
Paper ID #48740

Improving the Accessibility of Mathematical and other STEM Content in
Engineering courses through Machine Learning Models

Louis Asanaka, University of Illinois at Urbana - Champaign
Delu Zhao, University of Illinois at Urbana - Champaign

Delu Zhao is a Senior at the University of Illinois at Urbana - Champaign majoring in Computer Science
and Economics. He is an undergraduate research assistant passionate about improving education for all
students.

Meghana Gopannagari, University of Illinois at Urbana - Champaign
Sonika Tamilarasan, The University of Illinois at Chicago
Alan Tao, University of Illinois Urbana-Champaign
Nancy Zhang, University of Illinois at Urbana - Champaign
Grace Elizabeth Sletten
Adelia Solarman, University of Illinois at Urbana - Champaign
Xiuhao Ding, University of Illinois at Urbana - Champaign

Xiuhao Ding is a master’s student in Computer Science at the University of Illinois Urbana-Champaign
with interests in CS education and AIGC

Dr. Pablo Robles-Granda, University of Illinois at Urbana - Champaign

Pablo Robles-Granda is a Teaching Assistant Professor at the University of Illinois at Urbana-Champaign.

Yang Victoria Shao, University of Illinois Urbana Champaign

Yang V. Shao is a Teaching Associate Professor in electrical and computer engineering department at
University of Illinois Urbana-Champaign (UIUC). She earned her Ph.D. degrees in electrical engineering
from Chinese Academy of Sciences, China. She has worked with University of New Mexico before
joining UIUC where she developed some graduate courses on Electromagnetics. Dr. Shao has research
interests in curriculum development, assessment, student retention and student success in engineering,
developing innovative ways of merging engineering fundamentals and research applications.

Dr. Chrysafis Vogiatzis, University of Illinois at Urbana - Champaign

Dr. Chrysafis Vogiatzis is a teaching associate professor for the Department of Industrial and Enterprise
Systems Engineering at the University of Illinois Urbana-Champaign. Prior to that, Dr. Vogiatzis was
an assistant professor at North Carolina Agricultural and Technical State University. His current research
interests lie in network optimization and combinatorial optimization, along with their vast applications in
modern socio-technical and biological systems. He is teaching an introductory probabilities and statistics
class for the college of engineering, a simulation class for industrial engineers, and an analysis of network
data class for the graduate program. At Illinois, he is serving as the faculty advisor of the Institute of
Industrial and Systems Engineers, and was awarded the 2020, 2023, and 2024 Faculty Advisor award for
the North-Central region of IISE. Dr. Vogiatzis was awarded ASEE IL/IN Teacher of the Year in 2023,
and received a Runner-up recognition for best case study by INFORMS in 2023.

Prof. Lawrence Angrave, University of Illinois Urbana-Champaign

Dr. Lawrence Angrave is an award-winning computer science Teaching Professor at the University of
Illinois Urbana-Champaign. He creates and researches new opportunities for accessible and inclusive
equitable education.

Dr. Hongye Liu, University of Illinois at Urbana - Champaign

Hongye Liu is a Teaching Assistant Professor in the Dept. of Computer Science in UIUC. She is interested
in education research to help students with disability and broaden participation in computer science.

©American Society for Engineering Education, 2025

Improving the Accessibility of Mathematical and other STEM Content in
Engineering courses through Machine Learning Models

Abstract

Transcribing equations and diagrams from STEM lecture slides pose significant challenges due to
their varied structures. Existing methods focus on well-formatted research papers or isolated
Mathematical content, lacking the flexibility to handle diverse Engineering educational materials.
Furthermore, there is no widely available open-source software capable of both detecting and
transcribing equations or diagrams from real-world STEM slides to Mathematical markup such as
LaTeX, much less to natural language. This gap limits the accessibility of STEM content for
students with disabilities or students with generally unmet needs, particularly in higher education
settings as equations and diagrams become increasingly complex.

To address this, we evaluate and enhance existing machine learning models in computer vision for
detection and transcription of equations and diagrams from STEM slides. To understand the
strengths and limitations of existing methods we score them on their ability to handle different
course materials. Then, we plan to improve both accuracy and efficiency in handling diverse
content types, including handwritten equations and varied font styles.

We test these models on a custom dataset of lecture materials for six STEM courses at the
University of Illinois Urbana-Champaign, impacting more than 1,000 engineering students per
semester (mostly undergraduate). We apply character-error metrics for transcription to assess the
performance of these models, with the consideration of computation availability to support our
goal of integrating these models into our previous digital learning platform.

