
Paper ID #48655

WIP-Experimentation in control and communication methods for neuron-based
adaptable robotics

Dr. Iftekhar Ibne Basith, Sam Houston State University

Dr. Iftekhar Ibne Basith is an Associate Professor in the Department of Engineering Technology at Sam
Houston State University, Huntsville, TX, USA. Dr. Basith has a Ph.D and Masters in Electrical and
Computer Engineering from University of Windsor, ON,

Syed Hasib Akhter Faruqui, Sam Houston State University

Assistant Professor, Department of Engineering Technology

Michael Tyler Johnson-Moore, Sam Houston State University

©American Society for Engineering Education, 2025

WIP: Experimentation in control and communication methods for
neuron-based adaptable robotics

Michael Johnson-Moore, Syed Hasib Akhter Faruqui and Iftekhar Ibne Basith
Department of Engineering Technology, Sam Houston State University, Huntsville, TX

ABSTRACT

This paper discusses the partial development of a modular robotic arm built around a physical
bidirectional tree-like architecture inspired by artificial neural network (ANN), intended for use in
experimentation with control and communication methods. This project when completed will
provide students with foundation and experience in developing modular robotics and ANN
controller with the long-tern goal of developing smart prostheses. The primary design goal was to
develop an adaptable robotic system capable of responding to sensor data and avoiding
obstructions through a distributed network of processing nodes. This manuscript describes the
framework for several communication methods including traditional networking protocols using
the IEC 61850 standard or onion routing, mathematical transformation-based routing, and neural
network approaches while maintaining safety. However, due to time constraints at the time of this
publication the project is still in work-in-progress status and needs further time to implement and
validate the proposed methodology. The hardware implementation encountered multiple design
and manufacturing issues that are documented as lessons learned in this manuscript. This project
provides insights into the challenges of developing complex robotic systems with distributed
control architectures and serves as a foundation for future work in this domain.

This project was implemented as part of the SHSU ETEC 4199 and ETEC 4399 senior design
courses, which assess several student learning outcomes related to ABET-ETAC and ATMAE
standards.

I. INTRODUCTION

This document discusses the construction of a robotic human arm using a novel internal
architecture inspired by the human nervous system. The focus of this project was on the internal
electronic and communications systems of the arm, not on mechanical capabilities.

Currently, human prostheses are based on traditional robotics and controlled indirectly by taking
advantage of conscious muscle movement with little to no effect on other parts of the body, such
as moving ears or wrist muscles or flexing muscles to give commands to the robotic prosthesis.
This approach, known as myoelectric control, uses electromyogram (EMG) signals recorded from
the patient's residual muscles, which are then processed and used as control inputs to drive motors
coupled to the prosthetic limb [1]. Some research has been done to directly read intention from
brain scans, but this requires either an invasive brain implant, or that the patient to be placed in
large machines with many probes reading the voltage of surface nerves of the skull. Non-invasive
BCI approaches typically use electroencephalography (EEG), where topical electric sensors are
placed over the head to measure brain activities [2]. However, these systems are limited to simple
commands such as up or down and require extensive training before the patient and computer find

a pattern of thinking that works. Although non-invasive scalp recorded EEG signals can be used
successfully to manipulate prosthetic devices, the control is still limited compared to other methods
[3]. Recent developments by Neuralink appear to have recently made significant progress in
intention interpretation [4].

Ideally, direct neural integration between a prosthetic device and the patient's original nervous
system would provide intuitive control that mimics natural limb functionality [5]. However, due
to access limitations of an undergraduate program and challenges involving such neural interface
technology this is outside the scope of this time-limited undergraduate engineering project.

It is a reasonable assumption that a robotic arm interfacing with the human nervous system might
benefit from an engineering architecture based on the human nervous system. In recent years,
such biomimetic approaches have demonstrated significant efficacy in machine learning
applications where neural interfaces developed for prosthetic control aim to establish more natural
and intuitive connections between the nervous system and artificial devices [6], further supporting
the assumption. This assumption, while plausible, requires empirical validation; thus, this project
is designed to provide a means of testing this hypothesis. This engineering experiment has two
broad qualitative outcomes:

1. The arm does not work as intended; it is unable to self-direct, adapt to changes, or is not
sufficiently responsive.

2. The arm works as intended; in which case a variety of quantitative performance
measurements can be made to determine optimal design guidelines for related projects.

A. Goals of this Project

The primary objective of this research was to develop a generic robotic system with adaptive
capabilities that can respond to a range of physical geometries, potentially including self-
modification. This system is intended to serve as a foundation for future development of neural
interfaces for smart prostheses or other brain-computer integration technologies, while
simultaneously providing the researcher with valuable experience in robotics and artificial neural
network based controls.

An ideal prototype would demonstrate the following capabilities:

• Provide the operator with the ability to construct a robot as needed from individual limbs,
without requiring explicit programming of geometric parameters.

• Self-adapt to changes in geometry, without user, utilizing integrated sensors to detect its
own environment, identify potential obstructions, and determine safe movement ranges;
and

• Execute high-level commands such as object retrieval without requiring explicit path
planning, demonstrating the ability to navigate environmental obstacles autonomously as
a part of this goal.

