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ABSTRACT 

This paper discusses the partial development of a modular robotic arm built around a physical 
bidirectional tree-like architecture inspired by artificial neural network (ANN), intended for use in 
experimentation with control and communication methods.  This project when completed will 
provide students with foundation and experience in developing modular robotics and ANN 
controller with the long-tern goal of developing smart prostheses. The primary design goal was to 
develop an adaptable robotic system capable of responding to sensor data and avoiding 
obstructions through a distributed network of processing nodes. This manuscript describes the 
framework for several communication methods including traditional networking protocols using 
the IEC 61850 standard or onion routing, mathematical transformation-based routing, and neural 
network approaches while maintaining safety. However, due to time constraints at the time of this 
publication the project is still in work-in-progress status and needs further time to implement and 
validate the proposed methodology. The hardware implementation encountered multiple design 
and manufacturing issues that are documented as lessons learned in this manuscript. This project 
provides insights into the challenges of developing complex robotic systems with distributed 
control architectures and serves as a foundation for future work in this domain.  

This project was implemented as part of the SHSU ETEC 4199 and ETEC 4399 senior design 
courses, which assess several student learning outcomes related to ABET-ETAC and ATMAE 
standards. 

I. INTRODUCTION 

This document discusses the construction of a robotic human arm using a novel internal 
architecture inspired by the human nervous system.  The focus of this project was on the internal 
electronic and communications systems of the arm, not on mechanical capabilities. 

Currently, human prostheses are based on traditional robotics and controlled indirectly by taking 
advantage of conscious muscle movement with little to no effect on other parts of the body, such 
as moving ears or wrist muscles or flexing muscles to give commands to the robotic prosthesis.  
This approach, known as myoelectric control, uses electromyogram (EMG) signals recorded from 
the patient's residual muscles, which are then processed and used as control inputs to drive motors 
coupled to the prosthetic limb [1]. Some research has been done to directly read intention from 
brain scans, but this requires either an invasive brain implant, or that the patient to be placed in 
large machines with many probes reading the voltage of surface nerves of the skull. Non-invasive 
BCI approaches typically use electroencephalography (EEG), where topical electric sensors are 
placed over the head to measure brain activities [2]. However, these systems are limited to simple 
commands such as up or down and require extensive training before the patient and computer find 



a pattern of thinking that works. Although non-invasive scalp recorded EEG signals can be used 
successfully to manipulate prosthetic devices, the control is still limited compared to other methods 
[3]. Recent developments by Neuralink appear to have recently made significant progress in 
intention interpretation [4]. 

Ideally, direct neural integration between a prosthetic device and the patient's original nervous 
system would provide intuitive control that mimics natural limb functionality [5]. However, due 
to access limitations of an undergraduate program and challenges involving such neural interface 
technology this is outside the scope of this time-limited undergraduate engineering project. 

It is a reasonable assumption that a robotic arm interfacing with the human nervous system might 
benefit from an engineering architecture based on the human nervous system.  In recent years, 
such biomimetic approaches have demonstrated significant efficacy in machine learning 
applications where neural interfaces developed for prosthetic control aim to establish more natural 
and intuitive connections between the nervous system and artificial devices [6], further supporting 
the assumption.  This assumption, while plausible, requires empirical validation; thus, this project 
is designed to provide a means of testing this hypothesis. This engineering experiment has two 
broad qualitative outcomes: 

1. The arm does not work as intended; it is unable to self-direct, adapt to changes, or is not 
sufficiently responsive. 

2. The arm works as intended; in which case a variety of quantitative performance 
measurements can be made to determine optimal design guidelines for related projects. 

A. Goals of this Project 

The primary objective of this research was to develop a generic robotic system with adaptive 
capabilities that can respond to a range of physical geometries, potentially including self-
modification.  This system is intended to serve as a foundation for future development of neural 
interfaces for smart prostheses or other brain-computer integration technologies, while 
simultaneously providing the researcher with valuable experience in robotics and artificial neural 
network based controls. 

An ideal prototype would demonstrate the following capabilities: 

• Provide the operator with the ability to construct a robot as needed from individual limbs, 
without requiring explicit programming of geometric parameters. 

• Self-adapt to changes in geometry, without user, utilizing integrated sensors to detect its 
own environment, identify potential obstructions, and determine safe movement ranges; 
and 

• Execute high-level commands such as object retrieval without requiring explicit path 
planning, demonstrating the ability to navigate environmental obstacles autonomously as 
a part of this goal. 

II. DEFINITION OF TERMS 



To prevent confusion, unless otherwise specified, the following terms are used according to these 
definitions throughout this document.  All monetary values are in United States Dollars (USD), 
unless otherwise specified. 

