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The Role of Predictive and Generative AI in Shaping Modern
Education: Current Applications

Introduction

AI in education (AIEd) has been researched for over 30 years, with the International AIEd
Society (IAIED) founded in 1997 to advance the field [1]. The term ”artificial intelligence (AI)”
was coined by John McCarthy in 1956 during the Dartmouth Conference, marking the formal
beginning of AI as a field [1]. Machine learning (ML) is a subset of AI that enhances its ability to
optimize operations and provide real-time responses. It enables computers to act, think, learn, and
operate independently within the broader AI framework [2]. Within this framework, generative
AI represents a further advancement, focusing on creating new data and content, thus expanding
the capabilities and applications of machine learning in various domains. The evolution of AI in
education has been transformative, significantly altering both how students learn and how
educators teach.

Predictive AI in education forecasts student outcomes and clusters students, identifying risks and
enabling targeted interventions. Predictive AI studies utilize a diverse range of data features in
machine learning models. This may include leveraging features from demographic and transcript
data [3], behavioral data from Learning Management Systems (LMS) [4], and other sources to
generate insights that support both students and educators. The goal of predictive AI in higher
education is to enhance student outcomes by providing actionable insights into academic
performance, identifying potential risks, and personalizing learning experiences. This type of
prediction can be performed with supervised or unsupervised models, at the degree level, course
level, or individual level, with varying input data, implementation, and goals. Generally, research
in this field is motivated by the high rates of college students dropping out before finishing their
degree [3], the growing percentage of students taking longer than 4 years to complete their
Bachelor’s degree [3, 5], and the growing implementation of online courses which typically have
higher attrition rates [6].

Generative AI (GenAI) focuses on creating new content, such as text, images, and music [7],
using deep learning models like GANs and transformers to generate original data by learning
patterns from training datasets. Unlike traditional machine learning, which primarily analyzes or
classifies existing data [8], GenAI models, such as OpenAI’s GPT, leverage large language
models (LLMs) trained on vast text datasets [9, 10]. Beyond LLMs, models like GANs, VAEs,
and diffusion models further expand GenAI’s capabilities, with applications spanning NLP [11],
art creation [12], and game design [13]. The release of ChatGPT quickly raised concerns about
academic integrity and student overreliance, potentially hindering learning due to its accessibility
[14, 15]. However, these concerns have also driven interest in leveraging GenAI to enhance
education. Studies show that students benefit from using ChatGPT in the classroom [16, 17], and
many educators now view AI as a valuable tool for enriching learning experiences for both
students [18, 19] and teachers [20, 21].



Project Approach

Research Categorization Framework

Figure 1, below, gives an overview of what will be covered within this work. AI is broken down
into (i) Predictive AI and (ii) Generative AI. These topics are further categorized by (a) learning
type and architecture and (b) application level and focus, which will be explained in detail below.
Although some aspects of the categorization may be subjective, it primarily serves as a
framework for organizing the research and highlighting trends within each category.
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Figure 1: Overview of categories associated with predictive and generative AI discussed in this work
text.

The method of categorization used within this work was developed in the process of conducting
this research, evolving in response to the data collected and the specific analytical needs that
emerged. An initial review of numerous studies on predictive AI in education revealed a recurring
pattern in research objectives and implementations. Typically, predictive models were designed to
forecast student failure [22, 23] (Course Level) or dropout [24, 25] (Degree Level). However,
some studies adopted a more personalized approach, incorporating student-specific goals or
utilizing more individualized data than what was commonly used in course- or degree-focused
research [26, 27] (Individual Level). To simplify the analysis, Learning Type was limited to
Supervised and Unsupervised approaches, excluding Semi-Supervised and Hybrid
methods.

The use of generative AI in education is much newer than predictive AI. As it continues to
develop, significantly fewer studies have explored its application in classroom teaching.
Moreover, the objectives of these studies differ substantially from those of predictive AI. Rather
than forecasting student success, generative AI aims to enhance the learning experience.
However, its impact extends beyond students to include teachers as well. This is evident from the
growing body of research on teacher and student perceptions of generative AI in the classroom
[28, 29, 30]. For this reason, studies were analyzed through the lens of Student-Focused or
Teacher-Focused implementations of generative AI in education. After the analysis began, it
became evident that some studies on generative AI in education did not have a clearly defined



primary beneficiary. To account for this, a third category (Both) was introduced. This category
includes research that provides equal benefits to both teachers and students. For example, studies
that use generative AI to generate personalized feedback (beyond just a numerical grade) reduce
teachers’ workload while also offering students tailored insights to improve their assignments. In
terms of architecture, most studies on generative AI in education currently focus on ChatGPT and
similar tools (Transformer). While the other selected architecture categories (GAN, VAE,
Diffusion) are not exhaustive, they were chosen based on the presence of existing research within
those areas. Beyond Transformers, there is a notable lack of studies exploring other generative AI
architectures in educational contexts.

