~
2025 ASEE Annual Conference & Exposition #&

;iiiit Palais des congrés de Montréal, Montréal, QC - June 22-25, 2025 $5ASEE

Paper ID #48474

Case Studies of ChapGPT for Embedded Systems Teaching

Dr. Guoping Wang, Purdue University Fort Wayne

Guoping Wang, Ph.D. is an Associate Professor in the Department of Electrical and Computer Engineering
at Purdue University Fort Wayne. He earned his Ph.D. from the University of Oklahoma in 2003,
following a Master’s from Nanjing University and a Bachelor’s from Tsinghua University. Dr. Wang’s
research interests include the Internet of Things, edge computing in machine learning, embedded systems,
FPGA for DSP applications, and computer security. He has received numerous awards for teaching
excellence and secured multiple grants for innovative projects. A senior member of IEEE, he actively
contributes to the field through publications and conference presentations.

©American Society for Engineering Education, 2025

Case Studies of ChatGPT for Embedded Systems Teaching

Abstract

The rise of Al technology, particularly Generative Al, has significantly transformed the landscape
of higher education. Generative Al, such as ChatGPT, has been extensively studied in fields like
Computer Science to assess its effectiveness in enhancing learning. However, its impact on more
specialized areas, such as bare-metal embedded systems, remains underexplored. Bare-metal
embedded systems, which include hardware (e.g., microcontrollers, memory, input/output
interfaces) and software (e.g., firmware drivers, real-time operating systems), present unique
challenges compared to traditional areas of study.

ChatGPT has proven to be a useful tool in these embedded systems courses, helping students
work through complex documentation, such as lengthy datasheets and technical manuals. It also
assists with debugging, clarifying system architectures, and explaining hardware-software
interactions in a way that makes difficult concepts more approachable. By breaking down
complex topics and offering quick insights, ChatGPT can help students navigate the steep
learning curve of embedded systems. Whether ChatGPT can generate solutions for embedded
systems design problems remains an unanswered question.

In this paper, several case studies are examined to explore the role of ChatGPT in generating
embedded systems solutions for lab practices. These case studies are based on actual student
project assignments in a sequence of embedded systems courses, including 1 - Introduction to
Microprocessors, 2 - Embedded Systems, and 3 - Real-Time Operating Systems. Our studies have
found that though ChatGPT is a valuable tool in embedded systems teaching, it cannot replace the
foundational knowledge essential for mastering embedded systems. Practical experience and a
deep understanding of embedded systems’ intricacies are still essential for success in this field. In
the era of ChatGPT, instructors teaching embedded systems design should incorporate pop-up
quizzes, lab check-outs, and other assessment methods instead of relying too heavily on
traditional project assignments.

Introduction

The emergence of Generative Al tools such as ChatGPT has brought significant changes to higher
education, offering new ways for students to access knowledge and interact with learning
materials. ChatGPT serves as an on-demand tutor, offering personalized assistance, solving
problems, and clarifying complex concepts. This creates a more flexible and accessible learning
environment, allowing students to study at their own pace and receive real-time feedback, which

is particularly beneficial in the context of online and self-directed learning.

Despite its benefits, the integration of ChatGPT into higher education presents challenges,
particularly in terms of academic integrity and the ethical implications of Al-generated content.
The potential for misuse, such as plagiarism or over-reliance on Al-generated solutions, is a
growing concern. This has led institutions to rethink traditional assessments and establish
guidelines for ethical Al use. As Al continues to evolve, higher education must balance the
potential of these technologies with the need to maintain critical thinking, creativity, and
intellectual integrity.

In previous research, numerous studies have explored the impacts of ChatGPT on various
educational domains, including computer science, engineering, mathematical modeling, and
construction management. For instance, a study [1] examines how ChatGPT can enhance the
learning experience for computer science students by improving comprehension of complex
concepts, boosting problem-solving skills, and increasing student engagement. Another study [2]]
discusses ChatGPT’s role in engineering education, noting its potential benefits in generating
relevant questions, providing instant feedback, and assisting with problem-solving and content
creation. Additional research has explored the use of ChatGPT in teaching programming courses,
particularly in C++ [3]]. The study demonstrates that Al can help explain complex programming
concepts, assist with homework, and improve student performance, with students showing better
average scores and reduced failure rates. However, it stresses the importance of using Al tools to
complement traditional teaching methods rather than replace them. Furthermore, in a study on
ChatGPT’s impact on engineering report writing [4], improvements were observed in grammar,
organization, and conclusions, although there was little progress in enhancing visuals, equations,
and references. The research highlights that while Al-generated content can sometimes include
“unnatural” language or errors, students strongly support Al integration, believing it enhances
both their learning experience and the quality of their work.