Limb – a complete, fully constructed arm segment or joint, which contains modular attachment 
point(s) for expansion, and consists of one or more modules. 

Module – an organizational concept comprised of purpose-built hardware containing one or more 
neurons. 

Nerve, neuron, or node – a software or mathematical construct, representing a single node in an 
artificial neural network (ANN).  When referring to the biological concept, the term is prefaced 
with “biological.” 

Component (outside circuit board context) – a limb, module, or neuron, determined by context. 

Component or part (in context of a circuit board) – an integrated circuit chip or discrete electronic 
device soldered onto the circuit board after manufacture. 

Segment – a limb or module, determined by context. 

Proximal is a medical term meaning "towards the direction of the attachment point of a limb." [7] 
For this project, it means "In the direction of the central controller." Distal refers to the opposite 
direction. 

III. ENGINEERING METHODOLOGY 

The initial phase of this project involved designing and constructing the robotic arm. To ensure 
sufficient time for manufacturing, this was completed prior to developing the simulated version. 
Additionally, the necessity of having both the prototype and simulation available for testing 
dictated that both components be developed before conducting any experimental analysis.  In this 
Work-in-Progress (WIP) project we were able to complete only the hardware design and partial 
construction of the robotic arm modules, while the firmware development, simulation environment, 
and testing phases remained unfinished due to time constraints and project management challenges. 
Thus, no definite quantitative result will be presented in this work.  

A. Testing protocols 

The experimental protocol consisted of giving the simulation or arm a standardized set of 
benchmarking commands for each communication method described below in § III.D.  Due to the 
incomplete state of communication programming and the lack of finalized command specifications, 
these testing standards were not established as of publication. Furthermore, sensor calibration 
procedures were not performed. 

The planned steps for the project would look as follows: 

1. Program the logic of each communication protocol into the simulator. Verify full 
functionality within the 2D environment. If a protocol demonstrates inoperability and 
cannot be modified to achieve full functionality, designate it qualitatively as nonviable. 
Both algorithmic and command list modifications would be permissible during this stage. 



2. Implement the finalized logic into the arm’s firmware and test for basic functionality.  If 
necessary, return to step 1 for further adjustment. 

3. Iterate this process until all desired protocols are properly configured. 
4. Upon completion of programming for all desired protocols, repeat steps 1-3 to standardize 

command lists and functional features across all protocols if any modifications were 
introduced. 

5. In the simulation environment, quantitatively assess each protocol for latency in message 
propagation between the transmission of an unsafe command and the arm's response to 
detected obstructions.  

6. (Limited single communication protocol) Within the simulation, the arms would be tested 
with several random movement commands and randomly placed obstructions, 
quantitatively measuring the average and maximum message count between simulated 
neurons, the average and maximum message size and bandwidth requirements, prevented 
collisions per thousand move commands, and unprevented collisions per thousand move 
commands.  The number of random commands would start at 1000 and increase until the 
results stop significantly changing from the previous tests. 



7. Step 6 would be repeated with varying arm lengths and geometries.  Parameters for testing 
would include the arm's total number 
of joints, frequency of branching, 
and sensor density between joints. 

8. The data from step 6 would be used 
to calculate a maximum safe angular 
speed for each joint of the 
constructed prototype.  The 
simulation and proposed command 
list would be matched to the actual 
prototype’s geometry to verify 
safety. 

a. In the event of a collusion, 
step 8 would be repeated 
with a reduced joint 
movement speed.  If 
collisions remain 
unavoidable, the 
communication protocol 
would be qualitatively 
marked nonviable. 

b. In the absence of collision, 
the command list would be 
tested on the actual arm as 
both verification and 
demonstration purposes. 

9. In the absence of collision, the 
protocol would be tested with live 
arbitrary movement commands and user-re-arrangeable obstructions to ensure operational 
safety in a production environment. 

10. Steps 6-9 would be repeated for each communication protocol under evaluation. 

 

Figure 1.  An illustration of a basic geometry for 
an arm following this project’s design.  Actual 
sensor density should be much higher.   A: 2x 
joint module, including joint control neuron and 
motor; B: 2x reflex controller module, containing 
a reflex controller neuron; C: 29x sensor module, 
containing inductive and capacitive collision 
sensors, sensor neurons, and communication 
neurons; D: 3x arm limb; E: controller module, 
containing central control neuron and optionally a 
base joint module. 
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B. General design overview 

Physically, the arm is constructed from a series of modular limbs, providing a chain of modules 
throughout the arm, serving various purposes.  An example arm showing limbs and modules is 
shown in Figure.  1. Each module 
consists of, and communicates with 
other modules through, a branched 
chain of simulated "neurons," as 
shown in Figure.  2, forming a 
physical artificial neural network 
extending throughout the arm.  This 
biomimetic approach draws 
inspiration from brain-inspired 
control techniques that closely 
emulate motor functions based on 
current neuroscientific insights. 
Although inspired by the human 
nervous system, these are not based 
on human neurons. Although the 
neurons are labeled by their 
function, these are annotative 
labels; the neurons are built using a 
single generic programmed system 
with specialization as needed. This 
design philosophy aligns with 
approaches where biologically 
realistic robots are controlled by 
spiking neural networks that mimic 
brain mechanisms [8]. 

