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Data-Driven Insights into Academic Success: Analyzing ten years of student
academic records in an Electrical and Computer Engineering department

Abstract

This empirical research paper presents an analysis of a longitudinal dataset covering 10 years
of student academic performance using statistical and machine learning methods, contextualized
within the School of Electrical and Computer Engineering (ECE) at a large, public, research-
intensive institution in the Southeast United States. This investigation expands upon a research
work presented at the 2024 ASEE Conference, which identified predictors of student academic
success in an upper-level microelectronic circuits course from a smaller dataset with fewer predic-
tors. In this study, we have expanded the analysis in several dimensions (i.e., time scale, predictor
variables, and outcome variables) and have also developed machine learning models to predict stu-
dent performance in the core microelectronic circuits course in the ECE curriculum. Altogether,
this analysis indicates opportunities to help program leaders provide students with early, effec-
tive, and personalized support, enhancing academic success across the diverse backgrounds that
students bring to their undergraduate studies. This work builds on prior work in engineering ed-
ucation modeling predictors of academic success through academic records, but is contextualized
to a specific undergraduate program, which allows for a fine-grained interpretation of results that
may be transferable to other institutions.

Introduction and Background

Many engineering educational researchers have worked with large-scale datasets of students’ aca-
demic records to better understand influential factors on students’ performance [1, 2, 3, 4]. Such
datasets enable robust statistical analyses that uncover generalizable trends across diverse student
populations, providing valuable insights into the systemic influences on student outcomes, as well
as to identify students who may need additional support to achieve the academic success of which
they are capable. These studies have shed light on critical factors such as high school preparation
(e.g., [5]) and first-year experiences (e.g., [6]), which collectively influence students’ persistence
and success in engineering undergraduate programs.

Building on this body of work, this paper leverages the unique opportunity afforded by the large
enrollment in the School of Electrical and Computer Engineering to create a dataset that balances
statistical power with the ability to capture department-specific nuances. Unlike national datasets,
which are invaluable for understanding macro-level trends, institution-specific datasets allow for
a deeper exploration of localized factors, including curriculum design, pedagogical practices, and
departmental policies, that may uniquely impact student performance and engagement. This lo-
calized focus can also reveal long-standing legacies within the department that influence student
outcomes, offering opportunities for targeted interventions and reforms.

In addition to drawing on traditional statistical methods, this work incorporates machine learning
techniques to analyze complex, high-dimensional data. Machine learning approaches enable the



identification of non-linear relationships and interactions among variables that might otherwise re-
main hidden in conventional analyses. These methods can support the development of personalized
interventions, enabling institutions to proactively address challenges faced by individual students
or specific student populations. This work seeks to harness the power of machine learning not
only to enhance the interpretability of complex educational data but also to provide actionable in-
sights that can guide curriculum development, academic advising, and institutional policies aimed
at improving student outcomes.

This work expands upon a previous analysis [7]. The expanded dataset spans from Fall 2014 to
Spring 2024 and includes data for approximately 1,600 students. The dataset includes students’
high school performance (e.g., whether taking advanced placement courses, SAT scores), academic
records at the current institution (e.g., grades and number of attempts in various courses), and addi-
tional characteristics such as transfer credits, transfer history, gender, and ethnicity. Given the large
scale of the institution and the diverse backgrounds of its students, the dataset exhibits significant
heterogeneity across the attributes. By applying data-mining techniques to this dataset, we can
gain valuable insights into the factors that influence students’ academic performance throughout
their time at the institution.

The analysis in this paper concentrated on a 4-credit hour, junior-level course on semiconductor
architecture that is notorious within the department for its difficulty. We refer to this course as
“ECE 301” (a pseudonym). Of the 1,592 students who have taken ECE 301 in the study time
frame, 15.3% earned a final grade of a “D”, “F”, or “W” and 19.0% earned a “C” in their first trial.
Among these students, around 65% of students were direct matriculation, meaning that around a
third of students were transfer or readmitted students, although this number has fluctuated over
time. For the purposes of this study, a representative subset of approximately 790 student samples
was selected from the full dataset. This subset was chosen to balance computational feasibility
with the ability to capture meaningful trends and variations within the data. A heuristic analysis
was conducted on this subset, with findings presented in the main text.