II. DEFINITION OF TERMS

To prevent confusion, unless otherwise specified, the following terms are used according to these
definitions throughout this document. All monetary values are in United States Dollars (USD),
unless otherwise specified.

Limb – a complete, fully constructed arm segment or joint, which contains modular attachment
point(s) for expansion, and consists of one or more modules.

Module – an organizational concept comprised of purpose-built hardware containing one or more
neurons.

Nerve, neuron, or node – a software or mathematical construct, representing a single node in an
artificial neural network (ANN). When referring to the biological concept, the term is prefaced
with “biological.”

Component (outside circuit board context) – a limb, module, or neuron, determined by context.

Component or part (in context of a circuit board) – an integrated circuit chip or discrete electronic
device soldered onto the circuit board after manufacture.

Segment – a limb or module, determined by context.

Proximal is a medical term meaning "towards the direction of the attachment point of a limb." [7]
For this project, it means "In the direction of the central controller." Distal refers to the opposite
direction.

III. ENGINEERING METHODOLOGY

The initial phase of this project involved designing and constructing the robotic arm. To ensure
sufficient time for manufacturing, this was completed prior to developing the simulated version.
Additionally, the necessity of having both the prototype and simulation available for testing
dictated that both components be developed before conducting any experimental analysis. In this
Work-in-Progress (WIP) project we were able to complete only the hardware design and partial
construction of the robotic arm modules, while the firmware development, simulation environment,
and testing phases remained unfinished due to time constraints and project management challenges.
Thus, no definite quantitative result will be presented in this work.

A. Testing protocols

The experimental protocol consisted of giving the simulation or arm a standardized set of
benchmarking commands for each communication method described below in § III.D. Due to the
incomplete state of communication programming and the lack of finalized command specifications,
these testing standards were not established as of publication. Furthermore, sensor calibration
procedures were not performed.

The planned steps for the project would look as follows:

1. Program the logic of each communication protocol into the simulator. Verify full
functionality within the 2D environment. If a protocol demonstrates inoperability and
cannot be modified to achieve full functionality, designate it qualitatively as nonviable.
Both algorithmic and command list modifications would be permissible during this stage.

2. Implement the finalized logic into the arm’s firmware and test for basic functionality. If
necessary, return to step 1 for further adjustment.

3. Iterate this process until all desired protocols are properly configured.
4. Upon completion of programming for all desired protocols, repeat steps 1-3 to standardize

command lists and functional features across all protocols if any modifications were
introduced.

5. In the simulation environment, quantitatively assess each protocol for latency in message
propagation between the transmission of an unsafe command and the arm's response to
detected obstructions.

6. (Limited single communication protocol) Within the simulation, the arms would be tested
with several random movement commands and randomly placed obstructions,
quantitatively measuring the average and maximum message count between simulated
neurons, the average and maximum message size and bandwidth requirements, prevented
collisions per thousand move commands, and unprevented collisions per thousand move
commands. The number of random commands would start at 1000 and increase until the
results stop significantly changing from the previous tests.

7. Step 6 would be repeated with varying arm lengths and geometries. Parameters for testing
would include the arm's total number
of joints, frequency of branching,
and sensor density between joints.

8. The data from step 6 would be used
to calculate a maximum safe angular
speed for each joint of the
constructed prototype. The
simulation and proposed command
list would be matched to the actual
prototype’s geometry to verify
safety.

a. In the event of a collusion,
step 8 would be repeated
with a reduced joint
movement speed. If
collisions remain
unavoidable, the
communication protocol
would be qualitatively
marked nonviable.

b. In the absence of collision,
the command list would be
tested on the actual arm as
both verification and
demonstration purposes.

9. In the absence of collision, the
protocol would be tested with live
arbitrary movement commands and user-re-arrangeable obstructions to ensure operational
safety in a production environment.

10. Steps 6-9 would be repeated for each communication protocol under evaluation.

Figure 1. An illustration of a basic geometry for
an arm following this project’s design. Actual
sensor density should be much higher. A: 2x
joint module, including joint control neuron and
motor; B: 2x reflex controller module, containing
a reflex controller neuron; C: 29x sensor module,
containing inductive and capacitive collision
sensors, sensor neurons, and communication
neurons; D: 3x arm limb; E: controller module,
containing central control neuron and optionally a
base joint module.

A

B

C

D

E

B. General design overview

Physically, the arm is constructed from a series of modular limbs, providing a chain of modules
throughout the arm, serving various purposes. An example arm showing limbs and modules is
shown in Figure. 1. Each module
consists of, and communicates with
other modules through, a branched
chain of simulated "neurons," as
shown in Figure. 2, forming a
physical artificial neural network
extending throughout the arm. This
biomimetic approach draws
inspiration from brain-inspired
control techniques that closely
emulate motor functions based on
current neuroscientific insights.
Although inspired by the human
nervous system, these are not based
on human neurons. Although the
neurons are labeled by their
function, these are annotative
labels; the neurons are built using a
single generic programmed system
with specialization as needed. This
design philosophy aligns with
approaches where biologically
realistic robots are controlled by
spiking neural networks that mimic
brain mechanisms [8].