Through our evaluation of the models, we then extract the desirable components of the models to
build a robust end-to-end Mathematical transcription pipeline for STEM content.We develop an
open-source tool capable of accurately transcribing mathematical content from STEM slides,
significantly enhancing accessibility for diverse learners. The state-of-the-art models are often
either closed-source or lack the necessary flexibility to handle educational content. By refining
and integrating open-source models into our previous digital learning platform, we aim to
improve the accessibility of MATH and other STEM education.

Introduction

To improve the accessibility of STEM course content, this paper addresses the challenge of
transcribing unstructured slides with a mix of equations, tables, figures, and handwriting into a
structured output. While rapid advances in multimodal machine learning models have brought
vast improvements in structured document and textual understanding, the varied structure of

STEM slides containing a mix of equations, tables, figures, and handwriting often leads to missed
or incorrect transcriptions. Common models specialize in extracting information from
well-formatted and isolated content commonly found in papers or single Mathematical formulas.
Furthermore many models either cost money or require significant computational power in the
form of GPUs that are often inaccessible to educational institutions with a limited budget or
limited IT resources. This leads to inequality among faculty members that hope to improve
accessibility of their course content, as creating such transcriptions would be infeasible and
inconvenient. While this paper explores many capable models, it puts an emphasis on
open-source models that can run in accelerator-less runtimes.

The most performant and reliable models that are capable of mathematical transcription, are
scattered across the machine learning research publication literature, making it challenging for
engineering educators to find and incorporate modern models in their workflow. This paper
explores the specialized models that perform the different tasks of detection and transcription,
then presents an ensemble end-to-end tool that combines the strengths of each model to provide
the most accurate transcriptions of the slides. Our tool is model-agnostic to facilitate the
integration of more capable future models.The tool provides engineering educators a unified
method to generate transcriptions of course content, allowing students of diverse accessibility
needs to access the content without solely relying on unstructured images of slides.

Background

Accessibility of STEM Course Materials When engineering instructors reuse or create slides
and corresponding lecture videos, they rarely consider post-lecture accessibility, but rather are
focused on the immediate needs of an upcoming live or recorded lectures. For instance, in our
companion ASEE paper, a survey of students in Engineering courses found that students preferred
LaTeX over plain text as a primary representation of Mathematical equations. However, rendered
equations cannot be trivially recovered as LaTeX, versus text which can be semi-legibly parsed by
optical character recognition software. Similarly, pedagogically important diagram details are
often lost in transcription and prose, even though there are accessible ways to present them such
as through textual summaries. Instructors are also often unaware of actions they can do to
improve accessibility of their course material, such as providing alternative delivery formats that
can be better parsed and presented by assistive technology. Even instructors who are familiar with
such practices may not have time to use and master tools that make their material accessible. Our
tool aims to streamline the process of building accessible course materials to save instructors time
and unnecessary friction. For existing material only available in visual form, this tool also
provides similar capabilities without hassle.

Universal Design for Learning Universal Design for Learning (UDL) is an inclusive teaching
framework that improves learning for all students by providing multiple means of engagement,
representation, and expression. It takes the approach of building flexibility into learning, most
relevantly by offering content in various formats (e.g., text, audio, video) to accommodate
different needs, particularly benefiting students with disabilities (SWD). In STEM education,
where non-prose content including equations, graphs, and figures is commonly used, the
development of transcription tools – which improve the translation of such content into multiple

formats – is critical to bringing UDL principles into the classroom.

Methods

We compare the capabilities of models for use in Detection (Segmentation) and Transcription
tasks. Detection models take an image of a lecture slide as input, and output bounding boxes with
labels that mark the segments of interest. Models that perform general layout perception beyond
Mathematical Formula Detection (MFD) are also considered, but the primary metric of interest is
the accuracy of MFD. Transcription models, or recognition models, take a localized image of an
equation and transcribe it into LaTeX. To narrow the scope of this paper, only models that were
developed or updated in the past 3 years are considered. The general performance of the models
are evaluated using a representative sample of 9 slides from classes that participated in the
project. The classes include 3 computer science courses, 2 electrical engineering and computer
engineering courses and 1 industrial engineering course.