Literature Review

Recently, more and more research and projects [8] have been conducted to analyze factors that
predict students’ journeys and academic success in academic institutions. With the trend, many
related datasets are crafted, such as StudentLife [9] and MIDFIELD [1]. Some of these datasets
can be specific to a certain case (such as within a specific institution/course), while others collected
data widely, compiling academic record data across different institutions. From these records, re-
searchers can capture critical factors associated with students’ academic success by data-mining
these collected academic data [10]. Nevertheless, with student populations becoming increasingly
diverse, educators aim to discover wider and more detailed factors to facilitate more precise and
personalized assistance for those at-risk students. For example, Hu and Rangwala [11] used deep
learning tools to analyze the impact of a certain course grade on the student’s academic perfor-
mance instead of only relying on overall GPAs. Aggarwal et al. [12] highlighted the advantages of
incorporating non-academic factors, such as parental annual income and the state of residence, into
the evaluation of a student’s future performance. Some studies [13, 14] have also reported the im-
portance of factors such as motivation and belongingness, and althougth linking these factors with



academic record shows immense progress, it requires additional data collection procedures. Alto-
gether, these existing works indicate the need for more fine-grained and diverse student academic
data to better support students. With a similar goal of exploring the detailed factors influencing
students’ academic success, this work represents the early quantitative phase of a larger mixed-
method project aimed at identifying opportunities to support ECE students’ academic success.

Purpose and Research Questions

This work aims to answer the following questions via data-mining the collected student data on
ECE 301:

(1) What are the relative influences of student characteristics, course characteristics, and student
prior academic performance on students’ final grades in ECE 301?

(2) To what extent can we identify students who are at risk of struggling in ECE 301 using
information contained within their prior academic records?

Methods

Data Creation

Previously, the authors [7] described the creation of an academic record dataset for ECE students
at an institution in the United States. Although this dataset provided valuable insights into student
success in a microelectronic circuits course, there were some noted limitations. For example,
the authors were unable to access information about credits students brought to the institution,
whether through prior coursework or pathways such as Advanced Placement (AP) testing. As
a result, the dataset did not capture the complete academic record of students, particularly for
transfer students. We have worked alongside institutional data management experts to expand
the initial dataset in [7] and support more robust analyses. This expansion includes expanding
the time frame (Fall 2014 — Spring 2024, compared to Fall 2016 — Spring 2023), adding new
student- and course-level variables, and collaboratively building systems for updating the dataset
each semester. The project was approved by the institution’s Institutional Review Board, and the
data provided was de-identified using unique identifiers to safeguard students’ information. We
outline the dataset’s variables and structure to support researchers conducting department-level
analyses of student academic performance as follows. Details on the measurement of various
student and course characteristics can be found in [7].

• Student Characteristics: Each row represents a student-semester instance and includes in-
formation such as the student’s unique identifier, gender, race, citizenship status, residency
code, matriculation term, admit type, and standardized test scores (SAT or SAT equivalent).
High school GPA and the name of the high school were also included if provided during
admissions.

• Transfer Credits: Each row represents a student-course instance and includes the student’s
unique identifier, course details (subject code and name) for which transfer credits were
awarded, and the source of those credits (e.g., prior institution, AP testing, SAT II testing,
etc.).

• Course History: Each row represents a student-course instance and includes the student’s
unique identifier, term code, course details (subject code and name), final grade, instructor



name, and the student’s cumulative GPA and term GPA.

In addition to the institutional dataset, we utilized two supplementary data sources. First, to contex-
tualize transfer credits, we categorized institutions based on their Carnegie classification. Second,
we gathered data on the average grade in the course for each course section in each semester.
This information allowed us to interpret grade data as relative performance, comparing students
in similar contexts while accounting for potential variations between instructors. Using these sub-
datasets, we constructed a student-level dataset, where each row represents an individual student
with their academic information aggregated into a series of columns. The variables examined
include:

• Admission type (direct matriculation from high school versus other matriculation pathways)
• SAT Math score (for directly matriculated students; converted from ACT if necessary)
• AP counts (number of AP exams a student used for transfer credits in STEM courses)
• Student cumulative GPA of the term they take the latest pre-course (on a 4.0 scale)
• Final grades in courses within the ECE 301 pre-requisite chain. This chain has changed

over time and includes grades on an “A–F” scale, with a “T” representing transfer credits.
The courses are: Physics II, Differential Equations (DiffEQ), Multivariate Calculus (Calc3),
Programming, Digital System Design, and Circuit Analysis.

