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Designing a Versatile Robot Framework for Undergraduate
Robotics Education

Abstract

The growing popularity of robotics education in undergraduate engineering programs gives rise to
a demand for robotic technologies to facilitate learning in the classroom. Robotics undergraduate
curricula require platforms and tools that grow with the students, remaining accessible to early
undergraduate levels while supporting the implementation of advanced algorithms. In this paper,
we describe a software framework for educational mobile robotic platforms designed with
undergraduate robotics education in mind. The MBot custom robot platform is capable of
executing a vast range of robotic and machine learning algorithms using a variety of sensors. Our
suite of open-source tools is designed to be accessible to students across the spectrum of
undergraduate education and lends versatility to robotic platforms in the classroom. The robot can
be programmed through multiple modalities designed for different levels of programming
proficiency. A synchronous Application Programming Interface (API) enables the development of
single-threaded applications, appropriate for CS1 level programming. The framework is
supported by web-based tools which enable students to interact with the platform without
extensive technical prerequisites. We describe the design criteria which enable the platform to
adapt to the needs of the students throughout their journey through the engineering curriculum.
We present two case studies that demonstrate how the robots are used in project-based
undergraduate robotics courses at the University of Michigan: a first-year programming course
and a graduate robotics laboratory. We also describe a block-based visual programming interface
based on the same framework and its use in a grade school context. Finally, we present lessons
learned in teaching undergraduate courses with real robots at different levels, and highlight future
opportunities for development in this area.

1 Introduction

Robotics is growing rapidly in undergraduate education, with more institutions incorporating
robotics in existing curricula, adding robotics concentrations, or introducing robotics
majors [1, 2]. This rise in popularity creates a renewed demand for technology in the classroom to
give students hands-on experience with robots. Integrating real robot platforms into the
undergraduate classroom remains a significant challenge due to the technical complexity of
programming robotic systems, making them inaccessible in many undergraduate contexts. The
current moment lends the opportunity to reconsider the design of frameworks and tools for
robotic platforms in the context of undergraduate engineering education.



Robots have a decades-long history of use in the undergraduate classroom for the instruction of
classes ranging from introductory computer programming (CS1) [3, 4] to advanced special topics
courses in robotics [5, 6, 7]. Many user-friendly platforms are designed with education in mind,
offering interfaces which are accessible with minimal prerequisites. While these platforms offer a
low burden for development, they often utilize microcontrollers for computation, limiting the
ability to run many robotics and AI algorithms of relevance beyond a CS1 course (e.g.
localization, mapping, computer vision). Platforms with more advanced on-board computing are
capable of running these algorithms, making them suitable for modern robotics and AI algorithms.
However, existing frameworks to program these platforms require advanced computing skills,
limiting their use in early-year undergraduate courses or non-computing majors.

In this paper, we describe the design of a framework for a custom robot platform, the MBot [8],
which enables robotic platforms to be used across a spectrum of undergraduate engineering
classrooms. The design of such a robotic platform for education is a critical component of the
student experience within the course. Motivated by the recent call for deeper discussion of the
design elements which form a key component of teaching computing education [9], this section
describes the design considerations for a robot platform suitable for undergraduate robotics
education.

We identify the design criteria which govern the design of a flexible, user-friendly software
framework for programming and operating a robot in the context of undergraduate education.
These criteria adhere to the low floor, high ceiling philosophy, which strives to make an accessible
system (low floor) while still being sufficiently flexible for multiple use-cases for teaching
robotics in a range of undergraduate courses (high ceiling). We present the MBot Bridge, a tool
which enables robots to be programmed by non-experts through a beginner-friendly Application
Programming Interface (API). We also describe a suite of web-based and command line tools
which provide user-friendly control and introspection of complex robot systems. The
development of a block-based visual programming interface, the MBot Scratch Extension,
demonstrates the flexibility of the framework. To illustrate the functionality of the system, we
provide case studies of the MBot platform being used in an introductory programming course, a
graduate robotics laboratory course, and a fifth grade summer camp.

