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Coding Competency and Confidence to Prepare for Opportunity 

 

This is a Work in Progress paper. 

Abstract  

This paper explores the effect of autograders on student coding abilities, coding confidence, and 

overall learning experience in a junior-level mechanical engineering class on numerical methods 

with individual assignments and an open-ended collaborative term project. In coding-intensive 

large enrollment courses where human grading might take several weeks, autograders can 

provide immediate and consistent feedback. The real-time feedback allows students to learn from 

their mistakes and rectify those mistakes, thereby improving understanding and coding 

confidence. Autograded assignments can also reduce the grading time and effort for graders and 

teaching assistants in addition to lowering the burden for instructors to provide quick feedback 

on intermediate attempts of student codes during office hours. However, existing studies 

highlight potential concerns such as fostering students’ overreliance on the autograder instead of 

encouraging independent debugging efforts. Additionally instructors using autograders must 

provide additional instruction with the assignment so that students are able to effectively cater to 

the autograder requirements. In this study, we aim to analyze whether the availability of an 

autograder implemented with Gradescope and developed for mechanical engineering students 

with limited formal coding exposure can improve student coding confidence, perceived coding 

ability, and student engagement. Additionally, we investigate whether the autograder reduces 

debugging time on assignments, promotes over-reliance on the instant feedback, and whether 

hidden tests for some tasks could mitigate any overdependence.  Preliminary results from an end-

of-semester survey administered to students suggest that the autograder increased student coding 

confidence and abilities, helped them remain interested in project goals and deliverables, and 

reduced debugging time before submission. Additionally, students reported that the autograder 

on individual assignments helped them learn the basics of Python programming and 

fundamentals of mathematical concepts taught in the course. Interestingly, students reported that 

the hidden autograder tests did not help them attain independent debugging skills, but student 

confidence was largely unaffected by removing the autograder in subsequent assignments.  

Introduction 

Coding and the implementation of computational methods to model, analyze, and ultimately 

design real-world systems is a skill taught in most accredited undergraduate mechanical 

engineering curriculums across the world.  The primary reason for this trend is that lacking 

general proficiency in at least one programming language would largely hinder employment 

opportunities in today’s digital age. Although the nature and number of coding languages taught 

can vary from one institution to another, multiple coding-heavy formative and summative 

assessments are usually administered to students to gauge their competence. In coding-intensive 

large enrollment classes, manual grading and providing detailed feedback by teaching assistants 

can often take several days or weeks for each assignment. This lag in the grading turnaround 

time is detrimental to student learning (often students do not remember what they submitted a 

few weeks ago), does not allow students to continually improve their work by implementing 



feedback, and logistically limits the number and length of assignments that can be administered 

in a given semester. Further, inconsistency in grading across multi-section courses can be 

introduced due to human bias, even if detailed grading rubrics are provided by instructors. In 

such scenarios, autograders can provide immediate, consistent, and meaningful feedback to 

students, thereby allowing them to refine their work and deepen their understanding. Autograded 

assignments can also reduce the grading burden for teaching assistants in addition to lowering 

instructor effort to provide quick feedback on intermediate attempts of student codes during 

office hours. Thus, instructors are able to utilize their time and effort to update lecture content, 

develop novel assessments, and devise active learning strategies to make the classroom more 

engaging.  

Literature Review 

The idea of automatic grading itself is not new. Publications from the 1960s discuss the use of 

automatic grading for programming assignments to manage growing class sizes [1-2]. Since 

then, many automatic grading tools have been introduced for various purposes including, but not 

limited to, programming assignments [3-7]. Autograders have the potential to increase student 

motivation [8-9], enhance teaching and tutoring sessions [9-10], and improve student perception 

of the course [9]. However, developing autograders can be challenging since students may find 

correct solutions not counted by the autograder [11]. Students may also abuse the autograder or 

become over-reliant on the autograder to complete assignments [12-14]. Nevertheless, we seek to 

employ autograders in this study to take advantage of its benefits while trying to mitigate the 

disadvantages. 

 

In this study, we investigate the effect of implementation of autograders for individual 

homework assignments and an open-ended collaborative term project on student coding abilities, 

coding confidence, and overall learning experience in a junior-level mechanical engineering 

numerical methods class. The novel contributions of this paper are as follows: 

1. While autograders have been in use in computer science/engineering (and other 

computing heavy) disciplines for several decades, we put the autograders into practice in 

a class of mechanical engineering students with limited formal coding exposure.  