While some studies provide an overview or analysis of predictive AI implementations in
education [31, 32, 33], none specifically examine the patterns within the categories discussed in
this paper. Even fewer studies explore the implementation of generative AI in educational settings
[34, 35]. Many focus on the potential implications of generative AI rather than analyzing studies
that have tested its application in real classroom environments. This paper aims to identify current
trends in the use of predictive AI and generative AI in education by examining their application
across specific domains. For predictive AI, the focus is on its implementation at different
levels—degree, course, and individual. For generative AI, the analysis considers its role in
student-centered, teacher-centered, or dual-purpose applications.

Predictive AI - Level of Application

Degree Level

At the degree level, supervised models focus on predicting student persistence or dropout, while
unsupervised models group students based on factors like performance, dropout risk, or study
duration. These models rely on registrar data, including basic demographics, academic history,
and long-term academic trends, This data provides broad insights rather than personalized details.
By analyzing these broad patterns, institutions can pinpoint risk factors and implement strategic,
long-term interventions to enhance student retention and graduation rates.

Course Level

At the course level, predictive models target immediate academic outcomes. Supervised models
predict passing, failing, or achieving specific grades, while unsupervised models reveal patterns in
engagement and learning behaviors, such as clustering by demographics, online activity, or risk of
poor performance. These models use historical academic data combined with real-time LMS
inputs, including login frequency, discussion participation, assignment time, and quiz or exam
results. By continuously updating in real time, course-level models enable educators to quickly
identify students who are struggling and implement timely interventions, such as offering
additional tutoring or customized learning resources.

Individual Level

At the individual level, predictive models leverage detailed personal data to tailor support and
address each student’s unique needs. These models analyze inputs such as self-reported
preferences, reflections, and biometric data to forecast academic performance, engagement, or



learning styles. By prioritizing individualized strategies, predictive AI at this level empowers
educators to address the specific challenges and strengths of each learner, fostering a more
personalized and effective approach to education.

Figure 2, shown below, provides an overview of the common goals and input data used in
predictive AI applications within education research.

Figure 2. Overview of input data and objectives across application levels of predictive AI in
education contexts.

Predictive AI -Learning Type

Supervised Learning

Supervised models in predictive AI are trained on datasets with input-output pairs, where the
model learns relationships between inputs and labels [36]. These models are used for
classification and regression tasks. Their success depends on high-quality labeled data and
performs best with large, representative datasets [37]. Supervised learning has numerous
applications in higher education, benefiting both students and teachers. It predicts enrollment
patterns [38], helping universities optimize class sizes and resources, and enhances personalized
learning by recommending courses based on performance and interests [39, 40]. It identifies
at-risk students through historical data analysis—grades, attendance, and engagement with
LMS—to detect early warning signs like poor performance or low participation. These
interventions have proven to reduce dropout rates by addressing issues before they become
insurmountable.



Unsupervised Learning

Unsupervised learning, rooted in machine learning and statistics, emerged to address the reliance
on labeled datasets in supervised learning [41]. Unsupervised machine learning focuses on
analyzing unlabeled data, identifying patterns without predefined outputs [42]. Unsupervised
learning in education is used to group students by factors such as engagement and learning
behavior [43, 44, 45], academic performance and outcomes [46, 47], student reflections [48], and
behavioral states [49]. While not predicting success directly, these methods guide personalized
teaching strategies and targeted interventions.

Generative AI - Focus of Application

Student-Focused Applications

Despite concerns about the impact of ChatGPT on student learning, generative AI offers valuable
opportunities in academia, including personalized learning paths [50, 51], peer collaboration [52],
and additional tutoring support beyond classroom hours [53]. Leveraging these capabilities can
create more dynamic and engaging educational environments while addressing potential
challenges responsibly. However, fostering AI literacy is essential to ensure students become
informed users. Understanding generative AI’s mechanisms, biases, and limitations enables
critical evaluation of AI-generated content—a crucial skill as misinformation continues to spread
online.

Teacher-Focused Applications

While most research on ChatGPT, and other generative models, emphasizes its impact on and
support for students, there is significant potential for generative AI to alleviate workload and
enhance various aspects of teaching for educators [54, 55, 56]. Generative AI can transform
traditional teaching methodologies by helping teachers streamline administrative tasks [57],
improve grading processes [55], and create tailored educational content [54]. Generative AI has
proven to be a valuable asset in generating educational content for classes [58]. Additionally,
generative AI can significantly improve the grading process and in turn, reduce teacher workload
[59, 60, 61, 62].

Generative AI - Model Architecture

Transformers

A transformer model [63] is a type of deep learning architecture designed for handling sequential
data, like text, without relying on recurrent connections. Transformers were developed to
overcome the limitations of earlier models like RNNs and CNNs, particularly in handling
long-range dependencies, vanishing or exploding gradients, and the slow training caused by
sequential data processing. The generative capabilities of transformers are exemplified in models
like GPT (Generative Pre-trained Transformer) [9] and its successors, which are capable of
producing coherent, contextually aware text by predicting the next word in a sequence. These
abilities extend beyond text to multimodal contexts, such as generating images from text prompts
(e.g., DALL-E [64]) or synthesizing audio and code, illustrating the model’s versatility.