With the rise of generative Al (GenAl), tools like ChatGPT can significantly enhance embedded
systems education by simplifying access to complex technical documentation. A typical ARM
Cortex-M microcontroller (MCU) comes with hundreds of pages of datasheets and thousands of
pages of firmware library notes. In the past, students spent considerable time searching through
these documents to find relevant information, often struggling with dense technical jargon.

ChatGPT streamlines this process by quickly retrieving relevant details, summarizing key
concepts, and explaining complex topics in a more digestible way. Instead of manually searching
for how to configure a timer or set up an interrupt, students can get concise, targeted answers
instantly. It also helps clarify ambiguities, provides example code, and suggests troubleshooting
steps when projects don’t work as expected.

Beyond documentation support, ChatGPT acts as a tutor, reinforcing key embedded concepts,
guiding debugging strategies, and explaining system design trade-offs. While it cannot replace
hands-on experience or critical thinking, it serves as a valuable tool that improves efficiency,
enhances accessibility to knowledge, and accelerates learning in embedded systems

courses.

However, due to the nature of embedded systems, which involve both hardware from different
companies and software that heavily relies on firmware libraries provided by microcontroller

manufacturers, how effective ChatGPT can be in generating solutions for project assignments
remains a question to be answered. Unlike general-purpose programming languages such as C,
C++, Python, and JavaScript, which have consistent syntax across different platforms, ChatGPT
has proven to be very effective in generating project solutions. However, the design of embedded
systems depends on the knowledge of datasheets and microcontroller (MCU) user manuals from
various vendors. Firmware programming requires an understanding of register organization and
the firmware driver libraries provided by these MCU vendors, and the IDE tools vary between
companies. For example, some popular ARM Cortex-M4 IDE toolchains include Keil [5], AR
[6], STM32CubelDE [7]], MCUXpresso [8], ARM Studio [9]],TI Code Composer Studio [[10], and
the open-source ARM GNU toolchain [11]. Some toolchains support a broad range of MCUs
from multiple vendors, while others only support MCUs from their respective companies, and
each toolchain has its own unique features.

In the following, several project assignments from three embedded systems sequence classes are
studied using ChatGPT to generate solutions. The solutions are carefully analyzed and tested.
The results demonstrate that while ChatGPT is highly effective in generating project solutions, it
cannot be completely relied upon. We have also proposed teaching and learning methodologies to
adapt our approach to embedded systems education in the era of ChatGPT.

Embedded Systems Sequence Courses

Computer Engineering students at our university are required to take a sequence of three
embedded systems courses: ECE 36200 - Microprocessor Systems and Interfacing, ECE 46500 -
Embedded Microprocessor and ECE 48500 - Embedded Real-Time Operating Systems. ECE
36200 - Microprocessor Systems and Interfacing, introduces students to the fundamentals of
computer organization, focusing on ARM microprocessor architecture and assembly language
programming. It covers topics such as instruction sets, digital and analog interfaces, and
communication between microprocessors and peripherals. The course includes both theoretical
and hands-on laboratory components, emphasizing practical experience with software
applications and debugging techniques. By the end, students gain skills in solving engineering
problems using assembly language and interfacing CPUs with various devices. ECE 46500 —
Embedded Microprocessor focuses on the design of embedded systems using microcontrollers.
The course covers both hardware and software perspectives, emphasizing applications like data
acquisition, audio processing, and communication systems. Key topics include programming in
C, interfacing with analog sensors, real-time debugging, and understanding communication
protocols like UART. The course also explores system timing, noise analysis, and the use of IDE
tools for embedded system design. ECE 48500 — Embedded Real-Time Operating Systems
introduces students to embedded real-time operating systems (RTOS) with a focus on software
development tasks, inter-task communication, synchronization, and network software. Students
learn to program embedded systems using C and assembly, explore RTOS concepts like task
scheduling and communication mechanisms (e.g., semaphores, mutexes), and design systems
incorporating RTOS. The course also provides hands-on experience with RTOS development and
practical case studies.

In all three courses, many projects are assigned to students to help them grasp the knowledge and
practical skills in embedded systems. The hardware platform — TI EM4C123GXL Launchpad

[12] is used in all three classes. The Keil IDE toolchain is used to write the embedded system
software. The TivaWare firmware peripheral library [[13] is only used in ECE 48500 for RTOS
system design. In both ECE 36200 and ECE 46500, students must write their firmware using
MCU register access.

