
Paper ID #48548

BOARD # 96: WIP: Teaching Computer Architecture Using a Python Hardware
Description Language

Dr. Alan Marchiori, Bucknell University

©American Society for Engineering Education, 2025

WIP: Teaching Computer Architecture Using a Python
Hardware Description Language

Introduction

Undergraduate Computer Science students typically take at least one course that introduces
computer architecture. This course might cover binary representation of data, assembly
programming, memory hierarchy, and a RISC datapath. However, beyond writing and simulating
assembly language programs, it is difficult to provide practical hands-on experience with these
computer architecture concepts. Various software tools exist to allow students to simulate digital
logic, such as Digital [1] and Logisim Evolution [2]. Although you can build a full CPU using
these systems, they are not intended to study computer architecture more broadly and can be quite
tedious. Full hardware design languages such as Verilog, SystemC, and VHDL are quite adept at
simulating modern computer architectures. However, these tools are specialized, and
undergraduate computer science students find a steep barrier to learning and correctly applying
them.

Our goal is to guide students in the design and implementation of a RISC-V CPU, culminating in
a functional implementation of a single cycle CPU capable of executing bare-metal binary files
compiled by standard GCC tools. Students begin by simulating simple digital logic circuits and
incrementally add functionality to implement the fully functional CPU in four structured projects:
1) decode, 2) fetch, 3) registers & ALU, and finally 4) branches, jumps, and memory. The final
CPU functionality is verified by running the official rv32ui test suite from riscv-tests [3].
Building upon the single-cycle implementation, students can then explore more advanced topics
such as pipelining (3- or 5-stage), cache performance, and branch prediction in the single-cycle
implementation. In three iterations of this approach, students report a strong sense of
accomplishment by completing the project, and at the same time it helps students develop a
deeper understanding of the architecture, datapath, and control concepts.

Python as an HDL

Python is not a hardware description language, but as a general purpose computing language, it
can be used as both an HDL and a simple HDL simulator. In fact, MyHDL [4] is a full-featured
open-source Python HDL. However, this and other similar solutions focus on synthesis to produce
ASIC and FPGA designs, which adds significant complexity and constraints. In this work, we
define four basic rules to develop a minimal behavioral HDL in Python.

1. Modules are implemented as classes.
2. Inputs and outputs are functions.
3. Inputs are passed into the class constructor.
4. Outputs are class methods.

In Verilog, the basic building block is the module [5]. A module provides an interface (inputs
and outputs) to an implementation of some operation. Since a module can contain internal state,
the analogous building block in Python is a class with class methods providing output. Table 1

shows a side-by-side example of implementing and testing an AND gate in Verilog and our
Python HDL. We will next walk through this example to demonstrate the key points.

Verilog AND Gate Python AND Gate

1 module andgate (
2 output wire out,
3 input wire in1,
4 input wire in2);
5 assign out = in1 & in2;
6 endmodule
7

8

9

10

11

12

13 module testbench;
14 reg a, b; wire out;
15 andgate device (out, a, b);
16 initial begin
17 $monitor("a=%b, b=%b, out=%b",
18 a, b, out);
19 // step through the inputs
20 #10 a = 0; b = 0;
21 #10 a = 0; b = 1;
22 #10 a = 1; b = 0;
23 #10 a = 1; b = 1;
24 #10 $finish;
25 end
26 endmodule

class andgate:
def __init__(self, in1, in2):

self.in1 = in1; self.in2 = in2
def __call__(self):

return self.in1() & self.in2()
class reg:

def __init__(self, val = None):
self.val = val

def __call__(self):
return self.val

def set(self, val):
self.val = val

def testbench():
a = reg(); b = reg()
device = andgate(a, b)
def monitor():

print("a=%s, b=%s, out=%s" %\
(a(), b(), device()))

step through the inputs
a.set(0); b.set(0); monitor()
a.set(0); b.set(1); monitor()
a.set(1); b.set(0); monitor()
a.set(1); b.set(1); monitor()

testbench()

Table 1: Verilog and Python implementations for an AND gate.