C. Component types

The module and neuron
components are organized into five
general types (communication,
central control, reflex processing,
joint actuation, and sensor), based
on function. Modules contain at least one neuron of the same type as themselves in order to gain
that functionality. A brief overview of each component type is provided in Table I.

Table 1. Quick Reference Table of Component Types

Name Function

Figure 2. Example of a possible neuron chain. Two
component types, the central controller and reflex
processors, are marked using squares to indicate that they
might require more computing power than the other neurons.

Central Controller Commands arm, learns geometry, learns environment.
Communication Links components together. Central part of each other type.
Sensor Endpoint Reads sensors, forwards values through communication backbone.
Reflex Processor Responds to sensor readings, modifying given commands to avoid

collision.
Joint Actuation Controls the joints according to received commands.

1) Communication Neurons

Communication Neurons take in a set of values from inputs, modify them as needed, and pass
them to outputs. Inputs can be received from the previous communication neuron or generated
internally (such as sensor data). Outputs may be values which get passed along to the next
communication neuron, or functions handled internally (such as actuating a joint).

The communication neurons in Figure 2 are labeled “Backbone Communication Neurons” because
they form a channel along which all signals travel. Specialized limbs may contain communication
neurons not part of the backbone if needed.

It is important to note that all neurons within the system are fundamentally communication neurons,
with certain types possessing additional specialized functionalities. For example, a sensor
endpoint neuron (below) programmatically starts as a communication neuron and performs the
additional functionality of reading and passing sensor data. Because the arm’s purpose is to
provide a platform for experimentation with communication methods, the exact specification of
communication neurons is left to the implementer. See below in III-C for more information on
planned communication functionality.

2) The central control neuron

The Central Control Neuron, also referred to as the central controller, is the point from which
control commands are issued and sensor data is ultimately sent. This is the “brain” of the arm,
although unlike a human brain, it consists of a single highly capable neuron.

3) Reflex processing neurons

Reflex Processing Neurons are a safety feature intended to countermand centrally issued
instructions if sensor data indicates the arm is about to collide with something. These are included
to be able to respond faster than the central controller, with more specific reflex procedures than
the generic central controller would be capable of. After handling sensor data, the reflex neuron’s
backbone passes it onward towards the central controller. If the reflex processor acted on the data,
this must be noted somehow, in a manner determined by the communication method. If it did not,
whether due to inability or lack of need, proximal reflex processors will get the opportunity to act.

4) The Joint Actuation and Sensor Endpoint Neurons

The Joint Actuation and Sensor Endpoint Neurons interface with non-neuron devices. Sensor
endpoints interpret data from non-neuron systems and convert readings to the format used by the

neurons. Joint actuation neurons take control signals from proximal neurons, and translate those
signals into a real-world effect, such as moving part of the arm. Every joint actuation neuron must
be distal to a reflex processing neuron to accurately and safely receive reflex commands. There
must be sensor neurons distal to the joint (not the neuron/module, the physical motor or other
actuator) to provide data for the reflex neuron to act upon.

The standard organization of the sensor, reflex, and joint modules is provided in the appendix.

D. Hardware

The basic limb consists of a cylinder with a 3-inch diameter, constructed of 3-inch-long sensor
modules (henceforth referred to as limb modules) organized according to Figure A1 in the
appendix. A single limb module of the final prototype is shown in Figure 3, and the full KiCad
design files are available at https://github.com/MichaelJ-SHSU/thesis-limb_module-rigid.

Figure 3. Proximal side of a single limb module, shown on its PVC rail.

Each limb module consists of a rigid central circuit board, with two flexible sensor boards
connected to the edges and wrapped around to form a circle. All circuit boards were designed and
manufactured for this project. The sensor board contains a checkerboard of 1 cm pads and coils
for capacitive and inductive sensing. Each sensor board has 6 rows of 11 sensors, for a total of
132 sensor neurons per sensor module. PVC pipes, wooden dowels, and 3D-printed brackets
provide rigidity throughout the limb, with a foam pad under the sensor boards to cushion impacts.
The entire limb is wrapped in plastic wrap to prevent damage to the sensor boards. This
arrangement is shown in Figure 4.

Figure 4. Cutout view of the limb.

https://github.com/MichaelJ-SHSU/thesis-limb_module-rigid

The central board contains connections to adjacent modules, sensor controllers ICs, power
regulation, and microcontrollers. The Raspberry Pi RP2040 microcontroller was chosen for its
cheap price point of $1.00 [9], relatively high number of programmable IO pins, and large
developer community. Each limb module has 2 sensor modules RP2040s and 1 communication
backbone RP2040. An integrated USB 2.0 hub is included for ease of programming and to provide
limited arm monitoring over USB.

Due to the time constraints the firmware for the RP2040s was not written. References to the
firmware program in this chapter are the originally planned functionality.