• Normalized final grade in courses within the ECE 301 pre-requisite chain (numeric). To
account for variations in grading standards among instructors, each student’s pre-requisite
grade is “normalized” by dividing it by the average grade of the specific section when the
credits were earned at the focal institution.

• High school information, including students’ SAT/ACT scores and AP test data.

Compared with [7], the analysis in this paper does not include students’ demographic variables
(gender and race/ethnicity) or instructor identity. Note that gender and race were not identified as
significant predictors in the prior work [7]. The focus of this paper is more on mutable attributes,
such as proficiency in specific pre-requisites. The enhanced dataset offers a robust foundation for
exploring factors contributing to student success in ECE.

Data Analysis

We categorized students based on their matriculation history to separately analyze directly matric-
ulated students and transfer students. Although these students share the same classrooms, their
academic records exhibit significant differences that warrant careful consideration. First, directly
matriculated students typically completed ECE 301’s core pre-requisites (such as Physic II and
Circuit Analysis) at the focal institution. This provides a detailed record of their proficiency, re-
flected through a range of letter grades. In contrast, transfer students often bring in credits for pre-
requisites (shown in Figure 3), which are recorded as a “T” (transfer) on their academic records.
This limits insights into their knowledge acquisition and retention. Second, the academic record’s
ability to capture students’ academic histories differs between groups. Transfer credits are recorded
in the semester they are recognized by the focal institution (often the students’ first semester there),
rather than the semester the courses were originally completed. This distinction affects how aca-
demic histories are evaluated over time. As a result, it is more practical to treat these two groups



as separate when analyzing students at different stages of their academic journey.

To determine whether we can identify students who may be at risk of struggling in ECE 301 early,
allowing us to provide the necessary support to enhance their academic success, we designed
different stages to investigate prediction models. The stages are designed based on several pre-
requisite courses (feature courses) students are required to take before enrolling in ECE 301.

For directly matriculated students, we selected three ECE foundation courses: Physics II, Multi-
variate Calculus (Calc 3), and Differential Equations (DiffEQ), along with four ECE major courses:
Digital System Design, Programming, Circuit Analysis, and Digital Design. These courses are
typically taken in a specific sequence, as illustrated in Figure 4(a). This chronological order pro-
vides a useful framework for analyzing students at different stages of their academic journey and
offering timely, personalized support to identified at-risk students. The stage design for directly
matriculated students is summarized in Table 1.

• Stage 1 includes students’ high school information, grades from two introductory courses
– Physics II and Digital System Design – and their cumulative GPAs for the corresponding
semester. This information is available by the end of the second term (as shown in Figure
4(a), on average, students complete Physics II and Digital System Design during their first
and second semester, respectively).

• Stage 2 adds DiffEQ and Calc3, which are generally completed by the end of the third term,
to the feature list of Stage 1. Students’ cumulative GPAs are also updated.

• Stage 3 incorporates all prerequisite courses, typically completed by the fourth term, in
addition to updated cumulative GPAs and high school information.

For transfer students, the stage design and associated feature list are different, as some prerequisite
courses are transferred from other institutions (as shown in Figure 3). For example, Calc3, Physics
II, and DiffEQ are commonly transferred. All these transfer credits are marked as “T”, resulting
in information redundancy and high feature correlation among these course features. Therefore,
we retained Physics II from these three courses to explore the relationship between students’ per-
formance in ECE 301 and their previous institution. Target encoding was used to replace the “T”
grades with the average ECE 301 grade of the corresponding group of students who transferred
from the same class of institution, as classified by the Carnegie Classification of Institutions of
Higher Education. Additionally, as shown in Figure 4(b), the sequence of prerequisite courses for
transfer students differs slightly from that of directly matriculated students due to the transferred
credits. For example, the average term for completing Circuit Analysis is earlier, as many transfer
students receive credit for this course prior to enrollment. The stage design for transfer students is
outlined in Table 2:

• Stage 1 includes students’ high school information, grades from Physics II and Digital Sys-
tem Design, and their cumulative GPAs for the corresponding semester. This information is
commonly available by the end of the first term, as shown in Figure 4(b).