In the above example implementations, we keep the functionality of each line as close as possible.
Lines 1–5 are the definition of the AND gate. In Verilog, a continuous assignment statement
wires the output to the logical and of the two inputs. In Python, the constructor stores the inputs,
which are reg instances that are called in line 5 to provide their current values and generate the
output. Lines 6-12 are unique to Python. Since Python’s primitive data types are immutable, we
must define a mutable object to support changing a value passed to a module (i.e., andgate).
Defining a reg class allows us to bind inputs to class instances in their constructor and change
their values throughout the simulation. To obtain the value of the reg, we call the object as seen
on line 5. We then define a test bench to exercise the andgate in lines 13-24. Lines 20-23 step
through the possible inputs of the AND gate. Python does not have a way to monitor variables, so
we simulate this using a monitor function that prints the desired information when called. Verilog
schedules execution of the monitor at the end of the simulation time step. Since we did not
develop a full simulator, calling monitor is the implicit end of each simulation step in our Python
simulation. The output of both implementations are show in Table 2. The Verilog monitor
displays the values before the initial assignment, resulting in an additional line of output. We
could achieve a similar result in Python by executing the monitor prior to setting the values.
However, the andgate logic would have to be modified to handle undefined inputs, because None
& None is undefined in Python.

Verilog AND Gate Python AND Gate

a=x, b=x, out=x
a=0, b=0, out=0
a=0, b=1, out=0
a=1, b=0, out=0
a=1, b=1, out=1

a=0, b=0, out=0
a=0, b=1, out=0
a=1, b=0, out=0
a=1, b=1, out=1

Table 2: Verilog and Python AND gate output.

Using these basic rules, we can describe and simulate more complex systems. Table 3 shows
example logic gates. The xorgate demonstrates the composition of multiple classes. The mux
class implements an N-to-1 multiplexer, where the first input selects which input to use for output.
The mux is used as a hardware if statement. Finally, sequential logic is demonstrated with a D
flip-flop implementation using the previously defined reg class. The clock method is called by
the test bench when the system clock occurs. Once we understand these basic rules, we can move
on to constructing the RISC-V processor.

class gate:
"Base class for all gates"
def __init__(self, *args):

self.args = args
def sample(self):
return (x() for x in self.args)

def __call__(self):
return self.out()

class notgate(gate):
def __init__(self, a):
super().__init__(a)

def out(self):
return not self.args[0]()

class andgate(gate):
def __init__(self, *args):

super().__init__(*args)
def out(self):
return all(self.sample())

class xorgate(gate):
"A ˆ B = AB' + A'B"
def __init__(self, a, b):
super().__init__(a, b)
self.out = orgate(

andgate(self.args[0], notgate(self.args[1])),
andgate(notgate(self.args[0]), self.args[1]))

class orgate(gate):
def __init__(self, *args):

super().__init__(*args)
def out(self):

return any(self.sample())
class mux(gate):

"N input multiplexer"
def __init__(self, *args):

super().__init__(*args[1:])
self.sel = args[0]

def out(self):
return self.args[self.sel()]()

class DFlipFlop(gate):
def __init__(self, d, init='X'):

super().__init__(d)
self.q = reg(init)

def out(self):
return self.q()

def clock(self):
self.q.set(self.args[0]())

Table 3: Example Python hardware descriptions.

Single Stage RISC-V

We leverage the UC Berkeley Architecture Research Sodor 1-stage implementation [6] as a
foundation and decompose the project into three distinct stages, illustrated in Figure 1.

Project 1: Instruction Fetch Logic: Students begin by implementing the instruction fetch unit,

Figure 1: Sodor 1-stage RISC-V Processor split into three development phases.

which is responsible for retrieving instructions from memory and displaying them to the
terminal.

Project 2: ALU and Register File: The second project focuses on the implementation of the
Arithmetic Logic Unit (ALU) and the register file, enabling the execution of integer arithmetic
operations.

Project 3: Branching, Jumping, and Data Memory: In the final project, students implement
the logic for branch and jump instructions, along with data memory access. Upon completion, the
CPU becomes capable of executing the full rv32ui instruction set and the provided unit
tests [3].

This modular approach allows students to progressively build upon their understanding and
facilitates a step-by-step exploration of the core components of a RISC-V processor. Following
the single-cycle implementation, students can go into more advanced topics such as pipelining,
cache optimization, and branch prediction.

For testing, we provide students with ELF-format binary files generated using the riscv GCC
compiler built with the Spike simulator proxy kernel [7]. These ELF files can be parsed using the
pyelftools library [8] to extract the symbol table and memory segments.