For communicating between RP2040s, UART is used. For communicating with external devices,
other protocols are available; the sensor controllers communicate over I2C and PIO I2C. The
RP2040 includes two hardware I2C channels and two hardware UART channels. Because more
channels are needed than exist, the remaining channels are added in software using programmable
IO (PIO). UART channel 0 is used for debugging and UART channel 1 is used for communicating
with the proximal RP2040. Communications with distal RP2040s must be done over PIO UART
channels. One GPIO pin on each RP2040 is used for the detection interruption.

Using RP2040’s 30 digital IO pins, minus 3 used for debugging and interrupt, this provides 13
potential two wire connections, or a maximum of 12 branches per RP2040. This provides the
potential for a maximum theoretical limb module length of 24 inches, although sizes larger than
300 mm are prohibitively expensive to manufacture in small quantities. The formulae for this
calculation is shown in Equation’s 1-9. Whether the RP2040 has sufficient processing power to
function in this scenario is another question.

 𝑅𝑅𝑠𝑠 = 𝑅𝑅𝑏𝑏 − 1 = 11 (1)
Equation 1. Formula for calculating maximum sensor neurons for a non-terminal module, where
𝑅𝑅𝑏𝑏 = maximum branches per RP2040 = 12 and 𝑅𝑅𝑠𝑠 = maximum sensor neurons for a non-
terminal module.

 𝐶𝐶𝐼𝐼2𝐶𝐶 = 𝑅𝑅𝑠𝑠𝑅𝑅𝑏𝑏 = 132 (2)
Equation 2. Formula for calculating maximum number of possible I2C channels used for sensing
in a fully utilized RP2040 based module, where 𝑅𝑅𝑏𝑏 = maximum branches per RP2040 = 12, 𝑅𝑅𝑠𝑠 =
maximum sensor neurons for a non-terminal module, and 𝐶𝐶𝐼𝐼2𝐶𝐶 = maximum number of possible
I2C channels used for sensing.

 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = lcm(4,6) = 12 (3)
Equation 3. Formula for calculating the number of sensors (of each type) available in efficient
groups, for the sensor controllers listed below, where 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = the number of sensors (of each type)
available in efficient groups, for the sensor controllers listed below. Four and six are the sensor
channels available in LDC3114 and CAP1206, respectively.

 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒
4� = 3 (4)

Equation 4. Formula for calculating the number of I2C channels in each efficient group, where
𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = the number of sensors (of each type) available in efficient groups, for the sensor controllers
listed below, and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = the number of I2C channels in each efficient group.

 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐶𝐶𝐼𝐼2𝐶𝐶
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

= 44 (5)

Equation 5. Formula for calculating the number of efficient groups of a fully utilized RP2040
based module, where 𝐶𝐶𝐼𝐼2𝐶𝐶 = maximum number of possible I2C channels used for sensing, 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 =
the number of I2C channels in each efficient group, and 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = the number of efficient groups.

 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = 2𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = 1056 (6)
Equation 6. Formula for calculating the maximum number of sensors possible if connected
efficiently in a fully utilized RP2040 based module, where 𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 = the number of sensors (of each
type) available in efficient groups, for the sensor controllers listed below, 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = the number of
efficient groups, and 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = the maximum number of sensors possible if connected efficiently.

 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

� = 48 (7)

Equation 7. Formula for calculating the number of rows of sensors required, rounded down to not
have sensor gaps, in a fully utilized RP2040 based module, where 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 = the maximum number
of sensors possible if connected efficiently, 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = the number of sensors in each row of the
prototype (22), and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = the number of rows of sensors required, rounded down to not have
sensor gaps.

 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 =
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒,𝑝𝑝 = 24 (8)

Equation 8. Formula for calculating maximum theoretical length of a fully utilized RP2040 based
module, where 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = the number of rows of sensors required, rounded down to not have sensor
gaps, 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝 = sensor rows on prototype = 6, 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒,𝑝𝑝 = length of prototype in inches = 3, and
𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 = maximum theoretical module length in inches.

The IC chosen for the capacitive sensor controller is the Microchip CAP1206. This controller was
selected for its simple usage and 6-channel sensing capabilities [10]. Each 3-inch limb module
uses 11 controllers.

For inductive proximity sensing, the Texas Instruments LDC3114 was chosen, selected because it
has 4 channels, is provided in a package size with a manufacturable footprint, and supports raw
data access. There are 17 controllers on each 3-inch limb module. Due to how I2C works, a
channel can have one of each controller type, but not two of the same controllers.

The selected ICs were tested together on a breadboard to verify the RP2040s are sufficiently
powerful prior to finalizing the PCB design, as shown in Figure 5. However, due to time and
voltage availability constraints, breadboard testing was minimal and insufficient.

Figure 5. The breadboard used for testing prior to designing PCBs

The joint modules consist of a motor and a single Raspberry Pi Zero 2 W. These modules should
contain sensors to maximize either sensor density or channel availability, but the prototype does
not due to time constraints. Because joint shape requirements may vary in different arm
configurations, exact specifications must be determined on a case-by-case basis. It should be noted
that when this project is resumed after publication of this paper, it may be necessary to also include
a Raspberry Pi Pico with each joint module for additional UART channels, because Zero 2 W only
includes a single UART channel. These modules use the more powerful system because the central
controller and reflex neurons will run on the joint modules.