C. Component types 

The module and neuron 
components are organized into five 
general types (communication, 
central control, reflex processing, 
joint actuation, and sensor), based 
on function.  Modules contain at least one neuron of the same type as themselves in order to gain 
that functionality.  A brief overview of each component type is provided in Table I. 

Table 1.  Quick Reference Table of Component Types 

Name Function 

 

Figure 2.  Example of a possible neuron chain.  Two 
component types, the central controller and reflex 
processors, are marked using squares to indicate that they 
might require more computing power than the other neurons. 



Central Controller Commands arm, learns geometry, learns environment. 
Communication Links components together.  Central part of each other type. 
Sensor Endpoint Reads sensors, forwards values through communication backbone. 
Reflex Processor Responds to sensor readings, modifying given commands to avoid 

collision. 
Joint Actuation Controls the joints according to received commands. 

 
1) Communication Neurons 

Communication Neurons take in a set of values from inputs, modify them as needed, and pass 
them to outputs.  Inputs can be received from the previous communication neuron or generated 
internally (such as sensor data).  Outputs may be values which get passed along to the next 
communication neuron, or functions handled internally (such as actuating a joint). 

The communication neurons in Figure 2 are labeled “Backbone Communication Neurons” because 
they form a channel along which all signals travel.  Specialized limbs may contain communication 
neurons not part of the backbone if needed. 

It is important to note that all neurons within the system are fundamentally communication neurons, 
with certain types possessing additional specialized functionalities.  For example, a sensor 
endpoint neuron (below) programmatically starts as a communication neuron and performs the 
additional functionality of reading and passing sensor data.  Because the arm’s purpose is to 
provide a platform for experimentation with communication methods, the exact specification of 
communication neurons is left to the implementer.  See below in III-C for more information on 
planned communication functionality. 

2) The central control neuron 

The Central Control Neuron, also referred to as the central controller, is the point from which 
control commands are issued and sensor data is ultimately sent.  This is the “brain” of the arm, 
although unlike a human brain, it consists of a single highly capable neuron. 

3) Reflex processing neurons 

Reflex Processing Neurons are a safety feature intended to countermand centrally issued 
instructions if sensor data indicates the arm is about to collide with something.  These are included 
to be able to respond faster than the central controller, with more specific reflex procedures than 
the generic central controller would be capable of.  After handling sensor data, the reflex neuron’s 
backbone passes it onward towards the central controller.  If the reflex processor acted on the data, 
this must be noted somehow, in a manner determined by the communication method.  If it did not, 
whether due to inability or lack of need, proximal reflex processors will get the opportunity to act. 

4) The Joint Actuation and Sensor Endpoint Neurons 

The Joint Actuation and Sensor Endpoint Neurons interface with non-neuron devices.  Sensor 
endpoints interpret data from non-neuron systems and convert readings to the format used by the 



neurons.  Joint actuation neurons take control signals from proximal neurons, and translate those 
signals into a real-world effect, such as moving part of the arm.  Every joint actuation neuron must 
be distal to a reflex processing neuron to accurately and safely receive reflex commands.  There 
must be sensor neurons distal to the joint (not the neuron/module, the physical motor or other 
actuator) to provide data for the reflex neuron to act upon. 

The standard organization of the sensor, reflex, and joint modules is provided in the appendix. 

D. Hardware 

The basic limb consists of a cylinder with a 3-inch diameter, constructed of 3-inch-long sensor 
modules (henceforth referred to as limb modules) organized according to Figure A1 in the 
appendix.  A single limb module of the final prototype is shown in Figure 3, and the full KiCad 
design files are available at https://github.com/MichaelJ-SHSU/thesis-limb_module-rigid. 

 
Figure 3.  Proximal side of a single limb module, shown on its PVC rail. 

Each limb module consists of a rigid central circuit board, with two flexible sensor boards 
connected to the edges and wrapped around to form a circle.  All circuit boards were designed and 
manufactured for this project.  The sensor board contains a checkerboard of 1 cm pads and coils 
for capacitive and inductive sensing.  Each sensor board has 6 rows of 11 sensors, for a total of 
132 sensor neurons per sensor module.  PVC pipes, wooden dowels, and 3D-printed brackets 
provide rigidity throughout the limb, with a foam pad under the sensor boards to cushion impacts.  
The entire limb is wrapped in plastic wrap to prevent damage to the sensor boards.  This 
arrangement is shown in Figure 4. 