Name Type (Detection/Transcription) Year Capabilities
Pix2Text Both 2024 Equations, tables
PDF-Extract-Kit Both 2024 Equations, tables
Marker Transcription 2023 Equations, tables
Texify Transcription 2023 Equations

Table 1: Comparison of OCR tools

For the end-to-end tool, we introduce a model ensemble that chains together detection and
transcription models to output bounding boxes and transcription results from an image of a slide.
During this process, we iteratively mask out content to ensure that the next model used can focus
on new potential detections rather than re-discovering content areas that were already processed.

LaTeX Transcription Metrics

To evaluate machine-transcribed text, text-based metrics (e.g. edit distance and BLEU) are
commonly used to measure precision of the output. However, treating LaTeX transcription as a
traditional problem of machine translation ignores the problem that very different LaTeX
formulas can render similar equation outputs (e.g. Fig 1 below). There can be disparities between
text-based metric scores and visual judgement, which result in model outputs that are scored
badly but look correct.

Figure 1: Different LaTeX formulas producing similar outputs

To mitigate this, we also use a metric called Character Detection Matching (CDM) [1] that
includes a visual comparison in addition to a textual comparison.

We next introduce the AI models involved or evaluated in this work.

Mathpix

Mathpix is a piece of proprietary software with support for transcribing images that contain
equations. While Mathpix is not a model that we surveyed due to its proprietary and paid nature,
it is the bar for a good transcription model—in document-level transcriptions, Mathpix has
consistently been the top performer [2].

Pix2Text

Pix2Text is a free alternative to Mathpix and is designed to turn images of math equations into
LaTeX [3]. For detection, it uses a fine-tuned “You Only Look Once” (YOLO) model, which is a
standard real-time object detection model. For transcription, it builds upon TrOCR [4], a strong
base vision transformer model that allows effective fine-tuning using further human data.
Pix2Text was able to work the best when the original image contained equations that were
formatted similarly to LaTeX. When given a slide with large areas of large text and images, the
resulting LaTeX would include random characters and symbols. The model performed best when
the equations were isolated and single lined compared to using a multiline equation.

PDF-Extract-Kit

PDF-Extract-Kit is an open-source framework designed for content extraction from complex PDF
documents [5]. It incorporates state-of-the-art models for diverse document analysis tasks,
including formula detection via YOLO, formula recognition using UniMERNet [2], and table
recognition through StructEqTable. These models are rigorously fine-tuned on diverse datasets,
ensuring high accuracy and adaptability across a wide array of document formats; more
importantly, they are able to accurately transcribe more complex mathematical content including
multiline equations and matrices (Fig. 2, 3, 4, 5). UniMERNet is backed by a custom
sequence-to-sequence model utilizing a vision transformer on top of Texify, another model we
tested below [6].

Figure 2: Multiline equation as input

Figure 3: Model output as LaTeX (top) and rendered (bottom)

Figure 4: Matrix equation as input

Figure 5: Model output as LaTeX (top) and rendered (bottom)

Another key feature of the PDF-Extract-Kit is its ability to operate efficiently in environments
without GPU resources. Its models are able to run on CPU-only computers while maintaining
acceptable performance by using their downscaled siblings that contain smaller networks.

Marker: PDF to Markdown breakdown

Marker is an open-source tool designed to convert PDFs into markdown, JSON, and HTML
formats with high accuracy [7]. It handles a variety of documents and languages, and it’s

particularly good at formatting tables, forms, code blocks, and equations. It can also extract and
save images embedded in PDFs. Marker typically requires around 6 GB of VRAM per task,
allowing up to eight documents to be processed in parallel on a high-end GPU. While it
occasionally failed to detect handwritten text on slides, it accurately transcribed multi-line
equations, resulting in consistent text recognition (Fig. 6 and 7).

Figure 6: A multiline equation serving as the input to the Marker model

Figure 7: The output from the Marker model for the input shown in Fig. 6

Texify: Image and PDF to markdown and LaTeX

Texify is an optical character recognition (OCR) model that uses images and PDFs of equations
and converts them into markdown and LaTeX [6]. It builds upon Donut, powered by a vision
transformer [8]. The output can be directly used in MathJax, a common method of displaying
Math and transcribing Math for screen readers [9]. When we tested Texify on our dataset of
lecture slides and individual equations, we found that it performed well on small, simple
equations, and it was somewhat efficient with an average time of 1 minute. However, it performed
poorly on the lecture slides from our dataset. This is likely due to challenging complex, multi-line
equations and varying formats.

Results

We compared the models by running the models on a dataset of 9 lecture slides (Images included
in the Table 1 of Appendix), each with multiple equations. The results are presented in Table 2.
We determined the accuracy by dividing the number of correctly transcribed equations (through
visual inspection) by the total number of equations on each test slide. Overall, we found that
models failed at transcribing tables accurately, and they generally performed better when
transcribing short, one-line quotations compared to transcribing multi-line equations.