E. Communication

There are several potential methods of communication and control which can be employed. The
experimental portion of this project consists of trying out the following methods and comparing
their performance. Due to time constraints, the prototype for this project only utilized a
simplified form of conventional control; the remaining methods are explored as possibilities for
experimentation in the future.

1) Conventional Control

The neuron layout resembles a substation or factory network, so it may be ideal to use conventional
industrial protocols for controlling the system. Each neuron would be assigned an address.
Neurons would send data commands directly to other neurons’ addresses or multicast messages
the entire network. IEC 61850 GOOSE would be ideal for multicast transmissions from sensors
to reflex processors and the central controller due to its high-reliability high-speed real-time
performance criteria [11]. For command messages, other industrial protocols, such as DNP3 or
Modbus, may be used.

This approach has the advantage of simplified programming, as commands may be sent directly
to a destination, with clarity while debugging of which sensors are reading what. It has the
drawbacks of traditional networking; there are a limited number of possible addresses. More
importantly, there is a limited amount of data that an individual channel can carry, limiting how
many neurons the central controller can reliably monitor and respond to. While these limits are
high, there are approximately 86 billion neurons in the human brain [12]. Because this technology
is hoped to eventually be an option for brain-computer integration enhancements, it should ideally
be possible to scale to sufficient size, and standard networks simply can’t. Other issues include
the potential for mis-operation due to lost packets.

2) Onion-Tree Routing

Assuming each neuron has a set number of neuron connections, a message to a particular neuron
could be wrapped in instructions for the in-between neurons to pass it to a particular output
connection. Before passing, each neuron would strip the instructions for itself and pass on the
remaining instructions and final message. This is illustrated in Figure 6.

Figure 6. A very simple example of onion-tree routing between a sensor endpoint neuron and the
central controller or reflex processor. Messages shown in each box indicate the message received by
that box. A message tagged with “Up:” indicates that the message should be passed to the upward
pointing output, and vice versa for “Down:”.

This eliminates the need for limited addresses but requires a larger message to be passed the further
the message’s destination. Because the messages get progressively larger the further the message
must go, this method limits total neurons by the bandwidth between intermediate neurons.
Furthermore, it requires significant amounts of RAM, since each neuron must know the path to
any neuron it might wish to communicate with.

3) Input Modification – Routing

In this control method, each output would map to a combination of inputs using a programmable
"magic formula." Specialized neurons would be programmable to act upon receiving a particular
set of input values. As an example, a communication neuron could divide the input value by a
prime number corresponding to the output number. For example, Figure 6, the left output could

be 2, and the right output could be 3. Suppose also that the original message is 17. The sensor
endpoint would send 2 ∙ 3 ∙ 2 ∙ 2 ∙ 17 = 408, and the central controller would receive 17.

This method helps with but does not solve the increasing bandwidth issue. Either the inputs are
represented as standard 64-bit binary numbers, which limits neuron distance to a maximum
“maximum distance” of 63 links, or the inputs are infinite precision numbers, which will increase
in size faster than simply adding a 1-bit left/right value to the front of the message.

Furthermore, this method is imprecise. If dividing would result in a decimal, the neuron could
simply not send, but if two paths use the same factors in different orders, e.g. 2 ∙ 3 ∙ 2 ∙ 2 and 2 ∙
2 ∙ 2 ∙ 3, multiple destinations would consider the number a valid input. This is similar to the
method typical machine learning neural networks use for intermediate calculations.

4) Input Modification – Neural Network Neuron

This method, perhaps the simplest, is for the communication neurons to behave as neurons in a
standard machine learning neural network (ML NN). Once again, each output would correspond
to a combination of inputs via a magic formula, but the output values create functionality rather
than being used for routing [13]. Although this is the simplest method to implement, it is
perhaps the most difficult to program. This method also introduces uncertainty in what the arm
is actually doing, as ML NNs produce their calculation weights randomly.

5) Vector Input Modification

This method is similar to the input modification method but uses vectors instead of scalars. Given
that each output is assigned a different polar direction, the communication neuron can simply add
the output direction to the input neuron. To prevent paths going to the same point, the input polar
value could be rotated by an arbitrary transcendental angle such as Eqn. 9.

 360∘

100 ⋅ e
≈ 1.3244 …∘ (9)

Equation 9 example arbitrary angle for vector input modification.

Because transcendental numbers cannot exist in computers, there would eventually be path
conflicts, though they’d be rarer. This would allow for propagated floating-point error, so neurons
would need an input tolerance, limiting neuron space and providing the possibility of
miscommunication.

6) Integrated sub-neural networks

This idea is to simply put a machine learning neural network inside each neuron. This would be
the most powerful option, but also the most difficult to program, and requires powerful module
processors.