Comprehensive project descriptions and links to starter code are available in the following public
repository: https://burl.live/asee_riscv.

https://burl.live/asee_riscv

Discussion and Conclusions

This project has been refined through multiple iterations of our Undergraduate Computer
Architecture course, building upon prior experiences with Verilog assignments. In previous
iterations, students lacking prior Verilog experience faced significant challenges, struggling to
grasp both Verilog syntax and the course material concurrently. Some students still encounter
difficulties in adhering to the fundamental principles of hardware description, often resorting to
procedural coding techniques to simulate the RISC-V processor. For example, they might employ
if statements and dynamically instantiate new objects after clock cycles, inadvertently deviating
from the inherent immutability of the hardware during execution. To mitigate these challenges,
we emphasize the principle of hardware immutability and provide students with well-structured
sample code, clearly delineating sections for hardware description.

Student feedback consistently indicates a positive reception towards the project. They recognize
its significant value in solidifying their understanding of key concepts in computer architecture,
particularly the RISC-V Instruction Set Architecture (ISA) and CPU design. Students particularly
appreciate the hands-on experience, finding it instrumental in clarifying many of the theoretical
concepts explored throughout the course, such as:

• The project provided a clearer picture of how a CPU works, solidifying theoretical concepts
through practical implementation.

• It was a valuable hands-on experience that deepened understanding beyond memorization.
• The assignment improved debugging and problem-solving skills.
• The project helped students understand the importance of control signals in CPU operation.
• Students expressed appreciation for seeing how all the course material came together in one

project.

Althoguh student feedback consistently indicates a positive reception towards the project, several
challenges were also identified:

• Navigating the starter code: Students found the starting code difficult to understand and
navigate, which added to the complexity of the assignment. There was confusion about
where to start with the code and how to build on previous assignments.

• Debugging Difficulties: Debugging was a significant challenge due to the complexity of the
project, especially with interconnected parts of the CPU. Errors were sometimes confusing
or did not directly point to the source of the problem.

• Two’s Complement Confusion: Understanding and implementing two’s complement
calculations was a common source of difficulty and confusion for students.

• Time management challenges: Students struggled with time management and the workload
for the project.

We believe that this approach can serve as a valuable foundation for helping undergraduate
students effectively explore fundamental concepts in computer architecture. While this approach
demonstrates one approach to using Python, we acknowledge that there is always room for
improvement. We encourage collaboration and open dialogue within the educational community
and welcome suggestions for further refinement and improvement to enhance the student learning
experience.

References

[1] H. Neemann, “GitHub - hneemann/Digital: A digital logic designer and circuit simulator.” [Online]. Available:
https://github.com/hneemann/Digital

[2] C. Burch, T. Kluter, T. Maehne, K. Walsh, D. H. Hutchens, M. Orlowski, T. Niget, M. Berman, and
T. Cruz Franqueira, “Logisim-evolution,” Aug. 2024, original-date: 2014-09-19. [Online]. Available:
https://github.com/logisim-evolution/logisim-evolution

[3] RISC-V Software, “riscv-tests,” Dec. 2024, original-date: 2013-04-24. [Online]. Available:
https://github.com/riscv-software-src/riscv-tests

[4] J. Decaluwe, “MyHDL.” [Online]. Available: https://www.myhdl.org/

[5] S. Palnitkar, Verilog HDL: A guide to digital design and synthesis. Prentice Hall, 2003.

[6] UC Berkeley Architecture Research, “GitHub - ucb-bar/riscv-sodor: educational microarchitectures for risc-v
isa.” [Online]. Available: https://github.com/ucb-bar/riscv-sodor

[7] R.-V. Software, “Spike, a risc-v isa simulator,” Jan. 2025, original-date: 2011-08-26. [Online]. Available:
https://github.com/riscv-software-src/riscv-isa-sim

[8] E. Bendersky, “Parsing elf and dwarf in python,” Jan. 2025, original-date: 2013-06-08. [Online]. Available:
https://github.com/eliben/pyelftools

https://github.com/hneemann/Digital
https://github.com/logisim-evolution/logisim-evolution
https://github.com/riscv-software-src/riscv-tests
https://www.myhdl.org/
https://github.com/ucb-bar/riscv-sodor
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/eliben/pyelftools