Model Name Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
Pix2Text 1.0 0.5 1.0 n/a n/a n/a n/a n/a
PDF-Extract-Kit 1.0 1.0 1.0 1.0 1.0 0.83 1.0 1.0
Marker n/a n/a n/a n/a n/a n/a n/a n/a
Texify 0.0 0.0 0.5 0.67 0.0 0.17 0.22 0.67

Table 2: Accuracy scores of Models tested on eight different lecture notes (Appendix Table 1)

Transcription Model Ensembling Algorithm

Individually, many of these open-source models serve a clear purpose in which they perform well.
PDF Extract Kit provided pre-trained models using network architectures like YOLO and
UniMERNet [2], which each specialized in tasks spanning Mathematical formula detection to
table transcription. However, no unified framework properly extracted all desirable components,
including text, equations, and tables, from a single image. Furthermore, models specialized for
text extraction would be less accurate in transcribing mathematical formulas.

To address this limitation, we introduce a cohesive method of model ensembling to tackle this
task of information extraction. Namely, we used a formula detection neural network to predict
bounding boxes for all potential desirable components. We then fix a sequence of model passes
for all transcription models which may vary in specialization. Noting that equations can be
considered as a subset of text, we generalize this notion of some types of desirable components
being subsets of other types to list the specialized models from smallest to largest in scope. Our
algorithm is an ordered iteration of processing for this list of specialized models.

Figure 8: Example slide with multiple modalities of information across text, equations, and icons

Figure 9: Bounding boxes of equations detected by YOLO and transcribed by UniMERNet

Figure 10: Bounding boxes of text and icons detected and transcribed by Omniparser [10] after
equation bounding boxes are removed from the image

Intuitively and from experimentation, text models are more likely to incorrectly transcribe a
Mathematical equation compared to mathematical models, as non-alphanumeric symbols and
various Mathematical structures are out-of-domain for many text models. Inspired by this result,
for each image, our unified algorithm first processes potential mathematical formula candidates as
extracted by a fine-tuned YOLO detection model and generates a LaTeX transcription for each
candidate through UniMERNet, as demonstrated in Fig. 9. Then, we blacken areas in the image
as defined by the bounding boxes for those mathematical formula candidates before re-processing
the image with the next specialized model in the list, as demonstrated in Fig. 10. This forces
future models in the list to ignore previously processed transcription candidates and minimize
interference from out-of-domain components. An example of this algorithm is shown in the
figures above, displaying two specialized models in equation transcription and text transcription.
Purely for visualization purposes, the transcribed equations are denoted by the blue bounding
boxes in Fig. 9 and the text and icons are displayed with miscellaneously colored bounding boxes
in Fig. 10. After each model, transcriptions are collected into a JSON dictionary, which can be
directly used for any purpose including textual reconstructions of the original image.

This algorithm uniquely enables processing of complex images consisting of multiple modalities
of information from text and equations to tables and visual icons. Independently, each model
within the algorithm often fails to transcribe all elements of the images due to the previously
mentioned training domain issues. Therefore, the core contribution of this algorithm is a flexible
end-to-end approach for information transcription.

Transcribing slides to English

For further accessibility, translating LaTeX into English through spoken Math systems was
explored with the Speech Rule Engine [11] and MathJax [9]. These models can translate LaTex to
two different spoken Math systems: MathSpeak and ClearSpeak. MathSpeak focuses on concise
language while ClearSpeak focuses on more natural language. For example the LaTex of ab

would give the output "a Superscript b" with the MathSpeak domain and "a to the b-th power"
with the ClearSpeak domain. This enables further accessibility to Mathematical material through
verbal methods.

We also looked into using Large Language Models (LLMs) to transcribe diagrams and explain
equations from class slides. Specifically, we compared the models GPT-4o [12], Gemini, and
llama 3.2-vision [13]. GPT-4o was able to explain equations step-by-step and provide a general
summary of the goals of the equation. Gemini also explained the equations, however was also
able to provide enrichment examples of applications of equations. Llama 3.2-vision was the least
accurate of the three LLMs, providing general summaries that sometimes did not match the
premise of the equation. A similar pattern followed with explaining diagrams: all three LLMs
were able to extract the main subject of the diagram, but GPT-4o and Gemini were able to add
enrichment information as well as go more in depth with the explanations of parts of the diagram.