 

 

Figure 4.  Cutout view of the limb. 

https://github.com/MichaelJ-SHSU/thesis-limb_module-rigid


The central board contains connections to adjacent modules, sensor controllers ICs, power 
regulation, and microcontrollers.  The Raspberry Pi RP2040 microcontroller was chosen for its 
cheap price point of $1.00 [9], relatively high number of programmable IO pins, and large 
developer community.  Each limb module has 2 sensor modules RP2040s and 1 communication 
backbone RP2040.  An integrated USB 2.0 hub is included for ease of programming and to provide 
limited arm monitoring over USB.   

Due to the time constraints the firmware for the RP2040s was not written.  References to the 
firmware program in this chapter are the originally planned functionality. 

For communicating between RP2040s, UART is used.  For communicating with external devices, 
other protocols are available; the sensor controllers communicate over I2C and PIO I2C.  The 
RP2040 includes two hardware I2C channels and two hardware UART channels.  Because more 
channels are needed than exist, the remaining channels are added in software using programmable 
IO (PIO).  UART channel 0 is used for debugging and UART channel 1 is used for communicating 
with the proximal RP2040.  Communications with distal RP2040s must be done over PIO UART 
channels.  One GPIO pin on each RP2040 is used for the detection interruption. 

Using RP2040’s 30 digital IO pins, minus 3 used for debugging and interrupt, this provides 13 
potential two wire connections, or a maximum of 12 branches per RP2040.  This provides the 
potential for a maximum theoretical limb module length of 24 inches, although sizes larger than 
300 mm are prohibitively expensive to manufacture in small quantities.  The formulae for this 
calculation is shown in Equation’s 1-9.  Whether the RP2040 has sufficient processing power to 
function in this scenario is another question. 

 𝑅𝑅𝑠𝑠 = 𝑅𝑅𝑏𝑏 − 1 = 11 (1) 
Equation 1.  Formula for calculating maximum sensor neurons for a non-terminal module, where 
𝑅𝑅𝑏𝑏 =  maximum branches per RP2040 = 12  and 𝑅𝑅𝑠𝑠 =  maximum sensor neurons for a non-
terminal module. 

 𝐶𝐶𝐼𝐼2𝐶𝐶 = 𝑅𝑅𝑠𝑠𝑅𝑅𝑏𝑏 = 132 (2) 
Equation 2.  Formula for calculating maximum number of possible I2C channels used for sensing 
in a fully utilized RP2040 based module, where 𝑅𝑅𝑏𝑏 = maximum branches per RP2040 = 12, 𝑅𝑅𝑠𝑠 = 
maximum sensor neurons for a non-terminal module, and 𝐶𝐶𝐼𝐼2𝐶𝐶 = maximum number of possible 
I2C channels used for sensing. 

 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = lcm(4,6) = 12 (3) 
Equation 3.  Formula for calculating the number of sensors (of each type) available in efficient 
groups, for the sensor controllers listed below, where 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = the number of sensors (of each type) 
available in efficient groups, for the sensor controllers listed below.  Four and six are the sensor 
channels available in LDC3114 and CAP1206, respectively. 

 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒
4� = 3 (4) 



Equation 4.  Formula for calculating the number of I2C channels in each efficient group, where 
𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = the number of sensors (of each type) available in efficient groups, for the sensor controllers 
listed below, and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = the number of I2C channels in each efficient group. 

 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐶𝐶𝐼𝐼2𝐶𝐶
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

= 44 (5) 

Equation 5.  Formula for calculating the number of efficient groups of a fully utilized RP2040 
based module, where 𝐶𝐶𝐼𝐼2𝐶𝐶 = maximum number of possible I2C channels used for sensing, 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 
the number of I2C channels in each efficient group, and 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = the number of efficient groups. 

 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = 1056 (6) 
Equation 6.  Formula for calculating the maximum number of sensors possible if connected 
efficiently in a fully utilized RP2040 based module, where 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = the number of sensors (of each 
type) available in efficient groups, for the sensor controllers listed below, 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = the number of 
efficient groups, and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = the maximum number of sensors possible if connected efficiently. 

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

� = 48 (7) 

Equation 7.  Formula for calculating the number of rows of sensors required, rounded down to not 
have sensor gaps, in a fully utilized RP2040 based module, where 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = the maximum number 
of sensors possible if connected efficiently, 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 =  the number of sensors in each row of the 
prototype (22), and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = the number of rows of sensors required, rounded down to not have 
sensor gaps. 