• Stage 2 adds Circuit Analysis, which are generally completed by the end of the first or second
term, to the feature list of Stage 1. Students’ cumulative GPAs are also updated.

• Stage 3 incorporates all prerequisite courses, typically completed by the third term, in addi-
tion to updated cumulative GPAs and high school information.



Table 1: The stage design for directly matriculated students

Stage Feature List

1 Physics II, Digital System Design, cumulative GPA, high school information
2 Stage 1 + DiffEQ + Calc3
3 Stage 2 + Circuit Analysis + Programming + Digital Design

Table 2: The stage design for transfer students

Stage Feature List

1 Physics II, Digital System Design, cumulative GPA, high school information
2 Stage 1 + Circuit Analysis
3 Stage 2 + Programming + Digital Design

For the prediction target, we classify students’ performance in ECE 301 into two categories: grades
A and B are labeled as good performance (“0”), while grades C, D, F, and W are labeled as poor
performance (“1”). By including grade C in the “poor performance” category, the program can
proactively target a larger group of students for intervention, ensuring that the students who are on
the borderline receive the resources needed to improve their performance before facing academic
difficulties. With the designed stages and prediction targets, machine learning tools are applied to
classify and analyze both directly matriculated students and transfer students.

For the machine learning model, we selected random forest [15] for prediction due to several
reasons:

1) Ability to handle feature correlation: One notable characteristic of our data is the potential
correlation between different features, such as grades in various pre-requisite courses, as
illustrated in Figure 5. Random forest mitigates this issue by using different data subsets for
each decision tree, effectively reducing the impact of feature correlation.

2) Robustness to outliers: In practice, a student’s performance in a specific course may be
affected by some non-academic factors, such as illnesses, resulting in outliers in the data.
Random forest reduces the impact of such outliers through majority voting during prediction.

3) Efficiency in student performance prediction: Random forest has been demonstrated to be
one of the most effective tools in student performance prediction [8].

We performed 10-fold cross-validation and averaged the performance over three random seeds.
The evaluation metrics used were accuracy and recall to assess prediction performance.

In addition to evaluating the prediction performance of the trained random forest model, we aim
to identify the importance of individual features within the collected data. Understanding feature
importance allows us to explore the factors contributing to why some students struggle in ECE
301. For this analysis, we use SHapley Additive exPlanations (SHAP) [16] to analyze the fea-
ture importance for the trained random forest model. Compared to other methods, such as Gini
importance or permutation importance, SHAP offers greater robustness to correlations between



Table 3: Longitudinal Enrollment and Student Characteristics

Term Overall Enrollment % Women % Under-represented % Transfer
Fall 2014 151 11.92 15.89 44.37
Spring 2015 111 15.32 25.23 43.24
Fall 2015 112 11.61 26.79 37.50
Spring 2016 72 18.06 15.28 37.50
Fall 2016 102 15.69 26.47 38.24
Spring 2017 71 16.90 19.72 45.07
Fall 2017 88 25.00 29.55 36.36
Spring 2018 83 14.46 21.69 33.73
Fall 2018 83 22.89 24.10 38.55
Spring 2019 75 14.67 24.00 40.00
Fall 2019 71 14.08 21.13 36.62
Spring 2020 52 26.92 23.08 26.92
Fall 2020 75 24.00 22.67 26.67
Spring 2021 61 16.39 14.75 27.87
Fall 2021 60 26.67 18.33 28.33
Spring 2022 59 15.25 16.95 40.68
Fall 2022 74 14.86 24.32 32.43
Spring 2023 67 14.93 22.39 44.78
Fall 2023 61 13.11 29.51 39.34
Spring 2024 64 26.56 28.12 25.00
Total 1592 17.34 22.55 37.00

prerequisite features, making it a more reliable tool for our analysis.