Variational Autoencoders

The VAE structure enhances standard Autoencoders by addressing the non-regularized latent
space issue and providing generative capabilities by having the encoder output parameters of a
predefined distribution, which is constrained to a normal distribution to ensure a structured latent
space [65]. This allows VAEs to generate new data samples by sampling from the learned latent
space, whereas traditional Autoencoders primarily focus on reconstructing input data without
generating new examples. VAEs play a valuable role in educational research by learning efficient
feature embeddings [66, 67], assisting with feature extraction [68], and mining insights from
educational questions [69].

Generative Adversarial Networks (GANs)

GANs were first introduced by Goodfellow [70] in 2014 as a novel approach to generative
modeling. This framework revolutionized generative models and has since been applied across
various fields, from image synthesis to data augmentation and beyond. In educational contexts,
GANs have primarily been leveraged for synthetic data generation [71, 72, 73], a technique aimed
at enhancing predictive models for student outcomes. Despite their success in other fields, GANs
have been less explored in education research compared to their potential, though not as much as
Diffusion models and VAEs, which remain largely absent from educational contexts.

Diffusion Models

Diffusion models are a class of generative models that work by gradually transforming noise into
structured, high-quality outputs through a multi-step denoising process [74]. As adaptable
foundation models, they excel in tasks like image denoising and generation but may operate more
slowly due to their reverse sampling process [75]. As a result, they are highly effective for
applications such as image generation, super-resolution, and denoising. A prominent example of
diffusion models is Stable Diffusion, an open-source model developed by Stability AI in
collaboration with the CompVis group at Ludwig Maximilian University of Munich [76]. The key
distinction of this model compared to others is its use of a latent diffusion model, allowing it to
modify images by performing operations within its latent space [76].

Results and Discussion

Examples of Predictive Models Across Application Levels in the Context of Education

The table below presents a collection of references, organized by the specific application level and
the type of learning implemented. Each category is designed to illustrate how different predictive
models are applied across various contexts in the field of education. To offer a more
comprehensive understanding, trends and several representative examples from each category are
discussed in the following sections.

Table 1. Relevant references according to application level and learning type of predictive
AI applications.



Application Level Learning Type References
Degree Supervised [5, 24, 25, 77, 78, 79, 80]
Course Supervised [22, 81, 23, 82, 83, 84, 85, 86, 87, 88]

Individual Supervised [89, 26, 27, 90, 91, 92]
Degree Unsupervised [93, 46, 94, 47, 95]
Course Unsupervised [96, 97, 98, 99, 100]

Individual Unsupervised [48, 101, 43, 49, 102, 103, 89, 104, 105]

Supervised Models

The referenced applications in the supervised learning categories cover a range of
implementations, including predicting student grades [22, 81, 83], predicting degree performance
[24, 25, 80, 106], predicting learning style [91, 89], identifying students at risk of dropping out of
courses [23, 82, 83], monitoring student behavior in class [84], and providing personalized
interventions [26].

Degree Level. At the degree level, the goal of predictive machine learning in education is often to
identify students at risk of dropping out. By analyzing factors like academic performance,
attendance, and engagement, these models aim to flag at-risk students early, allowing for timely
interventions to improve retention and support student success.

At this level, student data often includes high school grades [24, 77, 106, 5], sometimes alongside
SAT, ACT, university admission test scores, or similar standardized assessments [24, 106]. Some
studies also incorporate demographic factors such as ethnicity and gender [78, 77, 79, 80, 5].
Unlike course-level analyses, current semester performance is not considered; instead, past
semester performance is used [24]. In some cases, current enrollment data is included
[79, 78, 80], as it helps gauge semester difficulty and contributes to dropout predictions.

Almost all examples, within the table, at the degree level use Random forest as one of the
prediction models [24, 25, 77, 79]. SVM is also a very common model for dropout prediction
[25, 77], as well as Decision tree and neural networks [79].

Course Level. At the course level, predictive machine learning in education often focuses on
forecasting student grades or identifying those at risk of failing. These models analyze
coursework data, engagement metrics, and assessment results to predict performance, enabling
targeted support and early interventions to help students succeed.

In terms of data at this level, it’s very common that data from an LMS is used [22, 83, 85, 86]. An
LMS is a software application that facilitates the administration, documentation, tracking,
reporting, and delivery of educational courses. The data collected from an LMS can include a
variety of metrics such as student login frequencies, participation in discussion forums,
assignment submission rates, quiz and exam scores, and overall course completion rates. This
type of data gives a more real-time look at academic performance and engagement. Even if data
isn’t gathered from an LMS, studies at this level almost always include some sort of academic
performance data like recent assignment grades [85, 83]. Sometimes data indicating performance
in prior semesters is used [87]. At this level, additional personal data is often collected through
surveys, supplementing what is typically available from the registrar [81, 83, 88].