1.1 Related Work

Robots have a rich history in education, pioneered with the introduction of the programmable
“Turtle” as part of the LOGO programming language [10]. Since then, robotics has been used
extensively to teach principles of computing and engineering to students of all ages [11, 12]. In
the context of undergraduate education, introductory computer science (CS1) courses have
benefitted from user-friendly platforms like the LEGO ® Mindstorms robot [4, 13], which takes
its name from Papert’s original work [14], and the Parallax Scribbler [3, 15]. These highly
impactful platforms sparked a vast array of robotic platforms and robotics competitions as an
educational tool [16, 17], alongside programming environments designed to be more amenable to
undergraduate teaching than common robot middleware frameworks [18, 19].

These education-focused platforms usually provide a simple way to program the robots, e.g. a
custom library in the Arduino IDE, making the technical prerequisites required suitable for a CS1



audience. The platforms typically use a single microcontroller for computation, capable of
running single-threaded programs and compatible with low-dimensional sensors (e.g. encoders,
range finders, line detectors). This limits the sophistication of behaviors that can be programmed
by the students, making these platforms unsuitable to modern robotics and AI algorithms.

Courses that focus on robotics and AI algorithms have opted to use more advanced robots, like
the Sony AIBO [20], modified iRobot Roomba platforms [21, 22, 23, 24], and the Turtlebot [25].
Other courses have designed custom platforms, e.g. Duckiebot [7], MIT RaceCar, and
MuSHR [26], often with open-source materials. These platforms typically include on-board
computing (e.g. a Raspberry Pi or NVIDIA Jetson) and can support more complex sensors like a
Lidar range finder or a camera. This hardware enables is capable of executing more sophisticated
autonomous robot software including mapping, localization, and computer vision, making them
well-suited to advanced undergraduate or graduate courses. These systems typically rely on
frameworks such as the Robot Operating System (ROS) [27] or Lightweight Communications and
Marshalling (LCM) [28] to manage to manage and communicate between processes.

Using these platforms therefore requires advanced programming skills, such as executing
multiple, multi-threaded programs, and familiarity with concepts like the Linux command line,
Docker, or ROS. These prerequisites limit the applicability of these platforms to undergraduate
courses without advanced computing prerequisites and introduce a significant engineering burden
for instructors.

The framework described in this paper is intended for use on a high-capability, Raspberry
Pi-based platform, the MBot [8], a custom platform developed at the University of Michigan. The
platform was initially intended for the instruction of a graduate-level course (described in
Section 5.1). In this work, we describe the design of a software framework, the MBot Bridge, and
associated tools which enable the platform to be accessible to early level or non-computing
courses without loss of sophistication.

2 Undergraduate Robotics Design Criteria

Central to the challenge of integrating real robotic platforms into undergraduate engineering
curricula is the design of software and infrastructure to support student learning. The thoughtful
design of appropriate interfaces is critical to enable students to interface with these robots without
allowing the complexity of the robot systems to detract from the student experience. We define
the following design criteria for a robot framework suitable for undergraduate education:

DC 1 Capable of running modern robotics algorithms (e.g. localization, mapping, vision),

DC 2 Relies on technical prerequisites appropriate for a CS1 student,

DC 3 Includes visualization and introspection tools appropriate for a CS1 student.

To support modern robotics education, a robot must be capable of executing sophisticated
autonomy algorithms (DC 1). Existing robot platforms capable of running these algorithms
commonly provide a bare-bones interface which rely on advanced computing skills, which are out
of reach for many undergraduate use cases. DC 2 defines the base prerequisite level to be
equivalent of an introductory programming course (CS1). A CS1 programming skill level is
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Figure 1: The MBot educational robot platform (omni-directional configuration) used in this work. The
robot includes sensors (1, 2) and uses a Raspberry Pi (3) for computation. Low-level control is managed
by the MBot Control Board (5) which communicates with the Raspberri Pi (3) via a serial connection. The
low-cost platform is fully mobile, WiFi-enabled, and battery (4) powered.

defined as the ability to write, compile, and execute single-threaded programs. This ensures that
the resulting framework matches the prerequisites for introductory classes or non-computing
majors.