 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 =
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒,𝑝𝑝 = 24 (8) 

Equation 8.  Formula for calculating maximum theoretical length of a fully utilized RP2040 based 
module, where 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = the number of rows of sensors required, rounded down to not have sensor 
gaps, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝 = sensor rows on prototype = 6, 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒,𝑝𝑝 = length of prototype in inches = 3, and 
𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 = maximum theoretical module length in inches. 

The IC chosen for the capacitive sensor controller is the Microchip CAP1206.  This controller was 
selected for its simple usage and 6-channel sensing capabilities [10].  Each 3-inch limb module 
uses 11 controllers. 

For inductive proximity sensing, the Texas Instruments LDC3114 was chosen, selected because it 
has 4 channels, is provided in a package size with a manufacturable footprint, and supports raw 
data access.  There are 17 controllers on each 3-inch limb module.  Due to how I2C works, a 
channel can have one of each controller type, but not two of the same controllers. 

The selected ICs were tested together on a breadboard to verify the RP2040s are sufficiently 
powerful prior to finalizing the PCB design, as shown in Figure 5. However, due to time and 
voltage availability constraints, breadboard testing was minimal and insufficient. 



 
Figure 5.  The breadboard used for testing prior to designing PCBs 

The joint modules consist of a motor and a single Raspberry Pi Zero 2 W.  These modules should 
contain sensors to maximize either sensor density or channel availability, but the prototype does 
not due to time constraints.  Because joint shape requirements may vary in different arm 
configurations, exact specifications must be determined on a case-by-case basis.  It should be noted 
that when this project is resumed after publication of this paper, it may be necessary to also include 
a Raspberry Pi Pico with each joint module for additional UART channels, because Zero 2 W only 
includes a single UART channel.  These modules use the more powerful system because the central 
controller and reflex neurons will run on the joint modules. 

E. Communication 

There are several potential methods of communication and control which can be employed.  The 
experimental portion of this project consists of trying out the following methods and comparing 
their performance.  Due to time constraints, the prototype for this project only utilized a 
simplified form of conventional control; the remaining methods are explored as possibilities for 
experimentation in the future. 

1) Conventional Control 

The neuron layout resembles a substation or factory network, so it may be ideal to use conventional 
industrial protocols for controlling the system.  Each neuron would be assigned an address.  
Neurons would send data commands directly to other neurons’ addresses or multicast messages 
the entire network.  IEC 61850 GOOSE would be ideal for multicast transmissions from sensors 
to reflex processors and the central controller due to its high-reliability high-speed real-time 
performance criteria [11]. For command messages, other industrial protocols, such as DNP3 or 
Modbus, may be used. 



This approach has the advantage of simplified programming, as commands may be sent directly 
to a destination, with clarity while debugging of which sensors are reading what.  It has the 
drawbacks of traditional networking; there are a limited number of possible addresses.  More 
importantly, there is a limited amount of data that an individual channel can carry, limiting how 
many neurons the central controller can reliably monitor and respond to.  While these limits are 
high, there are approximately 86 billion neurons in the human brain [12].  Because this technology 
is hoped to eventually be an option for brain-computer integration enhancements, it should ideally 
be possible to scale to sufficient size, and standard networks simply can’t.  Other issues include 
the potential for mis-operation due to lost packets. 

2) Onion-Tree Routing 

Assuming each neuron has a set number of neuron connections, a message to a particular neuron 
could be wrapped in instructions for the in-between neurons to pass it to a particular output 
connection.  Before passing, each neuron would strip the instructions for itself and pass on the 
remaining instructions and final message.  This is illustrated in Figure 6. 

 
Figure 6.  A very simple example of onion-tree routing between a sensor endpoint neuron and the 
central controller or reflex processor. Messages shown in each box indicate the message received by 
that box.  A message tagged with “Up:” indicates that the message should be passed to the upward 
pointing output, and vice versa for “Down:”. 

This eliminates the need for limited addresses but requires a larger message to be passed the further 
the message’s destination.  Because the messages get progressively larger the further the message 
must go, this method limits total neurons by the bandwidth between intermediate neurons.  
Furthermore, it requires significant amounts of RAM, since each neuron must know the path to 
any neuron it might wish to communicate with. 

3) Input Modification – Routing 

In this control method, each output would map to a combination of inputs using a programmable 
"magic formula." Specialized neurons would be programmable to act upon receiving a particular 
set of input values. As an example, a communication neuron could divide the input value by a 
prime number corresponding to the output number.  For example, Figure 6, the left output could 



be 2, and the right output could be 3.  Suppose also that the original message is 17.  The sensor 
endpoint would send 2 ∙ 3 ∙ 2 ∙ 2 ∙ 17 = 408, and the central controller would receive 17. 