With regard to predictive models, Random forest is also very common at this level
[86, 87, 85, 83, 81], as well as KNN [81, 23, 83] and SVM [87, 86, 85, 83, 81]. The use of neural
networks is more prevalent at this level than at the degree level [84, 85, 23, 82, 86, 22, 88],
including architectures such as MLPs (Multi-Layer Perceptrons), LSTMs (Long Short-Term
Memory networks), and CNNs (Convolutional Neural Networks), and other types of deep neural
networks.

Individual Level. At the individual level, predictive machine learning in education often focuses
on personalizing learning experiences by predicting students’ learning styles or preferences. By
analyzing survey data, past interactions, and behavioral patterns, these models offer more effective
insights into student engagement and performance, allowing educators to tailor teaching methods
and resources to each student’s unique needs for a more inclusive learning environment.

At the individual level, studies implementing supervised learning use a wide variety of data. This
can include data from surveys [90], user comments or conversations [26, 105], LMS data [89, 91],
or even sensor-based data such as facial recognition, EEG readings, or heart rate measurements
[92, 104]. A key trend is that the data tends to be increasingly personal; even when the data itself
is not inherently individual, the goal of the prediction often focuses on personal aspects, such as
learning style or behavior.

At this level, neural network models such as CNN, RNNs (Recurrent Neural Networks), and
BPNNs (Backpropagation Neural Networks) [92, 26, 91, 89] are more likely to be used, while
traditional models are less commonly applied. Research that does use traditional models at this
level tends to favor decision trees more frequently compared to other levels [104, 105, 89].

Unsupervised Models

The referenced applications within the unsupervised learning categories include a variety of
implementations, such as clustering students into dropout risk levels [46], clustering student
performance features or levels [94, 47], grouping students by learning outcomes [95], clustering
student reflections [48], clustering learner behavior [98, 97, 43, 49, 99], and identifying topic
weaknesses for specific students through clustering [102].

Degree Level. The degree-level studies using unsupervised models, as indicated in the table, draw
on diverse data sources, including pre-admission indicators, psychological assessments, academic
records, co-curricular and extracurricular activities, and senior exit surveys. Compared to
supervised models at the same level, these studies often use more personal data. However, the
assessments and surveys are typically administered to all students either before graduation or
during enrollment. While some studies incorporate academic data [94, 93], many also include
survey or assessment responses [95, 46], co-curricular activities [47], awards [47], and residential
location information [94].

The goals of the indicated references are extremely varied, including grouping university students
based on their level of dropout risk [46], predicting the classification of degrees students graduate
with (e.g., first class, second class upper, second class lower, third class, or pass) based on their
CGPA [94], clustering students according to their academic performance [47], clustering students
based on learning outcomes from their degree [95], and identifying homogeneous groups of



students by combining academic performance with the length of their bachelor’s program
[93].

Most of these studies use K-Means clustering [46, 94, 47, 93], but other models are also
employed, including density-based algorithms like DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) and HDBSCAN (Hierarchical Density-Based Spatial Clustering of
Applications with Noise) [46], self-organizing maps (SOM) [94], BIRCH (Balanced Iterative
Reducing and Clustering Using Hierarchies) [47], and bottom-up hierarchical clustering using
Euclidean distance measured via a Proximity Matrix [95].

Course Level. All of the references indicated at the course level that use unsupervised learning
incorporate some type of LMS data [96, 98, 100, 97, 99], which is similar to the data used in
supervised models at the course level. One study also incorporates demographic characteristics
[96].

The goals of the indicated references at the course level tend to focus on measuring engagement
and performance of students in the course based on LMS data. Goals include identifying how
demographic characteristics of students and their engagement in online learning activities affect
their learning achievement [96], identifying clusters of learners with similar online temporal
behavior [98], clustering students based on their engagement with course materials [99],
analyzing virtual learning engagement [100] and identify clusters of students at risk of
unsuccessful learning outcomes [97].

Similar to the degree-level studies using unsupervised models, most of these course-level studies
use K-Means [96, 99, 100, 97]; however, other models are also employed, including graph-based
clustering [98], DBSCAN [100], hierarchical clustering [100, 97], and affinity propagation
algorithms [100].

Individual Level. The data used in studies at the individual level with unsupervised models, as
indicated in the table, includes reflections from a software engineering course [48], head pose,
keystrokes, and action logs from tutoring systems [43], behavioral data from students on campus
[49], assignment performance [102], questionnaire responses [103], and wearable sensor data,
such as electrodermal activity and heart rate variability [101]. This dataset variety exceeds that of
supervised models at any level or other levels of unsupervised model implementation.