Figure 11: Example input lecture slide for LLMs

Development of methods for complex multi-line equations and tables

A category of equations to note is multiline equations. These are important in areas such as
industrial engineering, where optimization problems are often written with a single constraint on
each line. An understanding of each constraint does not equate to an understanding of the
optimization program as a whole, which means that it is important for models and ultimately our
tool to be able to reconstruct multiline equations without losing context.

Model Name Summary of Response
GPT-4o The model provides an overview of the gamma function, states the def-

inition of the gamma function, explains the recursive property, and dis-
cusses special cases. The output does not convert the equations into
LaTeX.

Gemini The model defines the gamma function, explains the conditions for the
gamma function, and provides an example of a gamma function. The
output does not convert the equations into LaTeX.

Llama 3.2-vision The model defines the gamma function and explains its applications.
It does not include information about the lecture slide or convert the
equations into LaTeX.

Table 3: Summary of LLM responses for the lecture slide in Fig. 11

Multiline equations pose a special challenge due to the combination of bounding box splitting and
transcription formatting. When a detection model sees a multiline equation, it may regard each
line as an isolated equation, severing any connection between the lines. Regardless of how the
downstream transcription model performs, it would be impossible to reconstruct the full multiline
equation. However, if the detection model does return the correct bounding box, the transcription
model could lack the ability to reason about the formatting of the equation in LaTeX. A naive
model may output spaces rather than introduce an align environment, for instance, which would
produce an incorrect layout.

Many of the models mentioned above failed when transcribing tabular data. As a result, we
decided to find models specifically for transcribing tables. We compared two models for our
analysis: Table Transformer and StructEqTable-Deploy. Table Transformer is an open-source
deep-learning model that analyzes table structure to identify tables and their structures [14]. The
model uses an image or PDF as an input, and provides bounding boxes for rows, columns, and
headers for the table. Additional OCR would be necessary to fully transcribe the table. Overall,
the model had a 90% accuracy at identifying whether a table was present but only had a 30%
accuracy of correctly identifying the cells and headers of the table. Two major errors included the
cropping of tables and incorrectly identifying the headers of the table.

Figure 12: Example of TableTransformer correctly identifying a table and its structure

Figure 13: Example of TableTransformer poorly cropping a table

Figure 14: Example of TableTransformer incorrectly cropping the second column of the table
resulting in incorrectly marking the “Coefficient” header

On the other hand, StructEqTable-Deploy [15] effectively detected tables within text and
accurately transcribed their content, including associated captions and descriptions. The model
excelled in handling complex scenarios, such as tables with multiple headers, asymmetric layouts,
or empty cells. It also performed well with tables containing mathematical symbols and equations
and successfully transcribed text with varied color formatting. However, the model occasionally
rearranged columns, particularly shifting the last column to the first when space was constrained.
Debugging efforts revealed that these errors were likely artifacts of the underlying transformer
architecture used for processing. Addressing these challenges required careful adjustments to the
input data and model parameters. Additionally, a failure case involved difficulty in transcribing
images or symbols, e.g., triangles, resulting in errors. Despite these flaws, on average, the model’s
processing time was approximately 24 seconds per table, demonstrating a balance between
accuracy and speed.

Figure 15: An example of StructEq-Table incorrectly transcribing a table, where the table on the
left is the input and the table on the right is StructEq-Table’s output, produced in 25 seconds.

Figure 16: The left side shows the model’s input, and the right side is the output, which closely
matches the original LaTeX version converted to PNG via Overleaf in 24 seconds.

Figure 17: An example of StructEq-Table struggling with excess columns, placing the last column
in the first position, which required 33 seconds to complete the conversion.

StructEq-Table was tested with 10 unique tables (see appendix 3). The outputs were evaluated
using structural differences and textual differences as key comparison metrics. Structural
differences assess the number of cells and their alignment, measuring how accurately the model
preserves the original table’s structure. The ratio used can be represented as:

Structural Difference =
Number of misaligned cells

Total number of cells in the original table

Then, for textual comparison, we use the Levenshtein Distance, which uses an equation to
calculate the number of insertions, deletions, and substitutions required to transform the
transcribed text into the original text. The difference score is given by:

Levenshtein Difference =
Levenshtein Distance(S1, S2)

max(|S1|, |S2|)

By combining structural difference analysis and Levenshtein similarity, we were able to evaluate
both layout preservation and content accuracy, ensuring a comprehensive assessment of the
model’s transcription performance.