Results

Basic Statistical Information of the Dataset

Between Fall 2014 and Spring 2024, a total of 1,592 students received final grades in ECE 301.
Below, we first present count data detailing the composition of students enrolled in ECE 301. We
then analyze how final grades varied based on student characteristics, course characteristics, and
prior academic performance.

Count Information

Table 3 disaggregates enrollment numbers over time by gender, race/ethnicity, and transfer sta-
tus. Overall, women made up 17.3% of the course population, students from minoritized racial or
ethnic backgrounds made up 22.5%, and transfer students constituted 37.0% on average, though
these proportions have fluctuated over time. Because of the challenges of presenting the three-
dimensional intersections of these categories, Figure 1 provides separate line charts showing final
grade performance by gender, race/ethnicity, and transfer status. Figure 1(a) indicates that women



201408
201502

201508
201602

201608
201702

201708
201802

201808
201902

201908
202002

202008
202102

202108
202202

202208
202302

202308
202402

Term Code

F

D

C

B

A
Av

er
ag

e F
in

al 
Gr

ad
e

Male
Female
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(b) Trends of average final grade over term codes by combined races
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(c) Trends of average final grade over term codes by transfer statuses

Figure 1: Trends of average final grade over term codes by various demographic and status groups

generally performed at the same level as their male peers, except during the Spring and Fall 2022
semesters, after which their average performance returned to parity. Figure 1(b) reveals that, start-
ing in Fall 2022, students from minoritized racial backgrounds experienced lower performance.
These trends are not easily attributed to course characteristics (e.g., modality or instructor), sug-
gesting the need for further investigation. Finally, as shown in Figure 1(c), transfer students per-
formed comparably to directly matriculated students before Spring 2020. However, a performance



gap emerged during that semester, persisted until it closed in Spring 2023, and then began to fluc-
tuate over the past two terms. This finding inspired us to treat directly matriculated students and
transfer students as separate groups for comparison and analysis.

ECE 301 Performance

Figure 2 presents the ECE 301 grade distribution from Fall 2014 to Spring 2024. It shows that
about 30–50% students received grades lower than a “B”, with this percentage varying across
terms. Among these underperformed students, the majority received a “C,” except in Fall 2019,
which exhibited a different pattern.
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Figure 2: Percentage of students with each grade by term code

Pre-requisite Courses

Figure 3 shows the percentage of transfer students who transferred the corresponding pre-requisite
course from another institution. It indicates that most transfer students transferred credits for
Physics II, Calc3, and DiffEQ from their previous institutions, while 27% students transferred
credits for Circuit Analysis. A high proportion of transferred pre-requisite courses reduces data
quality, as the institution records only a “T” for these courses instead of in-institution letter grades
(e.g., “A” or “D”). In contrast, courses such as Digital System Design, Digital Design, and Pro-
gramming are less impacted by transfer credits.

Figure 4 illustrates the average number of terms students spent after enrolling at the institution



before taking specific courses. For directly matriculated students, Physics II and Digital System
Design are typically taken after the first term, Calc3 and DiffEQ after the second term, and Pro-
gramming, Circuit Analysis, and Digital Design after the third term. ECE 301 is generally taken
after the fifth term. For transfer students, the sequence is slightly altered, as some courses, such
as Physics II and Circuit Analysis, are often transferred before enrollment. This timeline provides
valuable insights for designing time-based stages to identify and support students earlier in their
academic journey.
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Figure 3: The transfer ratio of different pre-courses within transfer students

Performance Correlation

Figure 5 presents the correlation between students’ high school information, their pre-requisite
course performance, and their performance in ECE 301. The correlation matrix reveals that many
pre-requisite courses have positive relationships with ECE 301, suggesting that strong performance
in these courses is associated with success in ECE 301. Notably, cumulative GPA exhibits the
strongest correlation with ECE 301 performance. In contrast, the relationship between students’
high school information (e.g., SAT Math scores and AP count) and ECE 301 is weaker. This is un-
surprising, as high school academic information is temporally distant from ECE 301 and reflects a
more basic level of knowledge. Consistent with this, subsequent feature importance analyses (Fig-
ures 6 and 8) confirm that these two high school features are among the least influential predictors
of ECE 301 performance.