Project Solutions using ChatGPT

The case studies in this paper were selected based on actual student project assignments from a
structured sequence of embedded systems courses: Introduction to Microprocessors, Embedded
Systems, and Real-Time Operating Systems. The goal was to evaluate ChatGPT’s effectiveness in
assisting with learning and problem-solving across different levels of embedded systems
education.

Projects were selected to represent typical challenges in embedded systems coursework, including
interpreting microcontroller datasheets, configuring firmware, writing assembly language, and
implementing RTOS tasks. To ensure a balanced assessment, assignments were taken from
different points in the semester—some from early foundational exercises and others from more
complex, end-of-term projects. The selected projects covered essential embedded system topics,
including assembly language programming, peripheral interfacing, system timing, and
RTOS-based task management.

For each case study, ChatGPT was prompted to generate solutions, which were then tested using
the Keil IDE toolchain and deployed on the TI EK-TM4C123GXL Launchpad hardware
platform. In cases where the initial output had errors or inefficiencies, additional iterative prompts
were provided to refine the responses. The effectiveness of ChatGPT’s solutions was evaluated
based on correctness and applicability in an embedded systems setting, helping to determine both
the advantages and limitations of using Al assistance in this domain.

Table|l|presents a summary of these case studies, briefly describing the project descriptions, the
output from ChatGPT, and additional comments. Each case study is detailed in the following,
along with links to corresponding ChatGPT-generated solutions.

ECE 36200 - Microprocessor Systems and Interfacing
Lab 02 - Practice of ARM Assembly Language

Write a properly commented and formatted Cortex-M3 assembly language program to compute
the result of this expression:

1571+ (17 =2)+ (5 x4) +42 + 21

* The expression, as written above without any simplification, must be evaluated from left to
right, observing the standard algebraic order of operations.

* The only arithmetic instructions that may be used are addition and subtraction.

* Multiplication and division operations must be implemented using a combination of shift,
addition, and/or subtraction instructions.

Table 1: Case Studies of ChatGPT

Class Project ‘ ChatGPT Results ‘ Comments
ECE 36200 | Assembly Lan- | Nearly perfect solution from | Only minor modifications re-
guage Practice ChatGPT with detailed com- | quired
ments
ECE 36200 | System Tick and | Working solution on TI hard- | Further prompt inputs improve
ADC Sampling ware the solution
ECE 46500 | C Conversion | Working solution Initial output used snprintf();
Function after prompting “do not use
snprintf(),” ChatGPT provided a
correct alternative
ECE 46500 | RC Controller | Working solution Correctly distinguishes between
PWM Width Mea- rising and falling edges
surement
ECE 48500 | FreeRTOS Working code with a minor | After prompting “add debounc-
LED/Button glitch due to mechanical switch | ing for the switches,” ChatGPT
Practice behavior produced a perfect solution
ECE 48500 | FreeRTOS UARTY/- | Initial code was not thread-safe | After prompting “do not use

Timer

due to snprintf usage

snprintf,” ChatGPT generated a
correct, thread-safe solution

* Any constants needed must be moved into registers as values before using them.
(Exception: For shifts to implement multiply or divide, the shift amount may be an
immediate value in the instruction.)

* The values in the expression must be declared or obtained as follows:

- 15,71,17,5, 42, and 21: These are predefined constants saved in ROM as data.

— 2 and 4: Use assembler EQU as DIV2 and MULT4, respectively, for the number of
bits to shift.

* The result must be stored in ARM RAM memory.

Solutions from ChatGPT: ChatGPT is able to generate almost perfect solutions except a few lines
of NVIC and stack pointer setup before running the main program. Besides, detailed explanations
are also included for the solutions. The ChatGPT generated results can be found in List[I]

4

h e
S/

4

8 7

Program to compute the result of the expression:

15-71 +

Expression: ;

The result will be stored in memory at RESULT_ADDR.