Overall, both Table Transformer and StructEqTable-Deploy provided valuable insights that
helped shape our own approach, enabling us to better detect and transcribe complex
tables—especially those involving intricate mathematical structures.

Towards the development of a prototype equation/diagram converter

To visualize and demonstrate the capabilities of the extraction pipeline, we are currently in
progress of creating a standalone web based application that converts image file inputs of
instructional materials to an output that highlights important features such as table detection and

extraction, as well as transcribed mathematical content. To use the application, the user will first
upload an image or slide-set of the material that they want to be analyzed. Then, we will run the
pipeline to extract the desirable components from the input image, including the coordinates of
the bounding boxes, as well as the transcribed content within these bounding boxes. The output of
this pipeline can be found in Fig. 4 of the Appendix. As the output to the user, we will display the
image with the highlighted bounding boxes and the corresponding transcription. To prototype this
application, we use a JavaScript frontend framework, Vue.js. For the backend, which runs the
detection, extraction, and transcription operations, we use a Python web framework FastAPI
alongside a task queue Huey for future work scaling. We currently have a functional prototype
that takes an input image and outputs mathematical equations in LaTeX alongside other text
found in the image. With this tool, we demonstrate a potential resource both educators and
students could utilize to engage with material as effectively as possible.

Conclusion

In this paper, we surveyed and evaluated many of the existing open-source machine learning
models relating to STEM content transcription. Through extensive evaluation methods, our paper
outlines the strengths and limitations of these machine learning networks. PDF-Extract Kit
performed the best when converting lecture slides into a LaTeX format. Additionally,
StructEqTable-Deploy performed the best at identifying table structures in educational materials.

However, none of these methods, including large language models, were able to effectively
transcribe complex images containing multiple modes of information across text and visual
modalities. The specialized models demonstrated trade-offs between performance in information
candidate detection, text transcription, and equation transcription. Through our model ensembling
algorithm, users can leverage the orthogonal strengths of various models to more
comprehensively transcribe the information transmitted by an image.

Our work emphasizes the value of accessible models, whether it be through open-source
contributions e.g., PDF-Extract Kit or company-subsidized models e.g., GPT-4o. Through our
published code of modeling pipelines and user interface software, instructors gain access to a
transcription algorithm optimized for cost and performance. With minimal additional scripting,
users can ensemble the latest transcription models to process complex images containing text,
equations, and visual icons.

Discussion

This paper addresses the problem of automating the processing and parsing of mathematical
content in various forms, including equations, tables, slide layouts, and diagrams. Equations are a
significant focus in our work, encompassing single-line, multi-line, handwritten, and equations
with unconventional formatting or fonts. Multi-line equations present significant challenges, as
models often split them into separate components, losing their contextual meaning. These
equations are transcribed into LaTeX for accessibility and can be further converted into spoken
formats e.g., MathSpeak and ClearSpeak for verbal communication. Tables, another significant
element of our work, range from simple structures to complex layouts involving multiple headers,
asymmetry, and embedded mathematical symbols. These tables are often misinterpreted during
transcription, with common issues including cropping errors, header misidentification, and

rearranged columns. In addition to equations and tables, unstructured slide layouts containing
mixed content (e.g., text, equations, diagrams, handwriting) pose unique challenges for
transcription models. Diagrams and visual icons also require detailed textual explanations to
ensure accessibility, particularly for students with disabilities.

The libraries and machine learning algorithms we studied in this paper included Pix2Text,
PDF-Extract-Kit, Marker, and Texify. We also analyzed the problem of transcription in a
multimodal setting. We analyzed additional tools, Speech Rule Engine [11] and MathJax [9],
which translate LaTeX into spoken formats, enhancing accessibility and AI models for contextual
enrichment and explanation. We have also studied the problem of transcription of complex
layouts in tables and multiline equations. All these elements indicate the need for further
experimentation, development, and research to create versatile, robust, and scalable tools for
Mathematical annotation and processing, which is critical for higher education in STEM fields.

Future Work

Due to the fast-paced developments in the field, we cannot evaluate all new models in this paper.
Newer models like DeepSeek VL2 [16] (a multi-modal vision language model) and LaTeXNet
[17] (another specialized ensemble model) are being evaluated for implementation in our tool
under https://github.com/classtranscribe/latextranscribe. Texify /
Marker have also undergone significant development since our initial evaluation.