7) Biological Neuron – Chemical Neurotransmitter Simulation

This idea is likely the most difficult to program and implement, but most compatible with
interfacing with human biological neurons. The idea of this method is to research and create a

simulation of a biological neuron inside each software neuron, so that the arm behaves exactly as
a human arm would.

This idea is mentioned as a possibility to support the future goals of this project but is far outside
the scope of this project and was not researched.

F. Control

Two primary methodologies exist for controlling the robotic arm system: manual programmed
control and machine learning (ML). It is important to note that not all communication methods
presented in this research are compatible with both control approaches.

(a) The programmed control approach involves explicit specification of actions for each
neuron by the operator. This method follows a rule-based paradigm where software is
programmed to automate specific tasks following predefined rules. A key implementation
decision within this approach concerns whether the arm should autonomously override
commands based on sensor data or merely report sensor information to the operator—this
determination is left to the specific implementation.

(b) ML control, while potentially offering greater adaptability, requires substantial investment
in terms of both time and financial resources for model training [14]. This approach
presents significant challenges including the relationship between complex machine
learning algorithms and limited computational resources available on robotic platforms,
and the adaptation of these algorithms to dynamic, changing environments. Under an ML
framework, the arm could be assigned a generalized objective rather than specific
commands, relying on learned capabilities to accomplish the task.

Finally, the current architecture organizes neurons in a tree structure to facilitate prototyping,
though this design decision inherently limits the system's potential capabilities. An alternative
approach involving the organization of neurons as a graph structure combined with machine
learning control methodologies would potentially provide enhanced functionality and flexibility;
however, such an implementation would significantly increase development complexity and
associated costs.

1) Confidence

Each joint controlling neuron would have a confidence value in how confident the robot is that
that joint can be safely moved. Proximal joints will adjust their own confidence to be less confident
than the distal joints they are attached to. A joint with low confidence will be restricted to moving
slowly. A joint with high confidence will allow itself to move quickly. An example confidence
algorithm is provided below after describing sensing and adaptation.

2) Sensing

Spread throughout the arm are surface sensors for detecting touch. Capacitive touch sensors detect
if the arm has touched an object. Inductive sensors detect if the arm is close to touching an object
but only works on metal objects. Additional sensor types may be used if needed by the

implementer. When a sensor detects something, a signal is sent back to the central controller. For
capacitive sensors in positions which shouldn’t touch objects, signal is also sent back to the most
proximal reflex processor.

3) Adaptation

There are two conditions where the robot arm will have to adapt to new geometry: Adding a limb
and removing a limb. When a limb is added, the robot no longer knows its safe degrees of freedom
and needs to re-learn. To accomplish this, newly powered neurons will start at the minimum
confidence level. When the overall confidence is below a threshold, the central controller operates
in a learning mode, slowly flexing available joints, starting from the most distal, to determine what
its available movement range is. If the arm comes close to touching an object, whether in learning
mode or not, it sets its maximum range to just inside its current location. Outside learning mode,
obstructions only temporarily block movement, unless they are repeatedly encountered, triggering
a confidence reduction.

When a limb is removed, the movement range is not extended, so the robot doesn’t need to relearn.
The central controller does need to know its reduced options, so the neuron proximal to the
removed neuron will send a strong “pain” signal to indicate the reduced flexibility. Response to
this signal is left to the arm’s programming. It may be used to alert the operator to damage, or may
be ignored if the program expected a limb to be removed, for example, when changing tools.

4) Confidence example

Each module would separately track confidence as described below.

1. When powered, set confidence to a small non-zero number (operator-configurable).
2. If the module detects a possible future collision, reduce confidence by an operator-

configurable value and alert proximal modules. If the detection comes from an analog
sensor, the sensor’s range can be used to reduce confidence.

3. If the module is detecting a collision, set confidence to zero.
4. If the arm is not detecting a collision and has passed a command distally, increase

confidence up to the maximum confidence value by an operator-defined value.
5. If a distal module reports a collision, reduce confidence in the power-on value.
6. Ask the distal module(s) for its/their confidence. If it is lower than the current module’s

confidence, overwrite the current module’s confidence with the provided value.

The operator-configured value in step 4 should be lower the more proximal the module is
installed. The other values should be set by experimentally determined guidelines.

When a movement command passes through the module, its speed will be clamped to the current
[confidence]:[max confidence] ratio. This means that the arm will move slowly when it detects a
nearby object and comes to a dead stop when it detects a collision. When this happens, the
operator should set behavior to either alert the operator to reset it, or auto-reset after an interval
or if the collision stops being detected.

IV. SOFTWARE SIMULATION

As a part of this project, a software simulation, shown in Figure 7, was created to test large
networks and determine how the arm and communication methods would scale to massive size.
This simulation was only partially completed. It was written in Java for rapid development, and
the source code is available at https://github.com/MichaelJ-SHSU/thesis-
simulation/releases/tag/thesis.

Figure 7. The simulation window while running.

The simulation uses several simplifying assumptions. Firstly, only a 2D plane is simulated.
Secondly, the simulation uses a simplified form of direct control for its messaging. IEC 61850
testing was canceled upon the discovery that the specification costs CHF 23'414.-c [15], equivalent
to $26 thousand dollars at the time of checking. The protocol for the simplified simulation is
shown in Table 2.

