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Abstract 

 

We wrote a textbook, RISC-V System-on-Chip Design, to bridge the gap between learning about 

the theory of processor, computer architecture, and system-on-chip (SoC) design and being able 

to put these theories into practice by understanding, simulating, analyzing, and expanding a fully 

functional processor and SoC. The book begins with a brief history of processor design and an 

overview of the RISC-V architecture and then describes the tools needed to work with Wally, the 

open-source RISC-V SoC described in the book. These tools include GCC and the Sail, Spike, 

and Verilator simulators as well as best practices in hardware description language (HDL) 

design, design verification, and logic synthesis. The Wally SoC supports both of RISC-V’s base 

integer instruction sets, RV32I and RV64I, caches, branch prediction, virtual memory, and many 

extensions, including the compressed (C), multiply/divide (M), floating-point (Zfh/F/D/Q), 

atomic (A), and bit manipulation (B) extensions. Wally supports the RVI20U32, RVI20U64, and 

RVA22S64 RISC-V profiles and can boot Linux with privilege modes and virtual memory and 

can run on an FPGA. The textbook can be used to teach courses in computer architecture, SoC 

design, design verification, embedded systems, or a subset of these in theory, practice, or both. 

We describe two types of courses we taught using a draft version of this textbook: a 

senior/master’s level course that focused on all stages of SoC design and a second course taught 

at the sophomore/junior level that focused on computer architecture and processor design only. 

These courses used the labs, exercises, and Wally SoC that accompany the textbook. We expect 

this book and course, as well as Wally, to continue to evolve both in its capabilities and in the 

way that it is used and taught. 
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1. Introduction 

 

The RISC-V architecture was introduced as an open and royalty-free instruction set architecture 

in 2010 and it has evolved since then to become increasingly influential both academically and 

commercially [1, 2, 3]. Because of its commercial relevance and its lack of a license, RISC-V 

offers an ideal foundation for showing how to build a system-on-chip (SoC) based on a real-

world computer architecture. 

 

Existing textbooks and courses often introduce the theory of architecture or SoC design, but they 

focus only on the theory or the implementation or on a subset of topics, never tying all the topics 

together to build a fully functional SoC. Our textbook and course aim to bridge the gap between 

theory and practice and to demystify all levels of SoC design by teaching how to understand the 

theory and fundamentals of an SoC and its design and then build on that understanding to teach 

the practice of implementing, modifying, and verifying an SoC, starting with digital design and 



verification fundamentals and proceeding through architecture, processor, and SoC design, with 

a full understanding of each building block and step. 

 

RISC-V offers an ideal teaching platform because of its organization, including extensions, 

platforms, and its evolving and accessible ecosystem. Because the architecture and many aspects 

of its ecosystem, including compilers, are open source, this enables users to readily access tools 

to experiment with all aspects of the design, including understanding the existing hardware, 

compiling and running programs on the system and expanding it to support additional features. 

Our textbook teaches the fundamentals of the RISC-V architecture first, focusing on the RV32I 

and RV64I integer instruction sets, and then builds on that foundation to add extensions and 

features, including a system bus, external memory, and peripherals, to build up a fully functional 

SoC. We teach these all in the context of hardware design and verification. In addition to 

describing the architectural theory, our book and its accompanying open-source SoC, called 

Wally, describe and show in-depth implementation details of a real SoC design. The code for 

Wally is available as an open-source resource that accompanies the book. Wally is configurable 

and can range from a small microcontroller to a larger application processor that can run Linux, 

with caches, virtual memory, and a system bus. 

 

The remainder of this paper describes the textbook, its accompanying resources, and the Wally 

SoC. We also discuss the organization, experiences, and results of two types of courses taught 

using the book and its resources and compare this textbook with existing RISC-V and SoC 

textbooks. We conclude by summarizing the textbook, its resources, and future directions. 

