storage Technologies, ser. FAST ’18, USA: USENIX Association,
2018, pp. 83–90.

[35] Y. Zhou, Q. Wu, F. Wu, H. Jiang, J. Zhou, and C. Xie, “Remap-SSD: Safely and efficiently
exploiting SSD address remapping to eliminate duplicate writes,” in 19th USENIX
Conference on File and Storage Technologies, ser. FAST ’21, USENIX Association, Feb.
2021, pp. 187–202. [Online]. Available:
https://www.usenix.org/conference/fast21/presentation/zhou.

[36] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Panigrahy,
“Design tradeoffs for SSD performance,” in 2008 USENIX Annual Technical Conference,
ser. ATC ’08, 2008.

[37] J. S. Bucy, G. R. Ganger, et al., The DiskSim simulation environment version 3.0 reference
manual. School of Computer Science, Carnegie Mellon University, 2003. [Online].
Available:
https://www.pdl.cmu.edu/PDL-FTP/DriveChar/CMU-CS-03-102.pdf.

[38] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A flash translation layer employing
demand-based selective caching of page-level address mappings,” SIGPLAN Not., vol. 44,
no. 3, pp. 229–240, Mar. 2009, ISSN: 0362-1340. [Online]. Available:
https://doi.org/10.1145/1508284.1508271.

[39] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, “Performance impact and
interplay of SSD parallelism through advanced commands, allocation strategy and data
granularity,” in International Conference on Supercomputing, ser. ICS ’11, New York, NY:
ACM, 2011, pp. 96–107. [Online]. Available:
https://doi.org/10.1145/1995896.1995912.

[40] P. Desnoyers, “Analytic modeling of ssd write performance,” in 5th Annual International
Systems and Storage Conference, ser. SYSTOR ’12, New York, NY: ACM, 2012. [Online].
Available: https://doi.org/10.1145/2367589.2367603.

[41] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu, “MQSim: A
framework for enabling realistic studies of modern multi-queue SSD devices,” in 16th
USENIX Conference on File and Storage Technologies, ser. FAST ’18, Oakland, CA:
USENIX Association, Feb. 2018, pp. 49–66. [Online]. Available: https:
//www.usenix.org/conference/fast18/presentation/tavakkol.

[42] D. Gouk et al., “Amber: Enabling precise full-system simulation with detailed modeling of
all SSD resources,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’18, IEEE, Oct. 2018, pp. 469–481. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00045.

[43] J. Yoo et al., “VSSIM: Virtual machine based SSD simulator,” in 2013 IEEE 29th
Symposium on Mass Storage Systems and Technologies, ser. MSST ’13, IEEE, May 2013,
pp. 1–14. [Online]. Available:
https://doi.org/10.1109/MSST.2013.6558443.

[44] S.-H. Kim, J. Shim, E. Lee, S. Jeong, I. Kang, and J.-S. Kim, “NVMeVirt: A versatile
software-defined virtual NVMe device,” in 21st USENIX Conference on File and Storage
Technologies, ser. FAST ’23, Santa Clara, CA: USENIX Association, Feb. 2023,
pp. 379–394. [Online]. Available:

https://www.usenix.org/conference/fast21/presentation/zhou
https://www.pdl.cmu.edu/PDL-FTP/DriveChar/CMU-CS-03-102.pdf
https://doi.org/10.1145/1508284.1508271
https://doi.org/10.1145/1995896.1995912
https://doi.org/10.1145/2367589.2367603
https://www.usenix.org/conference/fast18/presentation/tavakkol
https://www.usenix.org/conference/fast18/presentation/tavakkol
https://doi.org/10.1109/MICRO.2018.00045
https://doi.org/10.1109/MSST.2013.6558443


https://www.usenix.org/conference/fast23/presentation/kim-
sang-hoon.

[45] E. Lee, I. Son, and J.-S. Kim, “An efficient order-preserving recovery for F2FS with ZNS
SSD,” in 15th ACM Workshop on Hot Topics in Storage and File Systems, ser. HotStorage
’23, New York, NY: ACM, 2023, pp. 116–122. [Online]. Available:
https://doi.org/10.1145/3599691.3603416.

[46] Z. Jiao, J. Bhimani, and B. S. Kim, “Wear leveling in SSDs considered harmful,” in 14th
ACM Workshop on Hot Topics in Storage and File Systems, ser. HotStorage ’22, New York,
NY: ACM, 2022, pp. 72–78. [Online]. Available:
https://doi.org/10.1145/3538643.3539750.

[47] X. Zhang, S. Pei, J. Choi, and B. S. Kim, “Excessive SSD-internal parallelism considered
harmful,” in 15th ACM Workshop on Hot Topics in Storage and File Systems,
ser. HotStorage ’23, New York, NY: ACM, 2023, pp. 65–72. [Online]. Available:
https://doi.org/10.1145/3599691.3603412.

[48] Z. Jiao, X. Zhang, H. Shin, J. Choi, and B. S. Kim, “The design and implementation of a
capacity-variant storage system,” in 22nd USENIX Conference on File and Storage
Technologies, ser. FAST ’24, Santa Clara, CA: USENIX Association, Feb. 2024,
pp. 159–176. [Online]. Available:
https://www.usenix.org/conference/fast24/presentation/jiao.

[49] Python Software Foundation, Sunsetting Python 2 | python.org,
https://www.python.org/doc/sunset-python-2/, (Accessed on
02/09/2024), Jan. 2020.

[50] C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and M. Sugawara, “Understanding
storage traffic characteristics on enterprise virtual desktop infrastructure,” in 10th ACM
International Systems and Storage Conference, ser. SYSTOR ’17, New York, NY: ACM,
2017. [Online]. Available: https://doi.org/10.1145/3078468.3078479.

[51] Samsung, Leading the transition from HDDs to SDDs | Samsung semiconductor global,
[Online; accessed 2025-01-11], Sep. 2022. [Online]. Available:
https://semiconductor.samsung.com/consumer-storage/world-
no1-flash-memory/episode2/.

[52] M. Bjørling et al., “ZNS: Avoiding the block interface tax for flash-based SSDs,” in 2021
USENIX Annual Technical Conference, ser. ATC ’21, USENIX Association, Jul. 2021,
pp. 689–703. [Online]. Available: https:
//www.usenix.org/conference/atc21/presentation/bjorling.

[53] H. Li, Femu/hw/femu/bbssd/ftl.c at master · vtess/femu, https:
//github.com/vtess/FEMU/blob/master/hw/femu/bbssd/ftl.c,
(Accessed on 03/03/2024).

https://www.usenix.org/conference/fast23/presentation/kim-sang-hoon
https://www.usenix.org/conference/fast23/presentation/kim-sang-hoon
https://doi.org/10.1145/3599691.3603416
https://doi.org/10.1145/3538643.3539750
https://doi.org/10.1145/3599691.3603412
https://www.usenix.org/conference/fast24/presentation/jiao
https://www.python.org/doc/sunset-python-2/
https://doi.org/10.1145/3078468.3078479
https://semiconductor.samsung.com/consumer-storage/world-no1-flash-memory/episode2/
https://semiconductor.samsung.com/consumer-storage/world-no1-flash-memory/episode2/
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://github.com/vtess/FEMU/blob/master/hw/femu/bbssd/ftl.c
https://github.com/vtess/FEMU/blob/master/hw/femu/bbssd/ftl.c