Table 2. Simple packet protocol used in simulation
Field Name Size

(bytes)
Description

Source ID 8 The ID of the sending neuron.
Destination
ID

8 The ID of the receiving neuron. The message may be intercepted
and used by other neurons.

Message ID 16 UUID of the message
Direction 4 Direction in tree message travels.

1: proximally.
2: distally.

https://github.com/MichaelJ-SHSU/thesis-simulation/releases/tag/thesis
https://github.com/MichaelJ-SHSU/thesis-simulation/releases/tag/thesis

3: both.
Other numbers reserved.

Length 4 Length of the message
Command 4 Type of message

0: NULL – ignore this message
1: MOVE – Actuate a joint to specified value. Ignored if
destination is not a joint.
10: SENSE – Sensor detected this distance.
11: SOFTSENSE – SENSE processed by reflex neuron
20: PAIN – Joint overextended or collision detected
21: SOFTPAIN – PAIN processed by reflex neuron
30: OVERRIDE_INFORM – signal from reflex neuron to central
controller informing it how its commands were changed.

Data Length-4 Function varies by command

In order to produce useful metrics for benchmarking, the simulation uses a message cycling system,
where a message cannot pass between three neurons in the same cycle. The simulation outputs the
messages passing through each node, joint movement, potential collisions reported by sensors, and
actual collisions undetected by sensors. The end of the log for moving the joint on neuron 55 is
shown in Figure 8.

Figure 8. The arm simulation window while running.

V. EXPENDITURES

The total associated cost for the project is $1,160.59, itemized as follows:

Component Cost (USD)
Prototyping equipment $44.63
Five limb modules $836.86
Two joint segments (unfinished) $211.68

Currency conversion fees $39.00
Manufacturing fees and unusable inventory $28.42
Total expenditure $1,160.59

Of the total project cost, $600.00 was provided by the Elliot T. Bowers Honors College as
research funding, with the remaining $560.59 funded through ETEC Department.

VI. FUTURE GOALS

As this is still a work in progress project the primary objective moving forward is to fulfill all of
the original project goals. This includes:

• Completion of the simulation environment with support for 2D simulation using a pre-
defined benchmarking script, implementing the methods of control and communication
described in § III-C.

• Programming the physical robotic arm to utilize at least one fully simulated communication
method and validate its performance with real-world data.

• Comprehensive testing on both the simulation platform and physical arm to determine
optimal methodologies, evaluated according to speed of command execution, reflex
responsiveness to unexpected stimuli, adaptability to geometric modifications, and
scalability potential. Given that the human brain contains approximately 86 billion
neurons [12] and considering that this project aims to develop technology that may
eventually interface with human neural systems, scalability is identified as the parameter
of highest significance.

For the sake of simplicity and plausibility, the following goals were excluded from this project’s
scope, but may be added in the future:

• Ideally, the robot should be able to attach and remove its own limbs.
• It is desired to be able to simulate biological neurons.
• The eventual goal is that the robot’s movement can be directly controlled by a person,

either by directly reading the user’s intent, or by mimicking one of the user’s limbs.

It would be useful to integrate the neural network to a camera with an image recognition
algorithm, but this is currently beyond scope.

VII. EDUCATIONAL COMPONENT

This senior design project was implemented as part of the ETEC 4199 – Senior Design I and ETEC
4399 – Senior Design II course sequence. ETEC 4199 constitutes a one-credit proposal defense
conducted in the Fall semester, while ETEC 4399 comprises a three-credit course in which students
prototype, troubleshoot, and evaluate their designs. Both courses assess multiple student learning
outcomes aligned with ABET-ETAC and ATMAE standards, particularly focusing on
SLO3+SLO5 (ABET-ETAC) and SLO4+SLO5 (ATMAE), which emphasize effective
functioning as both member and leader in technical teams across diverse presentation formats.
The performance indicators for these learning outcomes include:

1. Use of appropriate context, conventions, and mechanics

2. Utilization of credible sources, evidence, and structure
3. Demonstration of oral presentation skills

This project represents one of eleven capstone projects completed during the 2024-2025 academic
year in section ETEC 4199-01. Notably, this project was unique among the cohort as it involved a
single student working independently under honors college thesis requirements and with honors
college funding support. Throughout the development process, three formal in-class presentations
(preliminary, midterm, and final) were conducted, providing valuable critical feedback from peer
teams and faculty members. Additionally, weekly consultations with faculty advisors were held
either face-to-face or via Zoom outside regular class hours to monitor progress and address design
challenges.
Assessment metrics for the aforementioned student learning outcomes are presented in Table 2.
Comprehensive assessment data for all student learning outcomes will be completed following the
conclusion of ETEC 4399 at the end of the Spring 2025 semester, though this information will not
be available for inclusion in the final draft should this paper be accepted for publication.