The goals of studies indicated in the table that use unsupervised models at the individual level
include clustering student reflections to streamline reading while preserving content
understanding [48], identifying distinct engagement states (e.g., engaged, starting out,
disengaged) [43], clustering of student behavioral patterns based on real-time behavior [49],
analyzing topic weaknesses [102], grouping students by common traits in questionnaire responses
[103], and exploring autonomic responses to medical simulation training [101].

Similar to the other levels that use unsupervised models, the individual level also largely utilizes
the K-Means model [48, 49, 102, 103, 101]. Other models used include the unsupervised learning
mode of Hidden Markov Models (HMM) [43], DBSCAN [49], and hierarchical clustering
[103].



Examples of Generative Model Application by Focus in the Context of Education

The table below presents a collection of references, organized based on the specific focus of the
application and the type of model architecture employed. Each category is structured to highlight
how different generative models are applied to various contexts within the scope of education. To
provide a deeper understanding, a few representative examples from each category are elaborated
on below.

Table 2. Relevant references according to application focus and model architecture of
generative AI applications.

Model Architecture Application Focus References
Transformer Student-Focused Application [107, 108, 109, 110,

111, 112, 113, 114,
115, 116, 54]

Transformer Both [117, 118, 59, 60, 61,
62, 119, 120]

VAE Teacher-Focused Application [121, 122]
VAE Student-Focused Application [123, 124]
GAN Teacher-Focused Application [71, 72, 73, 125, 126,

127]
GAN Student-Focused Application [128, 129]
Diffusion Teacher-Focused Application [130]
Diffusion Student-Focused Application [131, 132, 133]

Transformers

The applications of the references outlined above in the transformer categories encompass a
variety of implementations that fall into one of the following categories: providing simulations
[112, 113], offering tools for personalized learning [54], generating feedback
[59, 60, 61, 62, 119], enhancing assessment [134, 55, 56], creating educational content
[135, 136, 118], a tutoring system or chatbots that provides assistance to students
[109, 107, 110, 111, 114, 117, 120], and integrating AI into courses as part of assignments
[108, 115, 116].

Teacher-Focused. The teacher-focused applications of transformer-based generative AI,
indicated above, primarily aim to reduce teacher workload by automating tasks such as
assessment and the creation of teaching materials. Additionally, some of the examples provide
educators with insights and guidance on effectively integrating generative AI into their courses or
inform them about the capabilities and limitations of GenAI.

Some key goals include streamlining assessment [134], particularly for evaluating text-based
responses [55], and developing scalable guidelines for integrating AI assistance in classroom
assessments [56]. Researchers have also explored LLM-generated learning resources, comparing
their effectiveness to human-created materials [135], as well as AI-generated teaching videos
versus human-made ones [136]. Additionally, generative AI is being used to help teachers



integrate AI tools into creative problem-solving (CPS)-focused learning environments, enhancing
instructional methods and teaching practices [137].

Of the references that provide input data or prompts to a model, some use student assignments
[134, 55] and some prompt ChatGPT to generate code samples and explanations [135] or to
create a lesson for a particular topic [136]. Additionally. several studies used some version of
ChatGPT [136, 137, 134], but other studies used Codex [135] or created a customized tool that
utilized GPT [55].

Student-Focused. The student-focused applications described in the table emphasize the use of
LLM-based tools as virtual teaching assistants to support student learning or assist students in
completing assignments. These studies also evaluate the impact of LLM integration on student
learning outcomes, while some examples involve the use of LLM-powered agents to create
interactive classroom simulations.

The goals of the references highlighted in the table are highly varied. A key focus is on
personalized learning [54] and enhancing programming education through LLM-integrated
tutoring systems [107]. One study shifts a computer science course from syntax and code writing
to software production with LLM assistance [108]. Other research explores undergraduate
perceptions of GenAI tools [109] and their role in improving learning through customized support
[110]. Another reference also highlights the impact on social cognition and learning in
robotics-based education [111], including applications in Indonesian sociology programs.
AI-driven simulated classrooms [112], such as MATHVC, the first LLM-powered virtual
classroom [113], are also included. Additionally, GenAI is explored as a virtual teaching assistant
[114] in specialized writing tasks like Can You Spot the AI [115] and in ChatGPT-assisted
biochemistry assignments [116].

The studies utilized various types of input data and prompts, including lesson details such as the
title, content, topics covered, and learning outcomes [54]. Other inputs included prompts used to
generate programming functions [107], student questions or interactions [114, 110, 111], and
interactions within the learning environment [112]. Data from middle school math assignment
submissions were also analyzed [113]. As well as student provided prompts to generate a writing
assignment [115].

Most of the studies used a version of ChatGPT [107, 112, 113, 114] or integrated the GPT model
in some way [54, 109, 111]. Other models/applications that were used include: GitHub Copilot
[108, 110], custom generative tools created for the course [110], and Bard or Bing AI
[107, 110].

Both. As mentioned earlier, some generative AI applications provide significant benefits to both
teachers and students. For instance, automatic feedback generation can streamline the grading
process for instructors while offering students timely and personalized feedback to enhance their
learning experience.