Acknowledgments

This work was supported in part by a GIANT 2024-25 grant sponsored by the Institute for
Inclusion, Diversity, Equity and Access (IDEA) in the Grainger College of Engineering at the
University of Illinois Urbana-Champaign, and by a Strategic Instructional Innovations Program
(SIIP) award from the Grainger College of Engineering. Additional support was provided by a
Microsoft grant for research on Universal Design for Learning (UDL) practices in higher
education.

References

[1] B. Wang, F. Wu, L. Ouyang, Z. Gu, R. Zhang, R. Xia, B. Zhang, and C. He, “Image over
text: Transforming formula recognition evaluation with character detection matching,”
2025. [Online]. Available: https://arxiv.org/abs/2409.03643

[2] B. Wang, Z. Gu, G. Liang, C. Xu, B. Zhang, B. Shi, and C. He, “Unimernet: A universal
network for real-world mathematical expression recognition,” 2024. [Online]. Available:
https://arxiv.org/abs/2404.15254

[3] breezedeus. (2024) Pix2text. [Online]. Available: https://github.com/breezedeus/pix2text

[4] M. Li, T. Lv, J. Chen, L. Cui, Y. Lu, D. Florencio, C. Zhang, Z. Li, and F. Wei, “Trocr:
Transformer-based optical character recognition with pre-trained models,” 2022. [Online].
Available: https://arxiv.org/abs/2109.10282

https://github.com/classtranscribe/latextranscribe
https://arxiv.org/abs/2409.03643
https://arxiv.org/abs/2404.15254
https://github.com/breezedeus/pix2text
https://arxiv.org/abs/2109.10282

[5] B. Wang. (2024) Pdf extract kit. [Online]. Available:
https://github.com/opendatalab/PDF-Extract-Kit

[6] V. Paruchuri. (2024) Texify. [Online]. Available: https://github.com/VikParuchuri/texify

[7] ——. (2024) Marker. [Online]. Available: https://github.com/VikParuchuri/marker

[8] G. Kim, T. Hong, M. Yim, J. Nam, J. Park, J. Yim, W. Hwang, S. Yun, D. Han, and S. Park,
“Ocr-free document understanding transformer,” in Computer Vision – ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVIII.
Berlin, Heidelberg: Springer-Verlag, 2022, p. 498–517. [Online]. Available:
https://doi.org/10.1007/978-3-031-19815-1_29

[9] D. Cervone, “Mathjax: A platform for mathematics on the web,” Notices of the American
Mathematical Society, vol. 59, no. 02, p. 1, Feb. 2012. [Online]. Available:
http://dx.doi.org/10.1090/noti794

[10] Y. Lu, J. Yang, Y. Shen, and A. Awadallah, “Omniparser for pure vision based gui agent,”
2024. [Online]. Available: https://arxiv.org/abs/2408.00203

[11] V. Sorge. (2024) Speech rule engine. [Online]. Available:
https://github.com/Speech-Rule-Engine/speech-rule-engine

[12] O. et al., “Gpt-4o system card,” 2024. [Online]. Available: https://arxiv.org/abs/2410.21276

[13] A. G. et al., “The llama 3 herd of models,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.21783

[14] B. Smock, R. Pesala, and R. Abraham, “Pubtables-1m: Towards comprehensive table
extraction from unstructured documents,” in 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022, pp. 4624–4632.

[15] R. Xia, S. Mao, X. Yan, H. Zhou, B. Zhang, H. Peng, J. Pi, D. Fu, W. Wu, H. Ye et al.,
“Docgenome: An open large-scale scientific document benchmark for training and testing
multi-modal large language models,” arXiv preprint arXiv:2406.11633, 2024.

[16] Z. Wu, X. Chen, Z. Pan, X. Liu, W. Liu, D. Dai, H. Gao, Y. Ma, C. Wu, B. Wang, Z. Xie,
Y. Wu, K. Hu, J. Wang, Y. Sun, Y. Li, Y. Piao, K. Guan, A. Liu, X. Xie, Y. You, K. Dong,
X. Yu, H. Zhang, L. Zhao, Y. Wang, and C. Ruan, “Deepseek-vl2: Mixture-of-experts
vision-language models for advanced multimodal understanding,” 2024. [Online]. Available:
https://arxiv.org/abs/2412.10302

[17] R. Xia, H. Zhou, Z. Feng, H. Liu, B. Chen, B. Zhang, and J. Yan, “Latexnet: A specialized
model for converting visual tables and equations to latex code,” in ICASSP 2025 - 2025
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2025, pp. 1–5.