 

2. RISC-V System-on-Chip Design Textbook Overview and Structure 

 

Our textbook RISC-V System-on-Chip Design is being published by Morgan Kaufmann, an 

imprint of Elsevier, in 2025. It includes the chapters listed in Table 1. The first two chapters give 

an overview of computer design and the RISC-V architecture. Chapters 3-6 describe the tools 

used in the design flow, including the GCC compiler, simulators such as Sail, Spike, and 

Verilator, the SystemVerilog hardware description language (HDL), and design verification and 

synthesis. Chapters 7-13 describe the RISC-V processor that is the heart of the Wally SoC. These 

chapters first describe the pipelined core then add support for privileged operations, an AHB bus 

interface, caches, a memory management unit (MMU), the load/store and instruction fetch units 

(LSU and IFU), and branch predictor. By adding a bus interface to the processor, the system can 

add peripherals such as a UART, SPI, and external memory to become an SoC. Chapters 14-19 

expand the SoC to support RISC-V extensions, including compressed, multiply and divide, 

floating-point, atomic, bit manipulation, cryptography, and other instructions. The final four 

chapters (20-23) show how to add peripherals to Wally, measure Wally’s performance using 

benchmarking, load and run Linux on Wally, and implement Wally on an FPGA. The 

appendices, like grades, are lettered A-D and F. Appendix A gives a summary of Wally features, 

including its configuration parameters, supported features and profiles, and main diagrams. 

Appendices B-D show how to use some of the tools and platforms needed to work with Wally: 

Linux, Git, and Tcl. The final appendix describes the Wally floating-point implementation, 

which is a follow-on to Chapter 16’s discussion of floating-point theory. 

 

 



Table 1. Textbook Chapters 

Number Title 

1 A Brief History of Computer Design 

2 Introduction to RISC-V 

3 RISC-V Software Tool Flow 

4 HDL Design Practices 

5 Design Verification 

6 Logic Synthesis 

7 Pipelined Core 

8 Privileged Operations 

9 Bus Interface 

10 Caches 

11 Memory Management Unit 

12 Load/Store Unit 

13 Instruction Fetch Unit 

14 Extensions: C (Compressed) 

15 Extensions: M (Multiply and Divide) 

16 Extensions: F/D/Q/Zfh/Zfa (Floating-Point) 

17 Extensions: A (Atomic) 

18 Extensions: Zb* & Zk* (Bit Manipulation and Cryptography) 

19 Other Extensions 

20 Peripherals 

21 Benchmarking 

22 Linux 

23 FPGA Implementation 

A Wally Synopsis 

B Hitchhiker’s Guide to Linux 

C Version Control using Git 

D Tcl Book of Armaments 

F Floating Point Implementation 

 

The textbook also includes lecture slides, lab assignments, and exercises that will be available as 

an online resource on the textbook’s companion website. Table 2 lists the available labs, which 

are typically followed by a final project, and Table 3 lists a brief synopsis of some example 

exercises. 

Table 2. Labs 

Number Name 

0 Getting Started with Wally & Tool Setup 

1 Programming 

2 Verification 

3 Debug 

4 Synthesis 

5 Design 

 



Table 3. Example Exercises 

Chapter Name 

2 Write a RISC-V program for loading the following immediate into register 

s2: 0x89ABCDEF. 

4 When designing combinational logic in SystemVerilog, when is it best to 

use assign statements? When is it best to use always_comb with case 

statements? 

16 The current floating-point divide/square root finite state machine (FSM) 

takes longer than strictly necessary because of the transition through the 

DONE state. Optimize the FSM to save a cycle, both during normal and 

early termination. 

 

3. Overview of the Wally SoC 

 

The Wally SoC that we designed and describe in the book supports both of the base integer 

instruction sets, RV32I and RV64I, caches, branch prediction, virtual memory, and many 

extensions, including the compressed (C), multiply/divide (M), floating-point (Zfh/F/D/Q), 

atomic (A), and bit manipulation (B) extensions. Wally’s full source code is open source and is 

hosted by OpenHW Group at https://github.com/openhwgroup/cvw.  

 

To simplify describing which extensions and features are supported by a system, RISC-V 

International, which governs RISC-V standards and ratifications, defined profiles to summarize 

them [4]. Wally configurations support the RVI20U32, RVI20U64, and RVA22S64 RISC-V 

profiles, can boot Linux with privilege modes and virtual memory, and can run on an FPGA. 