Prediction and Analysis

For this analysis, we sampled students with complete records of the aforementioned pre-courses,
yielding 540 directly matriculated students and 249 transfer students. For these two groups, we
iterated through each stage defined in Tables 1 and 2, testing all possible feature combinations
for training the random forest model. For each combination, we set the number of trees to 300
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Figure 4: The average term (including summer terms) spent for students (after enrolling in the
institution) before taking certain courses recorded in our data
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Figure 5: The correlation matrix among features in the collected student data

and performed a grid search over three random forest hyperparameters: max depth (3, 5, 7, 10),
min samples split (5, 10, 15), and min samples leaf (5, 10, 15). We reported the best
10-fold average prediction performance (accuracy and recall) across three random seeds (1000,
2000, 3000) and recorded the corresponding hyperparameters, as shown in Tables 4 and 5.

Table 4: Different stages’ best hyperparameters for directly matriculated students

Stage Max Depth Min Samples Split Min Samples Leaf

1 3 5 5
2 10 5 15
3 7 5 15

Results for Directly Matriculated Students

Table 6 presents the best feature combinations and corresponding performance metrics for each



Table 5: Different stages’ best hyperparameters for transfer students

Stage Max Depth Min Samples Split Min Samples Leaf

1 5 5 10
2 3 5 5
3 3 5 15

stage. The results show a clear performance improvement as the stages progress, with more pre-
requisite courses being considered. This indicates that incorporating more recent information,
such as grades from Circuit Analysis and Programming, allows for more accurate predictions of
students’ future performance, achieving an accuracy of 80.91%. Notably, while slightly lower, the
early-stage prediction performance remains impressive, with an accuracy of 77.37%. This finding
underscores the potential to identify and support students at risk of struggling in a middle-level
course several terms in advance.

Table 6: Each stage’s best prediction accuracy and recall and the corresponding feature combi-
nation for directly matriculated students. All combinations include high school information (i.e.,
SAT Math score, AP count) by default.

Stage Feature combination Accuracy Recall

1 Digital System Design, Physics II, cumulative GPA 77.37% 76.73%
2 Stage 1 + DiffEQ 78.79% 77.41%
3 Stage 2 + Circuit Analysis + Programming 80.91% 78.11%
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Figure 6: Feature importance for directly matriculated students.
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Figure 7: SHAP value of different data points in directly matriculated students

Figure 6 shows the SHAP-based feature importance for all input features in the final stage. Besides
cumulative GPA, those higher-level course features (e.g., Circuit Analysis and Programming) play
a significant role in predicting students’ ECE 301 performance, with the exception of Digital De-
sign. This finding aligns with the feature combination results in Table 6, which does not include
Digital Design but covers two other higher-level course features. Conversely, high school academic
information, such as SAT Math scores and AP count, shows lower importance. This observations
matches our finding of the weak positive correlation between these features and ECE 301 perfor-
mance in Figure 5. Figure 7 provides a more detailed view of feature importance across different
input features. Consistent with Figure 6, it reveals that the impact (SHAP values) of cumulative
GPA and higher-level courses is larger and more clearly distributed as these features vary across
student samples.

Results for Transfer Students

For transfer students, the model performance improves at higher stages, similar to the results for
directly matriculated students (Table 6). However, the accuracy for transfer students is lower com-
pared to directly matriculated students. This discrepancy can be attributed to poorer data quality
and fewer available input features. Many prerequisite courses for transfer students, such as Circuit
Analysis and Physics II, are recorded as transfer credits (“T”), which provide less detailed informa-
tion than letter grades (e.g., “A” or “B”) available for directly matriculated students. Despite these
limitations, the prediction performance in the early stage remains acceptable, achieving 72.26%
accuracy and 76.21% recall with very limited features. The high recall (such as 82.48% in Stage
2) is particularly significant, as it indicates that most at-risk students can be identified shortly after
completing their first or second terms.