https://github.com/opendatalab/PDF-Extract-Kit
https://github.com/VikParuchuri/texify
https://github.com/VikParuchuri/marker
https://doi.org/10.1007/978-3-031-19815-1_29
http://dx.doi.org/10.1090/noti794
https://arxiv.org/abs/2408.00203
https://github.com/Speech-Rule-Engine/speech-rule-engine
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.10302

Appendix

Test Image Pix2Text PEK Marker Texify

1.0 1.0 N/A 0.0

0.5 1.0 N/A 0.0

1.0 1.0 N/A 0.5

N/A 1.0 N/A 0.67

N/A 1.0 N/A 0.0

N/A 0.83 N/A 0.17

N/A 1.0 N/A 0.22

N/A 1.0 N/A 0.67

Table A.1: Accuracy scores of transcribing lecture slides from various models

Figure A.1: Comparison between the summaries of LLM models for the first dataset image

GPT-4o

This slide explains the Gamma function, denoted as Γ(t), which is a generalization of the factorial
function to real and complex numbers. Here’s a step-by-step explanation of what’s shown:

Definition of the Gamma Function

The Gamma function is defined as:

Γ(t) =

∫ ∞

0

yt−1e−y dy, t > 0

yt−1: This represents a power function of y, where the exponent depends on t.

Recursive Property

By integration by parts, the Gamma function satisfies a recursive property:

Γ(t) = (t− 1)Γ(t− 1)

This is derived as follows: Start with the definition:

Γ(t) =

∫ ∞

0

yt−1e−y dy

Apply integration by parts: ∫
u dv = uv −

∫
v du

Let u = yt−1 and dv = e−ydy.

Special Cases

• Gamma Function at 1:
Γ(1) =

∫ ∞

0

e−y dy = 1

This establishes a base case.

• When t = n (a positive integer): Using the recursive property:

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)(n− 2)Γ(n− 2) = · · · = (n− 1)!Γ(1) = (n− 1)!

Thus, the Gamma function generalizes the factorial function, satisfying:

Γ(n) = (n− 1)!

Summary

• Γ(t) generalizes factorials to non-integer values.

• Recursive relation: Γ(t) = (t− 1)Γ(t− 1).

• For integers n: Γ(n) = (n− 1)!.

Gemini

The Gamma Function, Γ

The equation you’ve provided is the definition of the gamma function, denoted by Γ(t). It’s
defined as an integral:

Γ(t) =

∫ ∞

0

yt−1e−y dy

Conditions: The gamma function is defined for all complex numbers t except for non-positive
integers (t ̸= 0,−1,−2, . . .).

Key Points:

• The gamma function is a generalization of the factorial function. For positive integers n,
Γ(n) = (n− 1)!.

• It has applications in various fields of mathematics and physics, including probability
theory, statistics, and quantum mechanics.

Example: Let’s calculate Γ(3):

Γ(3) =

∫ ∞

0

y3−1e−y dy

=

∫ ∞

0

y2e−y dy

This integral can be evaluated using integration by parts twice, and the result is:

Γ(3) = 2! = 2

This confirms the relationship between the gamma function and the factorial function for positive
integers.

Additional Notes:

• The gamma function has many interesting properties and relationships with other special
functions.

• It’s a fundamental tool in many areas of mathematics and science.

Llama 3.2-vision

The Gamma function, denoted by the Greek letter Γ (Gamma), is a fundamental concept in
mathematics that has numerous applications in various fields. It can be defined as:

Γ(n) = (n− 1)! for any positive integer n. This equation represents an integral transform of the
factorial function, which is crucial for understanding and manipulating sequences and series that
involve factorials. The Gamma function plays a significant role in number theory, probability
theory, statistical mechanics, combinatorial analysis, special functions in mathematics, and
physics, making it an essential tool in many mathematical disciplines.

In essence, the Gamma function can be thought of as an extension of the factorial function to real
and complex numbers, providing a way to generalize the concept of factorials beyond integers.
This makes it a powerful tool for solving problems that involve sequences and series with
factorial terms.

Test Image (Structural, Levenshtein) Difference

(6.25%, 3.09%)

(0.0%, 0.0%)

(0.0%, 51.1%)

(0.0%, 0.0%)

(9.09%, 18.9%)

(43.75%, 61.9%)

(0.0%, 0.0%)

(0.0%, 0.28%)

(0.0%, 0.0%)

(8.33%, 4.76%)

Table A.2: Accuracy scores of transcribing tables from various models

Figure A.2: Screenshots of work-in-progress tool and its outputs