2. The autograders for this course are created with simple Python scripts and implemented 

via Gradescope [15-16]. Thus, other engineering educators (even with limited coding 

experience) can easily automate grading of coding assignments by adopting the 

methodology and tools described in this paper.  

3. Instead of analyzing the effect of this intervention on student grades, we explore the 

consequences on ‘unconventional’ metrics like students' perceived coding abilities, 

coding confidence, comprehension of fundamental concepts, interest in project goals, 

self-reported debugging time, etc.  

4. We implement the autograders for the first two phases of the open-ended team design 

project (and select tasks on individual assignments) and analyze the effect of 

unavailability of the autograder for the latter phases (and portions of individual 

homework) on student coding confidence.  



Autograder Implementation 

The junior-level numerical methods course covers root finding methods, integration and 

differentiation techniques, ordinary differential equations (initial value and boundary value) 

problems, linear algebra, linear regression, interpolation, and optimization. The students are 

expected to work on individual assignments - approximately biweekly - including coding 

problems and hand-calculations covering each of these topics. Additionally, the course involves 

a small-group multi-phase project where students combine their mathematical acumen with 

Python coding skills to design a code-based Martian rover.  

 

The autograders – implemented via Gradescope [16] in this work – are designed to check for 

proper behavior of student-defined Python functions which can be easily imported and used 

within the autograder alongside correct versions of each function. For example, in an early 

assignment students are expected to write a function to perform bisection root finding on a user-

defined equation. In the assignment, instructions are given to the proper calling syntax for said 

function detailing the inputs and outputs. The autograder then performs several tests: i) do the 

inputs and outputs behave as expected, ii) can the student code correctly find the root within 

some tolerance to problems with a known solution, and iii) does the student code provide 

meaningful error messages to a user when something goes wrong? For each test (and sub-test), 

the instructor can assign point values and toggle its visibility to the student. Additionally, 

Gradescope generates a similarity report to detect how similar student code is to other students 

and other sources. See the appendix for a brief example of an autograder function and 

corresponding assignment.  

 

To mitigate some reliance on the autograder, some tests are not visible until after the final 

submission. Students are informed of the existence of such tests and encouraged to perform their 

own debugging and testing based on the assignment instructions. As the course progresses, the 

hidden portion of the autograder grows until the autograder is ultimately removed entirely by the 

end of the course. See Figures 1-2 for a brief example of an autograder response for the same test 

when passed or failed. 

Surveys 

Two end-of-semester surveys, one geared towards the individual homework assignments and the 

other for the collaborative course project, are generated using Google forms and made available 

to students through the Canvas learning management system. Each survey consists of seven to 

eight multiple choice questions and one open-ended question. The purpose of the two surveys is 

to gauge students' perceived coding abilities, coding confidence, comprehension of fundamental 

concepts, interest in project goals, self-reported debugging time, and independent debugging 

skills. The motivation behind the research study and goals of the project are introduced to 

students in lecture. Additionally, the voluntary and anonymous nature of student participation is 

emphasized. Despite multiple reminders given in lecture as well as an additional reminder via a 

Canvas announcement after the final exam, the response rate is extremely low. Across two 

course sections in Fall 2024 (with the same instructor) of 177 students total, there are six 

responses for the project survey and ten responses for the individual assignment survey. Thus, 

while we discuss our observations below, the results cannot be generalized. More data needs to 

be collected from different student groups in future semesters to unearth any underlying trends. 