Table 7: Each stage’s best prediction accuracy and recall, and the corresponding feature combina-
tion for 249 transfer students. All combinations include high school information (i.e., AP count) by
default, SAT Math score is not included as we don’t have records for about 50% transfer students.

Stage Feature combination Accuracy Recall

1 Physics II, Digital System Design, cumulative GPA 72.26% 76.21%
2 Stage 1 + Circuit Analysis 72.86% 82.48%
3 Stage 2 + Programming + Digital Design 74.17% 85.39%
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Figure 8: Feature importance for transfer students
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Figure 9: SHAP value of different data points in transfer students



Figures 8 and 9 present the feature importance and SHAP analysis for the input features in Stage
3. High school information, such as AP count, remains the least important feature. Interestingly,
“Circuit Analysis,” which is an important feature for directly matriculated students, becomes less
significant for transfer students. This can be attributed to the fact that many transfer students bring
in “Circuit Analysis” credits from their original institutions (as shown in Figure 3). In contrast,
Digital Design and Programming are two courses for which students cannot bring transfer credit
(as indicated by a 0% transfer ratio in Table 3). These courses play a crucial role in evaluating
transfer students’ performance.

Discussion

Our stage experiments, summarized in Tables 6 and 7, demonstrate that students’ early academic
information can serve as a powerful predictor for their success in higher-level courses, even several
terms later. By leveraging this predictive power, institutions can more effectively identify students
who may be at risk of underperforming, allowing for the implementation of timely interventions
and additional support, such as tutoring, mentoring, or personalized academic advising. These ef-
forts can ultimately help students improve their academic outcomes and progress smoothly through
their educational journey.

At the same time, we must be mindful of the ways in which this information is used and made
public. While predictive analytics hold great promise in enhancing student support, it is important
to avoid inadvertently reinforcing biases or stigmatizing individuals, especially over matters they
might not have had much control over [17]. The messaging and framing of these developments is
key to improve the relevance, accuracy, and context of big data interventions [18].

In practical terms, the importance of features is often more valuable than the accuracy of the
model’s predictions. By analyzing feature importance, we can identify key factors influencing
student success and implement targeted actions to improve outcomes. For instance, Figure 6 high-
lights the significance of Physics II, an early-stage prerequisite, for ECE 301 performance. This
finding suggests that improving the teaching quality of Physics II could positively impact student
success in ECE 301. Additionally, the differences in feature importance between directly matricu-
lated and transfer students offer intriguing insights that warrant further investigation. As shown in
Figure 3, this is partly caused by the transfer credits of other prerequisite courses, but does it still
suggest the potential in investigating the differences between directly matriculated students and
transfer students more deeply, as well as the corresponding analytical systems.

In the future, we plan to investigate the predictive accuracy of student data across additional ECE
major courses and earlier foundational courses. Additionally, based on a wealth of evidence sup-
porting the predictive capabilities of student attitudes [19], we also hope to take advantage of our
in-house analysis to complement the academic record data with non-cognitive survey data. By
providing timely, personalized support to at-risk students, we aim to promote greater academic
success and improve outcomes throughout their educational journey at the institution.



Conclusions and Implications

In this work, we aim to understand student performance in a junior-level microelectronics course
(ECE 301) at a large, public, research-intensive institution in the Southeastern United States. We
collected 10 years of academic data, including students’ high school records, prior institution data
(for transfer students), and grades from prerequisite courses. Students were categorized into di-
rectly matriculated and transfer groups, and their data were analyzed across different time stages
to predict future performance in ECE 301. Using this data, we constructed a dataset and trained
a random forest model to predict student performance in ECE 301. The results demonstrate that
at-risk students can be accurately identified at an early stage, offering promising opportunities
for timely intervention by educators. To further understand the predictors of student success, we
applied SHAP to analyze feature importance and identified several critical prerequisite courses.
These findings highlight the potential to enhance educational quality through model-driven feed-
back. Future work will focus on standardizing the current student performance evaluation system
across different engineering courses and time stages, as well as exploring methods to design per-
sonalized support for at-risk students based on system feedback.
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