LLM-based transformer models in education enhance learning by providing personalized, timely
feedback. One approach evaluates the impact of LLM-generated feedback compared to no
feedback on learning outcomes [59]. Other applications integrate GenAI in educational forums to
assist instructors, analyze student communications [61], and monitor sentiment to boost



engagement and inspire projects [60]. Additionally, GenAI tools support MOOC learners by
analyzing educational data to improve understanding and performance [62]. These studies
underscore the value of integrating GenAI for feedback, engagement, and skill
development.

These studies utilized diverse data sources reflecting student engagement, performance, and
linguistic progress. One dataset included over 12,000 Discord messages exchanged between
students and instructors over four years, covering class discussions, assignment feedback, and
general queries [60]. Another analyzed LMS data and assignment performance metrics,
incorporating course progression, results, timestamps, and behavioral patterns [62]. Linguistic
improvement was assessed through a pre-and post-test design with diagnostic writing tasks and
weekly 300-word assignments [119]. Other studies relied on student questions [61] or
assignments [59]. Notably, all references labeled BOTH in the table used a version of the GPT
model.

Variational Autoencoders (VAE)

The applications of the references outlined above in the VAE categories encompass a variety of
implementations that fall into one of the following categories: enhancing EWSs [121], detecting
student actions [122], and teaching tools [123]. While Lyu is partly focused on a web-based game
to introduce how VAEs work [124], this work also used a Google Colab notebook for students to
retrain VAEs using their own hand-drawn examples to strengthen their understanding.

The applications of VAE models in education serve various purposes to enhance learning and
teaching. One key use is generating synthetic at-risk samples to balance datasets for early
warning systems [121]. VAEs also aid in student action recognition, helping educators monitor
engagement in online courses [122]. Additionally, a web-based GUI leverages a
neural-network-based VAE to guide interactive sketching [123]. Another example includes a
web-based game using Plato’s cave metaphor and a Google Colab notebook for retraining VAEs
with hand-drawn digits, making VAE concepts more accessible [124].

The diverse goals of these studies result in varied data types. One application uses student
behavioral data, discussion posts, and final grades to analyze engagement and performance [121].
Another processes video data of nine students performing seven actions, such as writing and
using a smartphone, into image sequences for analysis [122]. A third leverages the QuickDraw
dataset, which contains user-generated vector sketches from the ”Quick, Draw!” game [123].
Each dataset offers unique opportunities for VAE models in educational research.

The models used in these applications include the custom LVAEPre model [121], which combines
Ladder VAE (LVAE) and a Deep Neural Network (DNN). Another model used is the Adjusted
VAE (AVAE) [122], a variation of the standard VAE. Additionally, the standard VAE model
[124, 123] is also employed.

Despite identifying some initial applications of VAEs in the educational domain, the research in
this area remains sparse. Given their robust capacity for learning complex data distributions and
generating meaningful latent representations, VAEs present a promising opportunity for various
educational tasks.



Generative Adversarial Networks (GAN)

The referenced applications within the VAE categories encompass a range of implementations
that can be grouped into the following categories: including improving data quality or
anonymizing student data for further analysis [71, 127], enhancing predictions of student
outcomes [72, 73, 125], detecting student engagement [126], and developing educational tools
[128, 129].

The references in the table highlight key applications of GANs in education. Many studies use
GANs to generate synthetic data, addressing data sparsity and improving model reliability
[71, 72, 127, 73, 125], while also mitigating privacy concerns. Other applications focus on
personalized learning, such as adaptive educational games and tailored content [128].
Additionally, GANs enhance classroom analysis through facial expression recognition [126] and
support self-directed learning with text-to-image storytelling [129].

GAN applications in education utilize diverse datasets to address various challenges. AutoTutor
ARC data generate learner data for assessing ITS designs [71]. Farhood [72] creates synthetic
student performance data using the Math dataset (395 real student records, 33 features) and the
Exam dataset (1,000 fictional records, 8 features), both predicting pass/fail outcomes. Facial
expression data from public datasets like Oulu-CASIA, CK+, and FMEO are used to analyze
student engagement [126]. A survey-based dataset on university teachers’ digital competence is
expanded via COPULA-GAN [127]. Additionally, pre-built educational game levels support
adaptive content generation [128]. These datasets showcase GANs’ role in performance
prediction, emotional analysis, and personalized learning.

The identified references showcase a diverse range of GAN models, including the standard GAN
model [71], CopulaGAN and CTGAN (Conditional Tabular GAN) [72], CGAN (Conditional
GAN) in combination with an SVM model [73], ICGAN (Interpretable Conditional GAN) in
combination with an SVM model [125], an enhanced GAN with an auxiliary classifier layer [126],
CopulaGAN in combination with a data analysis technique implemented in SPSS (Statistical
Package for the Social Sciences) under the name of “two-stage cluster” [127], and DCGAN
(Deep Convolutional GAN) [128]. Each is tailored to address specific educational challenges
such as data augmentation, adaptive content generation, and enhanced predictive analytics.