 

Figure 1 shows the Wally SoC. It consists of the processor core (everything below the EBU), an 

external bus unit (EBU), and the uncore, which includes all peripherals and external memory that 

may be on or off chip. The core has the typical five pipeline stages: Fetch, Decode, Execute, 

Memory, and Writeback, as indicated at the bottom of Figure 1. The processor fetches the 

instruction from memory and decodes it, with registers being read, in the first two stages. Then 

the processor performs the operation in the Execute stage and memory is potentially read or 

written in the Memory stage. Finally, the processor writes the instruction’s result to the register 

file in the Writeback stage. 

 

The main processor modules, drawn in light blue boxes in Figure 1, are the: IFU (instruction 

fetch unit), IEU (instruction execute unit), LSU (load/store unit), MDU (multiply/divide unit), 

FPU (floating-point unit), and the privileged unit. The textbook devotes one chapter to describe 

each of these units as well as the EBU and caches (Chapters 7-13 and 16). The hazard unit is also 

part of the processor; it is introduced in Chapter 7 and expanded throughout the book. 

 

The IFU is in the Fetch stage and it includes the PC and supporting logic (labeled PC), branch 

predictor (BP), instruction cache (I$), and the IFU’s memory management unit (MMU). The 

Decode stage reads registers from the integer or floating-point register file (IRF or FRF) and 

converts compressed, 16-bit, instructions to regular 32-bit instructions using the decompress 

(decomp) unit. The Execute stage includes the arithmetic logic unit (ALU) in the IEU as well as 

the first stages of the multiply/divide (MDU), and floating-point (FPU) calculations. The  

https://github.com/openhwgroup/cvw
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Figure 1. Wally SoC 

 

Memory stage accesses memory using the LSU’s data cache (D$) and MMU and checks 

privilege levels. The Writeback stage writes the calculated result back to the IRF or FRF. Note 

that the caches may be replaced by on-chip instruction and data memories (IROM and DTIM), 

depending on how Wally is configured. Wally is also referred to as Core-V Wally (cvw) because 

it has five (V) stages. 

 

The EBU manages communication between the core and the uncore peripherals and memory 

using an AHB bus. The peripherals use the simpler APB bus, so the uncore includes an AHB-to-

APB bridge (module ahbapbbridge). The uncore currently supports general-purpose I/O 

(GPIO), a UART, interrupt controllers (PLIC and CLINT), Serial Peripheral Interface (SPI), and 

access to external memories. 

  



Figure 2 shows a zoomed-in picture of a simple Wally core configured to support only RISC-V’s 

integer instructions (RV32I or RV64I). This figure is similar to the simple 5-stage pipeline 

discussed in Digital Design and Computer Architecture, RISC-V Edition [5], but it has some 

subtle differences: the on-chip instruction and data memories (IROM and DTIM) are shown on 

top of the pipeline registers because their addresses set up one cycle before they are read or 

written; the core also uses a separate comparator for branches and jumps (comp) instead of using 

the ALU; and PCLinkE is calculated again in the Execute stage. Here the instruction and data 

memories are shown as on-chip memories (IROM and DTIM) instead of caches as in Figure 1, 

but the core could also be configured to use caches instead. 
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Figure 2. Wally Core 

 

The Wally core is introduced in Chapter 7 and then expanded throughout the book to support 

additional extensions and features. For example, consider how the PC logic for computing the 

next PC (PCNextF) evolves throughout the book. The upper left of Figure 2 shows the simple 

PC logic: an adder for computing PC+4 (PCPlus4F) and a multiplexer to select between that 

and the branch or jump target address, IEUAdrE, produced by the ALU. As the book progresses 

and supports more extensions and features, this simple PC logic (adder and multiplexer) expands 

to the more complex logic shown in Figure 3, which supports branch prediction (bpred), traps 

(as managed by the privileged unit), fences, reset, stalls, and compressed instructions. The output 

is now called PCPlus2or4F to indicate that the logic supports both compressed (PC+2) or 

regular (PC+4) instructions. 
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Figure 3. Expanded PC Logic 
 

4. Courses 

 

Over the past three years, two types of semester-long courses have been taught using drafts of 

the textbook and the Wally source code. The more advanced course, taught to seniors and 

master’s-level students, covered the entire textbook and used all companion resources (lecture 

slides, labs, exercises, and the Wally SoC code) to teach computer architecture and SoC design, 

test, and verification. The lower-level course taught to sophomores used the textbook, the Wally 

SoC, and a subset of resources, focusing on computer architecture and processor design only.  