The challenges of handling uncertain conditions are central to the field of robotics and an
important learning tool for students interested in studying robotics. However, dealing with
hardware in real-world conditions inevitably introduces failure modes and diagnosing issues on a
robot can be frustrating to students. DC 3 specifies that a robot software framework must include
tools that can be used for visualization and troubleshooting that are accessible from a CS1
level.

In this paper, we describe the design of a software framework and tools for the MBot platform
that meet the defined criteria.

3 Preliminaries: Robot Platform and Software

We extend the MBot, a low-cost, flexible platform for robotics education at the undergraduate and
graduate levels designed at the University of Michigan [8]. The platform was originally designed
to teach a graduate-level robotics lab covering mapping, localization, and planning. The MBot
hardware and software are open-source and the platform has been used to teach multiple classes
at the University of Michigan and at three collaborating universities.

Robot Hardware. The framework described in this paper assumes the use of a mobile robot
platform equipped with a single-board computer and sensors, including low-level sensors (e.g.
encoders, IMU) and high-level sensors (e.g. camera, Lidar). We use the MBot, a custom platform
that can be built with a differential drive or omni-directional drive configuration (see MBot Omni
configuration in Figure 1). The motors are controlled via a custom circuit board featuring a
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Figure 2: Example software architecture for the MBot framework. The MBot Control Board (left) runs
firmware which accomplishes low-level tasks including motor control and odometry. The board commu-
nicates with the robot software stack on the Raspberry Pi (center) through a serial connection. The MBot
Bridge translates information from the processes (e.g. sensor drivers, localization, planning) to a custom
API which students can use to program the robot. Students access the robot through a remote interface and
through the web tools in a browser (right).

microcontroller, the MBot Control Board, which drives motors in response to commands over a
serial connection. A Raspberry Pi single-board computer interfaces with a Lidar and camera, and
executes high-level robot software. For a full description of the robot hardware design,
see [8].

Robot Software. The MBot software architecture is comprised of multiple parallel processes
which run on the Raspberry Pi and control the low-level robot functionality. These processes
include system utilities, sensors drivers (e.g. Lidar), and a serial server for communication with
the control board. The processes communicate via the Lightweight Communications and
Marshalling (LCM) message passing framework [28]. The control board is equipped with a
microcontroller running custom firmware that reads low-level sensor information (e.g. encoders,
odometry, IMU) and executes control commands passed from the serial server process via a serial
connection. This software architecture is illustrated in Figure 2.

4 Designing a Framework for Undergraduate Robotics Education

Upper-level or graduate robotics courses typically require students to implement code by
interfacing directly with the existing operating system and processes on the robot, as described in
Section 3. Programming these robots typically involves the effective use of message-passing
frameworks, which requires competence with multi-threaded and object-oriented programming.
Building and executing the programs required in these systems requires competency with the
Linux operating system and heavy use of multiple command line sessions. It follows that such a
framework is suitable only to courses which assume strong computing prerequisites.

This section describes a framework which enables the implementation of algorithms on a real
robot that is accessible to a broad range of undergraduate engineering students. We introduce the
MBot Bridge, a program which enables single-threaded programs that can interface with



sophisticated robot software stacks and high-dimensional sensors, satisfying DC 2 and DC 1 from
Section 2. We also develop web-based and command line tools for visualization and debugging
which students can use in the classroom for control and troubleshooting the system, satisfying
DC 3. We additionally develop a block-based visual programming extension that uses Scratch
and the MBot Bridge to provide a beginner-friendly control interface. The software and tools
described in this section are open-source, designed to be compatible with the open-source
hardware for the MBot platform.

4.1 MBot Bridge

We introduce a new tool, the MBot Bridge, which can be used to program end-user applications
on the MBot without LCM. The MBot Bridge can be used to write synchronous, single-threaded
programs suitable for students at a CS1 level, while also being sufficiently flexible for more
sophisticated use-cases. The design of the MBot Bridge is inspired by Rosbridge, a tool which
enables non-ROS users to program ROS-based robot platforms [29].