This method helps with but does not solve the increasing bandwidth issue.  Either the inputs are 
represented as standard 64-bit binary numbers, which limits neuron distance to a maximum 
“maximum distance” of 63 links, or the inputs are infinite precision numbers, which will increase 
in size faster than simply adding a 1-bit left/right value to the front of the message. 

Furthermore, this method is imprecise.  If dividing would result in a decimal, the neuron could 
simply not send, but if two paths use the same factors in different orders, e.g.  2 ∙ 3 ∙ 2 ∙ 2 and 2 ∙
2 ∙ 2 ∙ 3, multiple destinations would consider the number a valid input.  This is similar to the 
method typical machine learning neural networks use for intermediate calculations. 

4) Input Modification – Neural Network Neuron 

This method, perhaps the simplest, is for the communication neurons to behave as neurons in a 
standard machine learning neural network (ML NN).  Once again, each output would correspond 
to a combination of inputs via a magic formula, but the output values create functionality rather 
than being used for routing [13].  Although this is the simplest method to implement, it is 
perhaps the most difficult to program.  This method also introduces uncertainty in what the arm 
is actually doing, as ML NNs produce their calculation weights randomly. 

5) Vector Input Modification 

This method is similar to the input modification method but uses vectors instead of scalars.  Given 
that each output is assigned a different polar direction, the communication neuron can simply add 
the output direction to the input neuron.  To prevent paths going to the same point, the input polar 
value could be rotated by an arbitrary transcendental angle such as Eqn. 9. 

 360∘

100 ⋅ e
≈ 1.3244 …∘ (9) 

Equation 9 example arbitrary angle for vector input modification. 

Because transcendental numbers cannot exist in computers, there would eventually be path 
conflicts, though they’d be rarer. This would allow for propagated floating-point error, so neurons 
would need an input tolerance, limiting neuron space and providing the possibility of 
miscommunication. 

6) Integrated sub-neural networks 

This idea is to simply put a machine learning neural network inside each neuron.  This would be 
the most powerful option, but also the most difficult to program, and requires powerful module 
processors. 

7) Biological Neuron – Chemical Neurotransmitter Simulation 

This idea is likely the most difficult to program and implement, but most compatible with 
interfacing with human biological neurons.  The idea of this method is to research and create a 



simulation of a biological neuron inside each software neuron, so that the arm behaves exactly as 
a human arm would. 

This idea is mentioned as a possibility to support the future goals of this project but is far outside 
the scope of this project and was not researched. 

F. Control 

Two primary methodologies exist for controlling the robotic arm system: manual programmed 
control and machine learning (ML). It is important to note that not all communication methods 
presented in this research are compatible with both control approaches.  

(a) The programmed control approach involves explicit specification of actions for each 
neuron by the operator. This method follows a rule-based paradigm where software is 
programmed to automate specific tasks following predefined rules. A key implementation 
decision within this approach concerns whether the arm should autonomously override 
commands based on sensor data or merely report sensor information to the operator—this 
determination is left to the specific implementation. 

(b) ML control, while potentially offering greater adaptability, requires substantial investment 
in terms of both time and financial resources for model training [14]. This approach 
presents significant challenges including the relationship between complex machine 
learning algorithms and limited computational resources available on robotic platforms, 
and the adaptation of these algorithms to dynamic, changing environments. Under an ML 
framework, the arm could be assigned a generalized objective rather than specific 
commands, relying on learned capabilities to accomplish the task. 

Finally, the current architecture organizes neurons in a tree structure to facilitate prototyping, 
though this design decision inherently limits the system's potential capabilities. An alternative 
approach involving the organization of neurons as a graph structure combined with machine 
learning control methodologies would potentially provide enhanced functionality and flexibility; 
however, such an implementation would significantly increase development complexity and 
associated costs. 

 

1) Confidence 

Each joint controlling neuron would have a confidence value in how confident the robot is that 
that joint can be safely moved.  Proximal joints will adjust their own confidence to be less confident 
than the distal joints they are attached to.  A joint with low confidence will be restricted to moving 
slowly.  A joint with high confidence will allow itself to move quickly.  An example confidence 
algorithm is provided below after describing sensing and adaptation. 

2) Sensing 

Spread throughout the arm are surface sensors for detecting touch.  Capacitive touch sensors detect 
if the arm has touched an object.  Inductive sensors detect if the arm is close to touching an object 
but only works on metal objects.  Additional sensor types may be used if needed by the 



implementer.  When a sensor detects something, a signal is sent back to the central controller.  For 
capacitive sensors in positions which shouldn’t touch objects, signal is also sent back to the most 
proximal reflex processor. 