 
Figure 1: Example of the autograder output to a failed test 

 

 

 
Figure 2: Example of the autograder output to a passed test 

 

Project Survey 

As shown in Figure 3, five out of six respondents agree (strongly or somewhat) that the 

availability of the autograder for the first two project phases improved their coding abilities by 

allowing them to rectify their mistakes immediately and resubmit. Further, four out of six 

students agree that the autograders increased their coding confidence. The positive feedback 

regarding coding confidence and self-perceived coding abilities is promising since mechanical 

engineering students generally have limited exposure to programming languages across the 

undergraduate curriculum. However, regardless of their plans after graduation (graduate school 

or corporate sector) and nature of work (computational vs experimental), most engineers can 

utilize programming proficiency to maximize their professional worth.  Four out of six 

participants agree that the instant feedback available from the autograders helped them remain 

interested in the project goals and deliverables. Additionally, five out of six respondents agree 

that the autograders reduced the time needed to debug their code. While this result can be 

deemed to be positive from the point of view of student time invested and student 

frustration/mindset, the authors believe that spending sufficient time identifying and resolving 

programming errors should be an essential part of the student learning experience in any coding-

intensive course. Four out of six respondents agree that hidden tests helped them attain 

independent testing/debugging skills and not become over-reliant on the real-time autograder 

feedback. However, it is interesting to observe from Figure 3 that a majority of participants are 

of the opinion that the unavailability of the autograder for the open-ended later project phases did 

not reduce their coding confidence. The increase in student coding abilities and confidence levels 

due to the early autograders might have helped the students succeed in the later assignments 

without missing the autograder. This is analogous to learning to ride a bicycle with training 

wheels to gain enough experience and confidence to safely remove the training wheels. Finally, 

four out of six students are neutral regarding whether the unavailability of an autograder for 

Project Phase 3 (mostly open-ended), helped them attain independent testing/debugging skills 

and not become over-reliant on instant feedback. 

 



 
Figure 3: Survey responses from the project autograder survey (n=6 out of 177 students) 

 

 

Only two students responded to the open-ended question on the survey asking if there was 

anything else they would like to share about the autograders in general for the project phases.  

One student commented that ‘The autograders were incredibly helpful’ while another mentioned 

that ‘I think the auto graders should give hints as to what is required otherwise even debugging 

multiple times ends up giving the same errors.’ The authors are of the opinion that in a junior-

level mechanical engineering class, an autograder is not meant to fix student code. Instead, we 

want students to exercise their critical thinking to build their own debugging skills given minimal 

direction. In the root-finding example, students are not told which equation(s) the autograder is 

using to determine their function’s accuracy. However, students are given a list of equations to 

perform their own tests. It is our expectation that if the autograder says “Your bisection code is 

not finding the correct root”, then the students should investigate their bisection code on the 

given equations to determine where the error lies. While this message does not give any 

specifics, students should be able to see the entire (visible) autograder output to determine that 

the function is executing correctly and the input/output structure is correct (for example). 

Therefore, something must be wrong in the method or data handling. If students continue to 

struggle, we hope that students will come to instructional office hours for further assistance. The 

autograder has the potential to make these interactions more efficient since instructors can see 

the student code alongside the backend of the autograder to see exactly where students are 

having trouble. Instructors can also verbalize their own debugging thoughts (similar to above) to 

teach students how to think critically about the information they have for future debugging. 

 

  



Individual Assignment Survey 

Figure 4 shows the results from the individual homework assignment survey. Similar to the 

results from the project survey, student feedback was positive. Six out of ten students agree that 

the autograders helped them learn the basics of Python programming and fundamentals of the 

mathematical strategies coded in the respective assignments. Students overwhelmingly agree that 

the autograders improved their coding abilities (nine out of ten) and coding confidence (eight out 

of ten). This is the desired outcome since all engineers can benefit from being proficient in at 

least one programming language. Eight out of ten respondents agree that the autograders 

significantly reduced the time needed to debug their code before submission. Interestingly, six 

out of ten students disagree when asked whether it was challenging to restructure their code to 

meet the specifications of the autograders. This result reveals that the autograder in its current 

form is not over-particular and is accepting of various student coding styles. Only two out of ten 

survey participants agree that the autograder made them over-reliant on instant feedback to 

debug their code. While this result cannot be generalized due to limited data, it is still 

encouraging for instructors since students must ultimately be trained to independently design, 

model, analyze, and evaluate real-world engineering systems using programming languages 

without the help of an autograder. As observed from Figure 4, student feedback about the hidden 

tests on the autograders is more diverse. Finally, six out of ten students do not agree that the 

unavailability of the autograder for some assignments reduced their coding confidence. Based on 

limited responses on both project and individual assignment surveys, it can be observed that 

while the autograders are able to increase coding abilities and confidence, the unavailability does 

not hamper student confidence levels.   