Table 3. Sample assessment selected for SLO3+SLO5 (ABET-ETAC) and SLO4+SLO5
(ATMAE)

Key Performance Indicators Unsatisfactory
< 60%

Developing
60-69%

Satisfactory
70-79%

Exemplary
≥ 80%

a) Use appropriate context,
conventions, and mechanics
(Pre-Proposal + Mid-Report)

0% 0% 0% 100%

b) Use credible sources,
evidence, and structure (Final
Technical Report)

0% 0% 0% 100%

c) Demonstrate oral
presentation skills (Final +
Mid Presentation)

3.3% 0% 0% 96.7%

REFERENCES

[1] Sudarsan, S., & Sekaran, E. C. (2012). Design and development of EMG-controlled prosthetic
limb. Procedia Engineering, 38, 3547–3551.

[2] Patil, P. G., & Turner, D. A. (2008). The development of brain–machine interface
neuroprosthetic devices. Neurotherapeutics, 5, 137–146.

[3] Murphy, D. P., Bai, O., Gorgey, A. S., Fox, J., Lovegreen, W. T., Burkhardt, B. W., … Fei, D.
Y. (2017). Electroencephalogram-based brain–computer interface and lower-limb prosthesis
control: A case study. Frontiers in Neurology, 8, 696.

[4] Neuralink. (2024, August). Prime study progress update — second participant. Retrieved
January 14, 2025, from https://neuralink.com/blog/prime-study-progress-update-second-
participant/

[5] Shu, T., Herrera-Arcos, G., Taylor, C. R., & Herr, H. M. (2024). Mechanoneural interfaces for
bionic integration. Nature Reviews Bioengineering, 2(5), 374–391.

[6] Schultz, A. E., & Kuiken, T. A. (2011). Neural interfaces for control of upper limb prostheses:
The state of the art and future possibilities. PM&R, 3(1), 55–67.

[7] Tortora, G. J., & Derrickson, B. (2012). Principles of anatomy & physiology (13th ed., p. 14).
Hoboken, NJ: John Wiley & Sons.

[8] Bing, Z., Meschede, C., Röhrbein, F., Huang, K., & Knoll, A. C. (2018). A survey of robotics
control based on learning-inspired spiking neural networks. Frontiers in Neurorobotics, 12, 35.

[9] Raspberry Pi. (n.d.). Buy a RP2040. Retrieved October 22, 2024, from
https://www.raspberrypi.com/products/rp2040/

[10] Microchip Technology. (2015, November). CAP1206: 6-channel capacitive touch sensor
(DS00001567B) [Data sheet]. Retrieved from https://www.microchip.com/en-
us/product/cap1206

[11] Hou, D., & Dolezilek, D. (2010, October). IEC 61850: What it can and cannot offer to
traditional protection schemes. SEL Journal of Reliable Power, 1(2). Retrieved from
https://cdn.selinc.com/assets/Literature/Publications/Technical%20Papers/6335_IEC61850_
DH-DD_20080912_Web.pdf

[12] Lent, R., Azevedo, F. A. C., Andrade-Moraes, C. H., & Pinto, A. V. O. (2012). How many
neurons do you have? Some dogmas of quantitative neuroscience under revision. European
Journal of Neuroscience, 35(1), 1–9. https://doi.org/10.1111/j.1460-9568.2011.07923.x

[13] Islam, M., Chen, G., & Jin, S. (2019). An overview of neural network. American Journal
of Neural Networks and Applications, 5(1), 7–11.
https://doi.org/10.11648/j.ajnna.20190501.12

[14] Wang, S., Zheng, H., Wen, X., & Shang, F. (2024). Distributed high-performance
computing methods for accelerating deep learning training. Journal of Knowledge Learning
and Science Technology, 3(3), 108–127. https://doi.org/10.60087/jklst.v3.n3.p108-126

[15] International Electrotechnical Commission. (2025). IEC 61850:2025 SER. Retrieved from
https://webstore.iec.ch/en/publication/6028

APPENDIX

The hardware organization diagrams for the modules used by the prototype for this project are
provided in Figure A1, A2, and A3.

Figure A1. The organization of the sensor modules in this project. Designed for 3 inches of a
limb with a 3-inch diameter. Implementers need not follow this organization; modify it to suit
the needs of the limb being designed.

Figure A2. Generic sensor module block diagram.

Figure A3. Generic joint module block diagram.

	Abstract
	I. Introduction
	A. Goals of this Project

	II. Definition of Terms
	III. Engineering Methodology
	A. Testing protocols
	B. General design overview
	C. Component types
	1) Communication Neurons
	2) The central control neuron
	3) Reflex processing neurons
	4) The Joint Actuation and Sensor Endpoint Neurons

	D. Hardware
	E. Communication
	1) Conventional Control
	2) Onion-Tree Routing
	3) Input Modification – Routing
	4) Input Modification – Neural Network Neuron
	5) Vector Input Modification
	6) Integrated sub-neural networks
	7) Biological Neuron – Chemical Neurotransmitter Simulation

	F. Control
	1) Confidence
	2) Sensing
	3) Adaptation
	4) Confidence example

	IV. Software Simulation
	V. Expenditures
	VI. Future Goals
	VII. Educational Component
	References
	Appendix