Diffusion Models

The referenced applications within the diffusion model categories cover several areas, including
personalized learning [132], visual arts education and artwork generation [130, 133], and teaching
tools [131].

The identified references highlight key applications of diffusion models in education. One major
focus is enhancing art and design education through text-to-image models like Stable Diffusion,
enabling creative expression and teaching art concepts via natural language prompts [130].
Another application uses diffusion models for dance instruction, extracting rhythmic and
emotional cues from audio to generate real-time dance sequences with virtual tutors [131].
Diffusion models also streamline the creation of personalized instructional videos, improving
content efficiency [132]. Additionally, they democratize generative art tools for novice users,



integrating tangible elements to create immersive learning experiences [133]. These applications
demonstrate diffusion models’ potential to enhance interactivity, personalization, and
accessibility in education.

The input data for diffusion model applications in educational contexts varies significantly across
the identified references. For text-to-image AI in art education, a large dataset comprising 72,980
Stable Diffusion prompts serves as the basis for exploring generative visual art creation [130]. In
the domain of dance instruction, two major datasets are employed: the AIST++ dataset, the
largest of its kind for 3D human dance motion, includes 1,408 sequences from 30 subjects across
10 dance genres, supporting tasks like motion prediction and pose estimation; and the FineDance
dataset, which provides a comprehensive collection of music-dance pairs, covering a wide range
of dance styles for synchronized motion generation [131]. In another example in art and design
education, the input data consists of tangible building blocks, which students manipulate to create
digital artwork, integrating physical elements with generative AI models to foster creativity and
facilitate interdisciplinary learning [133].

The identified references utilize a range of diffusion models to support various educational
applications. Central among them is Stable Diffusion [130, 133], which in one application is used
in combination with an unsupervised learning model [130] and in another example is used in
combination with ControlNet [133]. In another example [131] Denoising Diffusion Probabilistic
Model (DDPM) was used and in Kumar [132], the authors have suggested using Stable Video
Diffusion and Deforum Stable Diffusion software.

Despite the rapid advancement of diffusion models in various fields, their application in education
remains limited. Current research primarily focuses on art and design tasks, with few studies
exploring broader educational uses like personalized content creation or adaptive learning
experiences.

Conclusion

This work has examined the current applications of predictive and generative AI in education. As
AI continues to evolve rapidly, new technologies and methodologies create promising
opportunities for both predictive and generative AI to further enhance learning and teaching. This
study contributes to the field of Artificial Intelligence in Education (AIED) by identifying current
trends in the application of predictive AI and generative AI within educational settings. By
classifying predictive AI at different levels—degree, course, and individual—and generative AI
by its application focus—student-centered, teacher-centered, or both—this research provides a
structured framework for understanding how these technologies are currently used. This
classification is essential for AIED because it offers a clear map of existing implementations,
helping educators and researchers who wish to integrate predictive or generative AI into their
classrooms make informed decisions. Additionally, by identifying gaps in current applications,
this study highlights opportunities for further research and development, encouraging
contributions that address unexplored areas or refine existing AI-driven educational practices.
Ultimately, this work supports both practitioners seeking practical applications and researchers
aiming to advance AI’s role in education.
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Navarro-Cabrera, L. Pinedo, and P. Vidaurre-Rojas, “Density-based unsupervised learning algorithm to
categorize college students into dropout risk levels,” Data, vol. 7, no. 11, p. 165, 2022.

[47] A. F. Mohamed Nafuri, N. S. Sani, N. F. A. Zainudin, A. H. A. Rahman, and M. Aliff, “Clustering analysis for
classifying student academic performance in higher education,” Applied Sciences, vol. 12, no. 19, p. 9467,
2022.

[48] M. Dorodchi, A. Benedict, E. Al-Hossami, A. Quinn, S. Wiktor, A. Benedict, and M. Fallahian, “Clustering
students’ short text reflections: A software engineering course case study,” 2021.

[49] X. Li, Y. Zhang, H. Cheng, F. Zhou, and B. Yin, “An unsupervised ensemble clustering approach for the
analysis of student behavioral patterns,” Ieee Access, vol. 9, pp. 7076–7091, 2021.

[50] Y. Wei, Y.-H. Jiang, J. Liu, C. Qi, and R. Jia, “The advancement of personalized learning potentially
accelerated by generative ai,” arXiv preprint arXiv:2412.00691, 2024.

[51] M. Guettala, S. Bourekkache, O. Kazar, S. Harous et al., “Generative artificial intelligence in education:
Advancing adaptive and personalized learning,” Acta Informatica Pragensia, vol. 13, no. 3, pp. 460–489, 2024.

[52] L. I. Ruiz-Rojas, L. Salvador-Ullauri, and P. Acosta-Vargas, “Collaborative working and critical thinking:
Adoption of generative artificial intelligence tools in higher education,” Sustainability, vol. 16, no. 13, p. 5367,
2024.