 

We first focus on the senior/master’s-level course, which was taught three times at Harvey Mudd 

College (Mudd) and twice at Oklahoma State University (OSU). The Mudd course was taught 

once per year from 2023-2025 to 13, 5, and 35 students in each course; the OSU course was 

taught once per year from 2023-2024 to 16 and 18 students. Table 4 shows the syllabus for this 

advanced course. The students were expected to have a basic understanding of digital design, 

HDLs – ideally SystemVerilog or Verilog, and computer architecture. For example, they were 

expected to understand the topics covered in [5].  

 

Table 4. Course Syllabus 

Week Topic Reading Assignment 
1 Introduction to RISC-V architecture Ch. 1-2  

2 Programming Wally using Assembly; Linux; Git Ch. 3, B, C Lab 0: Tools 

3 Programming Wally using C; HDL design practices Ch. 4-5, D Lab 1: Programming 

4 Chip implementation; Single-cycle RISC-V processor Ch. 6-7 Lab 2: Verification 

5 Pipelined RISC-V processor; privileged unit Ch. 7-8 Lab 3: Debug 

6 Multiply & divide;  FPU: FMA (FP multiply-accum.) Ch. 15-16 Lab 4: Synthesis 

7 FPU: fpdivsqrt (FP divide/square root) Ch. 16 Lab 5: Design 

8 Bus; Cache Ch 9-10 Project: Overview 

9 MMU; LSU Ch. 11-12 Project: FP multiplies 

10 IFU; compressed Ch. 13-14 Project: FP add 

11 Atomic; Bit manipulation; Peripherals Ch. 17-20 Project: FP mult-add 

12 Benchmarking; Linux Ch. 21-22 Project: Special cases 

13 FPGA Implementation Ch. 23 Project: Rounding 

14 RISC-V Market & Careers  Project: Report due 



The instructor spent the first 7 weeks describing the Wally core while, at the same time, the 

students installed and used the tools and experimented with Wally using the labs. For the last 7 

weeks, the instructor taught about the cache, the bus, peripherals, and extensions while students 

worked on their final project. In the syllabus above, students designed and implemented their 

own FMA (floating-point multiply/add) unit in Wally. Because of this course’s final project 

topic, the floating-point lectures were moved earlier in the semester, to Weeks 6 and 7. 

Instructors may choose different topics for the final project. For example, during one of the 

Mudd courses, students focused on code coverage and verification for their final project. Many 

final project topics are possible, including: designing and implementing a new branch prediction 

strategy; expanding Wally to support another RISC-V extension; changing the cache 

replacement policy; adding custom instructions and measuring Wally’s performance on target 

applications with and without the added instructions; and so on. 

 

The main teaching strategy was to describe the computer architecture or SoC design concepts 

and theory using the textbook and lecture slides and then engaging the students in hands-on 

exercises and labs to explore and experiment with those concepts by simulating Wally, writing 

and running test programs, and also by modifying the Wally SoC. The student learning outcomes 

were for them to: 

• Understand all units within a processor 

• Understand how to build an SoC around a processor 

• Be able to modify an SoC to extend its capabilities 

• Analyze algorithmic complexity of digital logic and assess power, performance, and area 

for digital logic 

 

We measured these student outcomes by the number of students who completed the final project, 

as a summative measure at the end of the course. All students at Mudd and OSU, 87 total 

students, successfully completed their final projects. 

 

Student comments also qualitatively reflected how much they met the student learning outcomes. 

Many students stated how it was exciting to work on a current processor and to understand the 

fine details of its design. Some specific student comments were: 

 

“It was a challenge to work with so much code, but so rewarding to see Linux boot messages 

come across the screen.” 

 

“Challenging labs, but the professor was dedicated to helping us learn the how the load/store 

unit worked.” 

 

“Lots of work for the project but very cool and interesting. Homework is the right amount to help 

with the exams.” 

 

“The course is great, and I have learned a ton! I also enjoy ’bit-banging’ and figuring out how 

the computer parts work!” 

 

 



The lower-level course, which was taught at OSU in spring 2024 to 50 students, focused on 

chapters 7-13 to teach computer architecture and processor design. For this course, the students 

had not yet taken an introductory computer architecture course but had some experience with 

digital design. After learning computer architecture and processor design principles, the students 

used the labs to simulate the Wally SoC and completed some textbook exercises, but for their 

final project they only modified Wally’s cache replacement policy. They implemented their 

designs on an FPGA and ran benchmarks before and after their changes to determine how 

performance was affected. 