The MBot Bridge is composed of two main parts: the MBot Bridge Server, the backbone of the
framework which interfaces between the robot software stack and user applications, and the MBot
Bridge API, which provides a user-friendly abstraction layer to read and write data, available in
Python, C++, and JavaScript. The MBot Bridge employs websocket connections and a custom
protocol to pass data between client programs and the server, and provides a bridge to the LCM
message passing system on the robot. The websocket-based design of the system enables easy
integration into web-based applications, which are highly user-friendly as they can be accessed
with no prerequisites from any browser. The software architecture is shown in Figure 2.

The MBot Bridge allows data from LCM processes to be queried synchronously, enabling
CS1-friendly single-threaded programming. In contrast, message passing frameworks rely on
subscription callbacks in multiple threads, requiring the user to manage thread safety. The
user-friendly benefit of the MBot Bridge comes at the cost of added latency, so time-critical
algorithms should interface directly with the message passing framework when possible.

The MBot Bridge Protocol. The MBot Bridge defines a custom protocol in JSON to
communicate over websockets using JSON messages. There are six types messages available:
REQUEST, RESPONSE, PUBLISH, SUBSCRIBE, UNSUBSCRIBE, and ERROR. The types are
listed and described in Table 1.

The most common applications are to send data to a channel with a PUBLISH message (e.g. to
send control commands to drive the robot) or to read data from a specific channel with a
REQUEST method (e.g. to read sensor data or state information). When a REQUEST is sent over a
websocket connection, the server sends back a RESPONSE message on the same websocket
connection with the latest data on the given LCM channel in the data field. The data is sent as a
JSON object, or as raw bytes when the as bytes boolean is set.

The SUBSCRIBE message type results in the server sending all data on a given channel back
along the same websocket connection, until the connection is closed or an UNSUBSCRIBE
message is sent. This functionality exists for completeness and is primarily useful for JavaScript
applications that cannot directly subscribe to LCM channels.



Table 1: Message Type Definitions in the MBot Bridge Protocol

Type Description Keys

REQUEST A request to read data. channel, dtype, as bytes

RESPONSE A response from the server. channel, dtype, data
PUBLISH A request to publish data. channel, dtype, data
SUBSCRIBE A request to send all data on a certain LCM

channel back from the websocket.
channel, dtype, as bytes

UNSUBSCRIBE A request to unsubscribe from a channel on the
given websocket connection.

channel

ERROR An error response from the server. data
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cmd
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Figure 3: An illustration of a program to control the MBot using the MBot Bridge API (middle) and the
Scratch extension. Both programs implement a “Follow Me” algorithm, which maintains a setpoint distance
to the obstacle in front of the robot. Once connected to the MBot Bridge server (1), the algorithm reads the
Lidar scan (2), then sends a drive command to move forward if the distance to the obstacle is greater than
the setpoint, and backward if the distance is less than the setpoint.

The ERROR message is used to report errors in reading or processing data, and includes an error
message in the data field. An error can be returned if the client requests data on a channel that
does not exist, if a data type cannot be decoded, or if messages are incorrectly formatted.

The MBot Bridge Server. The MBot Bridge Server is a process which monitors all the LCM
channels that exist on the robot and exposes a websocket server to listens for queries. Each client
query opens a unique websocket and sends a JSON message using the defined protocol. If a
response is required or an error is raised, it is sent to the client over the same websocket, which is
subsequently closed (except in the case of a SUBSCRIBE message). The server can convert
between JSON objects and all available LCM message types.

The MBot Bridge API. The MBot Bridge provides a custom API which allows a user to send
commands and read data using the custom protocol. The API is a user-friendly interface which
allows the user program the robot without interacting directly with LCM or websockets. The API
is the primary way students interact with the robot and functions are provided for the common
use-cases (e.g. driving the robot, reading Lidar or pose). The API is available in Python, C++, and
JavaScript. An example program using the Python API is provided in Figure 3.



Figure 4: The MBot software framework includes a web-based application which can be used to drive the
robot, control the mapping system, and visualize the map, robot position, and Lidar data.