[53] B. Z. Batsaikhan and A.-P. Correia, “The effects of generative artificial intelligence on intelligent tutoring
systems in higher education: A systematic review,” Studies in Technology Enhanced Learning, vol. 4, no. 1,
2024.

[54] I. Pesovski, R. Santos, R. Henriques, and V. Trajkovik, “Generative ai for customizable learning experiences,”
Sustainability, vol. 16, no. 7, p. 3034, 2024.



[55] S. Tobler, “Smart grading: A generative ai-based tool for knowledge-grounded answer evaluation in
educational assessments,” MethodsX, vol. 12, p. 102531, 2024.

[56] L. Furze, M. Perkins, J. Roe, and J. MacVaugh, “The ai assessment scale (aias) in action: A pilot
implementation of genai supported assessment,” arXiv preprint arXiv:2403.14692, 2024.

[57] X. Zhai, “Transforming teachers’ roles and agencies in the era of generative ai: Perceptions, acceptance,
knowledge, and practices,” arXiv preprint arXiv:2410.03018, 2024.

[58] G. Cooper, “Examining science education in chatgpt: An exploratory study of generative artificial
intelligence,” Journal of Science Education and Technology, vol. 32, no. 3, pp. 444–452, 2023.

[59] J. Meyer, T. Jansen, R. Schiller, L. W. Liebenow, M. Steinbach, A. Horbach, and J. Fleckenstein, “Using llms
to bring evidence-based feedback into the classroom: Ai-generated feedback increases secondary students’
text revision, motivation, and positive emotions,” Computers and Education: Artificial Intelligence, vol. 6, p.
100199, 2024.

[60] O. Lundström, N. Maleki, and F. Ahlgren, “Online course improvement through gpt-4: Monitoring student
engagement and dynamic faq generation,” in 2024 IEEE Global Engineering Education Conference
(EDUCON). IEEE, 2024, pp. 1–6.

[61] A. Sinha, S. Goyal, Z. Sy, R. Kuperus, E. Dickey, and A. Bejarano, “Boilertai: A platform for enhancing
instruction using generative ai in educational forums,” arXiv preprint arXiv:2409.13196, 2024.
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[66] S. Klingler, R. Wampfler, T. Käser, B. Solenthaler, and M. Gross, “Efficient feature embeddings for student
classification with variational auto-encoders.” International Educational Data Mining Society, 2017.

[67] W. Yuan, S. Zhao, L. Wang, L. Cai, and Y. Zhang, “Online course evaluation model based on graph
auto-encoder,” Intelligent Data Analysis, no. Preprint, pp. 1–23, 2024.

[68] N. Bosch and L. Paquette, “Unsupervised deep autoencoders for feature extraction with educational data,” in
Deep learning with educational data workshop at the 10th international conference on educational data
mining, 2017.

[69] Z. Wang, S. Tschiatschek, S. Woodhead, J. M. Hernández-Lobato, S. P. Jones, R. G. Baraniuk, and C. Zhang,
“Educational question mining at scale: Prediction, analysis and personalization,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 17, 2021, pp. 15 669–15 677.

[70] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” Advances in neural information processing systems, vol. 27, 2014.

[71] L. Zhang, J. Lin, J. Sabatini, C. Borchers, D. Weitekamp, M. Cao, J. Hollander, X. Hu, and A. C. Graesser,
“Data augmentation for sparse multidimensional learning performance data using generative ai,” arXiv
preprint arXiv:2409.15631, 2024.

[72] H. Farhood, I. Joudah, A. Beheshti, and S. Muller, “Advancing student outcome predictions through generative
adversarial networks,” Computers and Education: Artificial Intelligence, p. 100293, 2024.

[73] S. Sarwat, N. Ullah, S. Sadiq, R. Saleem, M. Umer, A. Eshmawi, A. Mohamed, and I. Ashraf, “Predicting
students’ academic performance with conditional generative adversarial network and deep svm,” Sensors,
vol. 22, no. 13, p. 4834, 2022.



[74] J. Zhao, W. Wenjie, Y. Xu, T. Sun, F. Feng, and T.-S. Chua, “Denoising diffusion recommender model,” in
Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information
Retrieval, 2024, pp. 1370–1379.

[75] M. Vafadar and A. M. Amani, “Academic education in the era of generative artificial intelligence,” Journal of
Electronics and Electrical Engineering, pp. 110–124, 2024.

[76] R. Gozalo-Brizuela and E. C. Garrido-Merchan, “Chatgpt is not all you need. a state of the art review of large
generative ai models,” arXiv preprint arXiv:2301.04655, 2023.

[77] F. Del Bonifro, M. Gabbrielli, G. Lisanti, and S. P. Zingaro, “Student dropout prediction,” in Artificial
Intelligence in Education: 21st International Conference, AIED 2020, Ifrane, Morocco, July 6–10, 2020,
Proceedings, Part I 21. Springer, 2020, pp. 129–140.
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