 

The main challenges of the two courses were: 

• Installing and using the tools needed to work with Wally, especially for those unfamiliar 

with Linux.  

• Synthesizing Wally targeted to an FPGA. 

• Booting Linux, which has many failure points and can overwhelm students.  

• Selecting which aspects to have the students complete hands-on because the field is so 

broad. 

 

As a result, we have simplified the installation of multiple critical tools and added continuous 

integration into Wally’s GitHub repository to proactively discover if an updated tool breaks 

installation across any supported OS. We have also clarified the steps for targeting Wally to an 

FPGA. 

 

In summary, our textbook can be used to teach architecture, microarchitecture, SoC design, 

embedded systems, or a subset of these topics in theory, practice, or both. For lower-level 

classes, instructors may choose to use the book, or even a subset of the book, to focus on the 

theory, instead of delving into the implementation. By varying the topics covered, the number of 

exercises and labs used, and the inclusion or level of the project, the course can be adapted to a 

lower-level or advanced course. 

 

5. Comparison with Existing RISC-V and SoC Textbooks 

 

Many books on computer architecture exist as well as some on SoC design. Computer 

Architecture: A Quantitative Approach [6] is a seminal text in the field of computer architecture 

and covers similar topics as our textbook. However, it does not provide implementation details or 

show how all the pieces fit together. It also does not include an SoC to experiment with the 

principles described in the book. The RISC-V Reader [7] is an excellent synopsis of the RISC-V 

architecture and is a good companion to the RISC-V manuals [2, 3]; however, it focuses on the 

architecture only, not a complete SoC, and assumes some prior knowledge of theory. It also does 

not provide a fully functional processor or SoC. Digital Design and Computer Architecture: 

RISC-V Edition [5] describes both digital design and computer architecture but does not discuss 

SoC design. It also discusses and provides code for a processor, but one that implements only a 

subset of RISC-V instructions. 

 

Several books on SoC design also exist, including [8-12]. Architecting and Building High-Speed 

SoCs focuses on integrating existing IP blocks to build an SoC on big FPGAs and developing 

software for the SoC rather than computer architecture and processor design [8]. Modern System-



on-Chip Design on ARM also only integrates IP blocks to build an SoC [9]. Computer System 

Design [10] and System-on-Chip (SoC) Architecture [11] focus on higher-level concepts and 

don’t cover implementation. Application-Specific Integrated Circuits is a comprehensive but 

dated book on ASIC design, but it doesn’t emphasize architecture [12]. 

 

None of these textbooks compete directly with ours because we describe all stages of SoC design 

from digital design to computer architecture to processor and SoC design, simulation, 

implementation, testing, and verification. We also accompany the textbook with the source code 

for the fully functional SoC that we describe in the book to give a ready platform for hands-on 

learning and expanding on the principles discussed in the textbook. 

 

6. Conclusions and Future Directions 

 

We have developed the Wally RISC-V SoC and an accompanying textbook that describes the 

theory and practice of processor and SoC design at all stages of design, simulation, verification, 

and implementation, starting at logic design and verification and continuing through computer 

architecture, SoC design, and implementation. The Wally SoC can run Linux and is 

configurable, from a small embedded core to a high-performance application processor. The 

textbook provides in-depth explanations as well as detailed diagrams and open-source code. We 

also include lecture slides, exercises, and labs and have used these to teach two types of courses: 

an advanced course that covers the entire textbook and a lower-level course that taught computer 

architecture and processor design only. Using the book, users are able to understand computer 

architecture and SoC design topics, including a detailed understanding of the theory and 

implementation of each building block needed to design an SoC. The open-source code for the 

fully functional and configurable Wally SoC provides a platform for hands-on learning and 

experimentation with the concepts taught in the textbook. In the future, we plan on expanding the 

textbook and Wally’s capabilities to support more advanced computer architecture topics such as 

superscalar and out-of-order execution, multithreading, and multicore implementations. Because 

the Wally SoC is open source and is supported by detailed explanations of theory and 

implementation in the textbook, we also look forward to seeing how others use and expand on 

our work. 
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