4.2 MBot Visualization and Troubleshooting Tools

The MBot includes multiple peripheral devices and multiple independent processes, increasing
the number of possible failure modes. Additionally, robotics as a field is still in its infancy, and
algorithms and hardware that are robust to the full range of real-world environments have yet to
be developed. To compensate for this challenge, we argue that tools for basic control and
diagnosing are key components of an educational robotic platform. In this section, we describe
the design of tools developed as part of the MBot software framework intended for undergraduate
student use.

Web Tools. Web-based applications make ideal user-friendly interfaces to robot platforms.
Once installed on the robot, these applications can be accessed through a web browser without
installing additional software or running programs manually. Web-based tools are developed
using the MBot Bridge JavaScript API. The MBot framework includes two main web
applications: the primary MBot Web App and the MBot LCM Monitor.

The MBot Web App is the primary interface for visualization and basic control the the robot. It
can be used to teleoperate the robot and to toggle mapping functionality. It also displays the robot
location, Lidar data, and map (see Figure 4). The LCM Monitor web application displays all the
current LCM channels on the robot, the latest message contents and the publication frequency.
This tool provides introspection into the robot software stack and can be used to troubleshoot a
number of common problems, e.g. malfunctioning sensors or missing processes.

Command-Line Tools. The MBot features a suite of command-line tools designed to
streamline interaction with the robot and provide introspection into its systems. These tools
provide functionality for system diagnostics, communication analysis, service management, and
hardware monitoring through simple one-line commands. These intuitive commands allow
students to focus on robotics concepts and algorithm development without being overwhelmed by
technical complexities.

Each tool serves a distinct purpose. For example, MBot-info extracts detailed system- and
robot-specific information from system files to evaluate the robot’s operational state.
MBot-lcm-msg and MBot-lcm-spy facilitate communication framework analysis, allowing
students to monitor message traffic with a single command. MBot-service simplifies service
management by leveraging Linux tools such as systemctl and journalctl, avoiding complex



Table 2: Overview of Robot Control Blocks in the MBot Scratch Extension

Block Name Output Description

Detect Obstacle Boolean Returns true if a Lidar scan detects an obstacle within a
specified threshold and angle

Drive None Sends a drive command with a specified linear and angular
velocity

Stop None Sends a drive command with 0 linear and angular velocity
Reset Position None Resets the odometry to its origin
Angle to Nearest Obstacle Number Returns the angle of the shortest ray in a Lidar scan
Distance to Nearest Obstacle Number Returns the length of the shortest ray in a Lidar scan
Get X Position Number Returns the relative displacement in the robot’s x-direction
Get Y Position Number Returns the relative displacement in the robot’s y-direction
Get Heading Number Returns the relative angular displacement about the robot’s

z-axis

command-line inputs while still offering students insights into background processes.
MBot-status provides centralized real-time monitoring of hardware components, offering a
roadmap for identifying and isolating potential failures. Together, these tools create an integrated
ecosystem that supports development, testing, and experimentation for students.

4.3 MBot Scratch Extension

The MBot Scratch Extension is built on top of the MBot Bridge JavaScript API and provides a
block-based visual programming interface suitable for early programming education. It requires a
fork of the Scratch GUI and the Scratch Virtual Machine. The MBot Scratch GUI is the front-end
application that enables the user to develop Scratch block programs. The MBot Scratch Virtual
Machine is where the programming blocks are defined and implemented.

By default, Scratch provides access to blocks for event-driven (asynchronous) programming,
math and logical operators, iteration, and control flow, among others. The MBot Scratch
Extension provides a range of blocks categorized into command, boolean, and reporter functions
that facilitate comprehensive control and feedback from the robot.

Using these blocks specific to MBot in conjunction with the Scratch default set of blocks, users
can create complex programs that manage robot behaviors and interactions within its
environment. This combination enhances not only the educational experience by making robotics
more accessible but also the capabilities of developers without a thorough programming
experience exploring robotics. An illustration of a program using the MBot Scratch Extension is
shown in Figure 3.