 

 
Figure 4: Survey responses from the individual assignment autograder survey (n=10 out of 177 

students) 

 

 



Figure 5 shows the responses from the open-ended question on the survey asking students if 

there was anything else they would like to share about the autograders for the individual 

assignments. Seven out of ten survey participants provided feedback on this question. Multiple 

students (Students 2, 4, and 6) expressed frustration regarding the purposefully vague feedback 

from the autograder on incorrect code. As discussed previously, the authors’ teaching 

philosophies are not aligned with telling students exactly where they went wrong and how to 

rectify their code to achieve full points on an assignment. The authors believe that this strategy 

does not help students develop their critical thinking and independent analytical skills. However, 

the constructive feedback about the autograder not accepting correct answers due to 

methodology differences (Student 3) and small rounding issues (Student 5) will be used to 

improve the autograder (and consequently student learning experiences) in future semesters. 

 

 
Figure 5: Survey responses from the individual assignment autograder survey open-ended 

question 

Limitations 

Our empirical teaching intervention study is subject to certain limitations. First, despite multiple 

reminders given to students, the survey response rates are very low (n=6 and n=10 out of 177 

students). This low participation rate leads to the inability to make generalized claims. One 

potential reason could be that no extra credit or other incentive was offered for attempting the 

surveys. Additionally, the surveys were introduced towards the end of the semester when 

students have several project and homework deadlines and are also encouraged to complete other 

course evaluation surveys. In the future, students will be exposed to these surveys earlier in the 



semester and will be allotted in-class time to respond, if they wish to. Secondly, the number of 

attempts that each student had to resubmit their assignment based on autograder feedback was 

not restricted. Thus, it is unclear whether some students critically reflected on the autograder 

feedback and modified their submissions or kept using trial and error till they got full points. 

Finally, the current autograder is unable to accept slight deviations in numerical responses or 

usage of novel Python packages. This often led to frustration for students. In those scenarios, 

when the concerned student raised the issue with the instructor, graduate teaching assistants were 

instructed to manually grade the submissions. We plan to continually update the autograder in 

future semesters based on student feedback to make it more inclusive.  

Conclusions 

This work details an inaugural step towards effectively using programming autograders in a 

junior-level mechanical engineering course. Although future work needs to prioritize and further 

encourage student response rate, we observe worthwhile preliminary results with the proposed 

method. The autograder allows us to more quickly assess a large class and encourages student 

learning by giving opportunities to fix their mistakes for credit. To encourage students’ 

independent debugging skills, the proposed work includes several hidden tests that students 

cannot see until after grades are returned. This framework allows students to identify big picture 

mistakes and gain confidence in their work by using the visible autograder while simultaneously 

encouraging them to validate the entirety of their code to satisfy the hidden autograder. 

Additionally, the autograder is used more heavily in the beginning of the course when 

assignments are more procedural and deterministic, and the autograder is taken out entirely by 

the end of the course when students are asked to solve realistic open-ended problems. Therefore, 

the autograders are analogous to training wheels that are gradually removed such that students 

are forced to take full ownership of their coding abilities by the end of the course. The student 

responses are encouraging, albeit inconclusive due to the sample size. Overall, the survey 

respondents found the autograders helpful and identified some issues that can be resolved in 

future course offerings. Although there was some frustration with the vague feedback provided 

by the autograder, this is a desired feature of the autograder (to promote students’ critical 

thinking skills) that we will better explain to students in the future. We will also stress that the 

autograder interface is not the only way students can receive feedback on their assignments but it 

is the fastest. Students will be encouraged to use the autograders first and then seek human help 

through an instructor or teaching assistant when struggling. Finally, in future semesters, we plan 

to use additional tools like student assignment grades or exit interviews to further investigate the 

effectiveness of the autograders.   
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Appendix 

 
Figure A1: Example of assignment instructions given to students. 

 

 
Figure A2: Example of autograder backend (not visible to students). 

https://gradescope-autograders.readthedocs.io/en/latest/
https://gradescope-autograders.readthedocs.io/en/latest/


 
Figure A3: Example of autograder frontend (visible to students based on settings) when the test 

is passed. 

 

 
Figure A4: Example of autograder frontend (visible to students based on settings) when the test 

is failed. 