3) Adaptation 

There are two conditions where the robot arm will have to adapt to new geometry: Adding a limb 
and removing a limb. When a limb is added, the robot no longer knows its safe degrees of freedom 
and needs to re-learn.  To accomplish this, newly powered neurons will start at the minimum 
confidence level.  When the overall confidence is below a threshold, the central controller operates 
in a learning mode, slowly flexing available joints, starting from the most distal, to determine what 
its available movement range is.  If the arm comes close to touching an object, whether in learning 
mode or not, it sets its maximum range to just inside its current location.  Outside learning mode, 
obstructions only temporarily block movement, unless they are repeatedly encountered, triggering 
a confidence reduction. 

When a limb is removed, the movement range is not extended, so the robot doesn’t need to relearn.  
The central controller does need to know its reduced options, so the neuron proximal to the 
removed neuron will send a strong “pain” signal to indicate the reduced flexibility.  Response to 
this signal is left to the arm’s programming.  It may be used to alert the operator to damage, or may 
be ignored if the program expected a limb to be removed, for example, when changing tools. 

4) Confidence example 

Each module would separately track confidence as described below. 

1. When powered, set confidence to a small non-zero number (operator-configurable). 
2. If the module detects a possible future collision, reduce confidence by an operator-

configurable value and alert proximal modules.  If the detection comes from an analog 
sensor, the sensor’s range can be used to reduce confidence. 

3. If the module is detecting a collision, set confidence to zero. 
4. If the arm is not detecting a collision and has passed a command distally, increase 

confidence up to the maximum confidence value by an operator-defined value. 
5. If a distal module reports a collision, reduce confidence in the power-on value. 
6. Ask the distal module(s) for its/their confidence.  If it is lower than the current module’s 

confidence, overwrite the current module’s confidence with the provided value. 

The operator-configured value in step 4 should be lower the more proximal the module is 
installed.  The other values should be set by experimentally determined guidelines. 

When a movement command passes through the module, its speed will be clamped to the current 
[confidence]:[max confidence] ratio.  This means that the arm will move slowly when it detects a 
nearby object and comes to a dead stop when it detects a collision.  When this happens, the 
operator should set behavior to either alert the operator to reset it, or auto-reset after an interval 
or if the collision stops being detected. 

IV. SOFTWARE SIMULATION 



As a part of this project, a software simulation, shown in Figure 7, was created to test large 
networks and determine how the arm and communication methods would scale to massive size.  
This simulation was only partially completed.  It was written in Java for rapid development, and 
the source code is available at https://github.com/MichaelJ-SHSU/thesis-
simulation/releases/tag/thesis. 

 
Figure 7.  The simulation window while running.  

The simulation uses several simplifying assumptions.  Firstly, only a 2D plane is simulated.  
Secondly, the simulation uses a simplified form of direct control for its messaging.  IEC 61850 
testing was canceled upon the discovery that the specification costs CHF 23'414.-c [15], equivalent 
to $26 thousand dollars at the time of checking.  The protocol for the simplified simulation is 
shown in Table 2. 

Table 2.  Simple packet protocol used in simulation 
Field Name Size 

(bytes) 
Description 

Source ID 8 The ID of the sending neuron. 
Destination 
ID 

8 The ID of the receiving neuron.  The message may be intercepted 
and used by other neurons. 

Message ID 16 UUID of the message 
Direction 4 Direction in tree message travels. 

1: proximally. 
2: distally. 

https://github.com/MichaelJ-SHSU/thesis-simulation/releases/tag/thesis
https://github.com/MichaelJ-SHSU/thesis-simulation/releases/tag/thesis


3: both. 
Other numbers reserved. 

Length 4 Length of the message 
Command 4 Type of message 

0: NULL – ignore this message 
1: MOVE – Actuate a joint to specified value.  Ignored if 
destination is not a joint. 
10: SENSE – Sensor detected this distance. 
11: SOFTSENSE – SENSE processed by reflex neuron 
20: PAIN – Joint overextended or collision detected 
21: SOFTPAIN – PAIN processed by reflex neuron 
30: OVERRIDE_INFORM – signal from reflex neuron to central 
controller informing it how its commands were changed. 

Data Length-4 Function varies by command 
 
In order to produce useful metrics for benchmarking, the simulation uses a message cycling system, 
where a message cannot pass between three neurons in the same cycle.  The simulation outputs the 
messages passing through each node, joint movement, potential collisions reported by sensors, and 
actual collisions undetected by sensors. The end of the log for moving the joint on neuron 55 is 
shown in Figure 8. 