5 Curriculum Case Studies

To demonstrate the effectiveness of the educational tools described in the previous section, we
describe case studies consisting of courses developed at the University of Michigan which have



Checkpoints Contents

0. Robot Setup Linux Basics, Microcontrollers, Embedded Systems
1. Motion Controller Wheel Speed Calibration, Odometry, PID for wheel speed and

body velocity, Motion Controller design
2. SLAM Development Occupancy Grid Construction, Monte Carlo Localization,

SLAM System Integration, LCM Channels
3. Path Planning and Exploration Map Construction, A* Path Planning, Autonomous Exploration

Table 3: Curriculum description for the graduate robotics systems laboratory at the University of Michigan.

Figure 5: Example of a final competition involving a warehouse navigation task using the MBot in the
graduate robotics lab at the University of Michigan.

employed our framework and platform in real classroom settings. It is worth noting that the MBot
can be employed in other courses spanning topics in engineering, robotics, and AI, beyond those
described here.

First, we describe a graduate robotic systems laboratory course, for which the MBot was initially
developed, demonstrating how the robot is integrated in a course when advanced technical skills
can be assumed. Next, we describe an introductory programming course taught using the MBot
Bridge to program the robot requiring only CS1-level computing skills. Finally, we discuss a
preliminary case study using the MBot Scratch extension for a fifth grade summer camp.

5.1 Graduate Robotics System Laboratory

The graduate robotic systems laboratory at the University of Michigan exposes students to mobile
robotics concepts through hands-on tasks centered around the MBot platform. The curriculum
progresses from hardware assembly and embedded programming to the development of advanced
robotic systems, culminating in a fully integrated Simultaneous Localization and Mapping
(SLAM) system. Checkpoints, designed as scaffolded challenges, allow students to incrementally
build their knowledge and skills in hardware setup, motion control, and SLAM development,
detailed in Table 3. The course concludes with a competition where students showcase their
ability to navigate and map environments autonomously (see Figure 5).

The course projects require students to program using LCM over custom channels to efficiently



send and receive data between multiple processes. Students leverage the MBot web-based tools
and command line tools to validate and troubleshoot their robots. By the end of the course,
students have hands-on experience in essential robotics concepts such as localization, perception,
and motion planning, as well as robot software and hardware systems, preparing them for
real-world applications and challenges in mobile robotics.

5.2 Introductory Programming for Robotics

An introductory programming course through the lens of robotics and AI for first year engineering
students was developed and taught at the University of Michigan. The course has also been taught
as a special topics course to computer science and engineering students at three collaborating US
universities. The course is intended to introduce students to computational thinking and
foundational concepts in robotics which they have the opportunity to explore in greater depth later
in their studies. The course is composed as a collection of modules, each of which culminate in a
project implemented on the MBot using the framework and tools described in this paper.

The course modules are designed for students to practice programming skills by completing
projects on a real robot. The early projects cover reactive control through wall following and bug
navigation tasks. The final projects provide a high-level introduction to path planning and image
recognition, relying on the concepts of graph search and machine learning, and also include a real
robot component. The course projects are visualized in Figure 6.

While the first projects rely on computing concepts typical of CS1 courses which utilize robots,
e.g. feedback control and state machines, the projects increase in complexity throughout the
semester. Projects 3 and 4 require students to utilize mapping, localization, and vision,
necessitating more sophisticated robot capabilities. The MBot Web App allows students to
control the robot and make maps through their web browsers, and the MBot Bridge API allows
them to fetch robot state information and send commands. This design illustrates how students
interface with modern robotic algorithms within single-threaded CS1-level programming
assignments.

Project 1: 
Wall Follower

Project 2: 
Bug Navigation

Project 3: 
Path Planning

Project 4: 
Image Classification

Figure 6: An illustration of the four primary projects students complete as part of the introductory program-
ming course using the MBot.



5.3 Middle School Robotics Summer Camp

A two-session robotics camp was designed in partnership with a local non-profit after school
literacy program to inspire younger students to pursue education in STEM fields, using the MBot
Scratch extension. In addition, this camp tested if the MBot interface could be adapted for
students without any programming knowledge using block-based programming. The students in
this camp were in the fifth grade and participated in two sessions. The first session introduced the
students to the MBot, explaining the sensors and computers on board and allowing them to
teleoperate the robot from a laptop. The second session gave the students a design challenge: use
the block coding interface to design a program to autonomously navigate the MBot through a
simple maze.

Although camp sessions were designed for middle school students, the block-based programming
interface for MBot provides an intuitive and accessible approach to developing computational
thinking and programming skills for undergraduates and professionals who lack extensive
programming experience. The field of robotics is uniquely diverse and includes many individuals
who may not have a strong programming background. For these students and professionals for
whom programming is a supplementary skill, the block-based programming environment offers a
gentle introduction to coding. This approach allows them to quickly create functional programs
and build confidence before transitioning to more complex, text-based languages if necessary.

6 Discussion

Teaching robotics involves unique challenges in terms of the tools and infrastructure used, which
can have a significant impact on student experience. In this section, we describe key takeaways
from our experience developing and teaching with the MBot platform, and discuss future
work.

6.1 Ingredients for an Undergraduate Educational Robotics Platform

Below, we summarize suggestions for features a robot for an undergraduate course should have,
drawing from our experience teaching with the MBot ecosystem.

Low floor, high ceiling. The call for a platform which is both accessible (low floor) and
extendable to advanced tasks (high ceiling) is repeated throughout robotics education
literature [3, 6, 8]. In this work, a “high ceiling” robot is employed, capable of running
localization, mapping, planning, and vision applications on top of low-level control. Our software
framework based on the MBot Bridge strives to accomplish a “low ceiling.” This enables the
robot to be used at levels ranging from introductory programming to graduate studies.

Reliability and Diagnosability. User tools and interfaces which provide control, visualization,
and diagnosis information are essential for robotics education at the undergraduate level.
Platforms designed for K-12 place a significant emphasis on user-centered design, whereas
higher-education platforms tend to be more similar to research platforms which rely primarily on
Linux-based command line interfaces. One promising line of work to mitigate this is in the



development of web-based tools, which require no installation, are machine-agnostic, and center
visualization [29]. Introspection tools are central to the MBot framework.

Community and support. A key factor that impacts student and faculty experience in a
robotics course is the availability of quality instructional material and documentation for a
platform. Additionally, community support is critical for troubleshooting issues that arise. The
MBot hardware and software is open-source, with guides available for staff and students. Adding
more, diverse voices to the development community as robotics education scales will help grow
these resources.

6.2 Limitations & Future Work

In practice, it is extremely challenging to achieve both a low floor and high ceiling in a robotic
platform. While the MBot framework described here has been effective in a CS1-level course and
a middle school context, integrating the system in a new course and configuring a robot fleet
remains a technical burden on faculty and course staff. Additionally, students and instructors
require training on using and troubleshooting robots, adding to the preparation time for faculty.
The development of more training materials and further web-based diagnosis tools would
alleviate issues dealing with errors that arise. Furthermore, developing an open-source
community around the platform is a key area of future improvement. A positive correlation
between strong community and successful curriculum adoption has been demonstrated in
previous successful cases of education innovation [30].

Another avenue of future work is to evaluate the effectiveness of the system design quantitatively
by designing user studies in the classroom. We are interested in studying the effectiveness of the
platform as a learning and a motivational tool for undergraduate engineering students, including
student tolerance for handling errors in the system.

7 Conclusion

In this paper, we present a framework intended to enable the MBot to be integrated into the
undergraduate engineering classroom. We describe the design of a comprehensive suite of
open-source software tools which allow non-expert users to program sophisticated robot systems.
Central to this framework is the MBot Bridge, which acts as an interface between a multi-process
message passing-based robot software stack. The MBot Bridge enables the development of
web-based introspection and visualization tools which are accessible to undergraduate students,
and visual programming interfaces accessible to beginner programmers. This framework aims to
advance educational learning tools for robots in the classroom with robotics education in mind,
and has been employed within several real classroom settings to date. This work opens further
avenues for investigation, including studies of the educational impact of robotics platforms in the
classroom and development of more tools and curricula based on the MBot.
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