 
Figure 8. The arm simulation window while running. 

V. EXPENDITURES 

The total associated cost for the project is $1,160.59, itemized as follows: 

Component Cost (USD) 
Prototyping equipment $44.63 
Five limb modules $836.86 
Two joint segments (unfinished) $211.68 



Currency conversion fees $39.00 
Manufacturing fees and unusable inventory $28.42 
Total expenditure $1,160.59 

Of the total project cost, $600.00 was provided by the Elliot T. Bowers Honors College as 
research funding, with the remaining $560.59 funded through ETEC Department. 

VI. FUTURE GOALS 

As this is still a work in progress project the primary objective moving forward is to fulfill all of 
the original project goals. This includes: 

• Completion of the simulation environment with support for 2D simulation using a pre-
defined benchmarking script, implementing the methods of control and communication 
described in § III-C. 

• Programming the physical robotic arm to utilize at least one fully simulated communication 
method and validate its performance with real-world data. 

• Comprehensive testing on both the simulation platform and physical arm to determine 
optimal methodologies, evaluated according to speed of command execution, reflex 
responsiveness to unexpected stimuli, adaptability to geometric modifications, and 
scalability potential. Given that the human brain contains approximately 86 billion 
neurons [12] and considering that this project aims to develop technology that may 
eventually interface with human neural systems, scalability is identified as the parameter 
of highest significance. 

For the sake of simplicity and plausibility, the following goals were excluded from this project’s 
scope, but may be added in the future: 

• Ideally, the robot should be able to attach and remove its own limbs. 
• It is desired to be able to simulate biological neurons. 
• The eventual goal is that the robot’s movement can be directly controlled by a person, 

either by directly reading the user’s intent, or by mimicking one of the user’s limbs. 

It would be useful to integrate the neural network to a camera with an image recognition 
algorithm, but this is currently beyond scope. 

VII. EDUCATIONAL COMPONENT 

This senior design project was implemented as part of the ETEC 4199 – Senior Design I and ETEC 
4399 – Senior Design II course sequence. ETEC 4199 constitutes a one-credit proposal defense 
conducted in the Fall semester, while ETEC 4399 comprises a three-credit course in which students 
prototype, troubleshoot, and evaluate their designs. Both courses assess multiple student learning 
outcomes aligned with ABET-ETAC and ATMAE standards, particularly focusing on 
SLO3+SLO5 (ABET-ETAC) and SLO4+SLO5 (ATMAE), which emphasize effective 
functioning as both member and leader in technical teams across diverse presentation formats. 
The performance indicators for these learning outcomes include: 

1. Use of appropriate context, conventions, and mechanics 



2. Utilization of credible sources, evidence, and structure 
3. Demonstration of oral presentation skills 

This project represents one of eleven capstone projects completed during the 2024-2025 academic 
year in section ETEC 4199-01. Notably, this project was unique among the cohort as it involved a 
single student working independently under honors college thesis requirements and with honors 
college funding support. Throughout the development process, three formal in-class presentations 
(preliminary, midterm, and final) were conducted, providing valuable critical feedback from peer 
teams and faculty members. Additionally, weekly consultations with faculty advisors were held 
either face-to-face or via Zoom outside regular class hours to monitor progress and address design 
challenges. 
Assessment metrics for the aforementioned student learning outcomes are presented in Table 2. 
Comprehensive assessment data for all student learning outcomes will be completed following the 
conclusion of ETEC 4399 at the end of the Spring 2025 semester, though this information will not 
be available for inclusion in the final draft should this paper be accepted for publication. 
 

Table 3.  Sample assessment selected for SLO3+SLO5 (ABET-ETAC) and SLO4+SLO5 
(ATMAE) 

Key Performance Indicators Unsatisfactory 
< 60% 

Developing 
60-69% 

Satisfactory 
70-79% 

Exemplary 
≥ 80% 

a) Use appropriate context, 
conventions, and mechanics 
(Pre-Proposal + Mid-Report) 

0% 0% 0% 100% 

b) Use credible sources, 
evidence, and structure (Final 
Technical Report) 

0% 0% 0% 100% 

c) Demonstrate oral 
presentation skills (Final + 
Mid Presentation) 

3.3% 0% 0% 96.7% 
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APPENDIX 

The hardware organization diagrams for the modules used by the prototype for this project are 
provided in Figure A1, A2, and A3. 

 
Figure A1.  The organization of the sensor modules in this project.  Designed for 3 inches of a 
limb with a 3-inch diameter.  Implementers need not follow this organization; modify it to suit 
the needs of the limb being designed. 



 
Figure A2.  Generic sensor module block diagram. 



 
 

Figure A3.  Generic joint module block diagram. 
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