(17/2) +

(5x4)

15=71 <

(17/2) +

+ 42+21

(5x4) + 42+21

Define constants using assembler directives

9

10

47
48
49
50
5

52
53
54
55
56
57
58
59

60

DIV2
2)
MULT4

EQU 1 g

EQU 2 ;

multiplying by 4)

AREA
THUMB
EXPORT

main

; Load constants into registers

LDR

LDR
LDR
LDR
LDR
LDR
LDR

CODE, READONLY

main p

; Begin computation

; Step 1:

SUBS

; Step
LSRS

SiEep
LSLS

; Step
ADDS

; Step
ADDS

g SEEP
ADDS

; Step

2

g

4:

5

6 g

7

Shift 1 bit to divide by 2

Shift 2 bits to multiply by 4

(equivalent to dividing by

(equivalent to

Export the main program entry

RO, =ROM_DATA ; Load the base address of data (ROM)
; Load values from ROM into registers
R1, [RO, #0] ; Load 15 into R1
R2, [RO, #4] ; Load 71 into R2
R3, [RO, #8] ; Load 17 into R3
R4, [RO, #12] ; Load 5 into R4
R5, [RO, #16] ; Load 42 into R5
R6, [RO, #20] ; Load 21 into R6
15 - 71
R1, R1l, R2 ; R1L = Rl - R2 (15 - 71)
17 / 2
R3, R3, #DIV2 ; Divide 17 by 2, R3 = R3 >> DIV2 (R3 = 17 / 2)
5 x 4
R4, R4, #MULT4 ; Multiply 5 by 4, R4 = R4 << MULT4 (R4 = 5 * 4)
Add (17 / 2) to result of (15 - 71)
R1, R1l, R3 ; RL = R1 + R3
Add (5 x 4) to result
R1, R1, R4 ; R1L = Rl + R4
Add 42 to result
R1, R1, R5 ; Rl = Rl + R5
Add 21 to result
R1, R1, R6 ; Rl = Rl + R6

ADDS

; Store the

LDR
STR

; End of program,

B

R7,
R1,

=RESULT_ADDR
[R7]

; Define data section

AREA
ROM_DATA

DATA, READONLY

result in memory

; Load address of result storage
; Store final result into RESULT_ADDR

loop here forever

61

62
64

65

66

N

4

DCD 15 ; Predefined constant 15

DCD 71 ; Predefined constant 71
DCD 17 ; Predefined constant 17
DCD 5 ; Predefined constant 5
DCD 42 ; Predefined constant 42
DCD 21 ; Predefined constant 21
; Define result storage
AREA DATA, READWRITE
RESULT_ADDR
SPACE 4 ; Reserve 4 bytes for the result
END

Listing 1: ECE 36200 Lab02 ChatGPT Results

Lab 11 - System Tick and AD Sampling Write code for the TI TM4C123GXL LaunchPad to
periodically start an ADC conversion every 10 ms. The ADC conversion should be triggered
using the SysTick timer within an interrupt service routine. The program will poll the ADC
registers to read the values. After every 16 sampled data points, the program will compute the
average. DO NOT use the TivaWare firmware peripheral library.

Solutions from ChatGPT for Labl 1: The first solution provided by ChatGPT from the Lab 11
description above is well-organized, commented, and explained. It passes testing using the Keil
IDE tool on the TI TM4C123GXL Launchpad, assuming a 16 MHz system clock frequency in the
first iteration.

In the second iteration, the following prompt is entered: “Add additional code for the PLL to
generate a 50 MHz system clock from the external 16 MHz crystal on the TI TM4C123GXL
Launchpad.” The result from ChatGPT includes all the necessary functions with a clear structure.
The generated codes can be found in List

#include <stdint.h>
#include "tm4cl23gh6pm.h"

#define SAMPLES_COUNT 16

volatile uint32_t adc_values[SAMPLES_COUNT];
volatile uint32_t sample_index = 0;

volatile uint32_t adc_sum = 0;

volatile uint32_t adc_average = 0;

void SysTick_Handler (void) {

// Start ADC conversion by setting the start bit (SS3)
ADCO_PSSI_R |= 0x0008; // Set bit 3 to start ADC conversion (SS3)

// Initialize SysTick Timer to generate interrupts every 10 ms

7 void SysTick_Init (void) ({

NVIC_ST_CTRL_R = 0; // Disable SysTick during setup
NVIC_ST_RELOAD_R = 160000 - 1; // Reload value for 10 ms (assuming 16
MHz clock)

NVIC_ST_CURRENT_R = 0; // Clear current value

NVIC_ST_CTRL_R = 0x07; // Enable SysTick with core clock and

interrupts

2 // Initialize ADC
»5 void ADC_Init (void) {

2 SYSCTL_RCGCADC_R |= 0x01; // Enable clock for ADCO

27 SYSCTL_RCGCGPIO_R |= 0x10; // Enable clock for port E (for ADC input
)

28

29 GPIO_PORTE_AFSEL_R |= 0x08; // Enable alternate function on PE3

30 GPIO_PORTE_DEN_R &= ~0x08; // Disable digital function on PE3

31 GPIO_PORTE_AMSEL_R |= 0x08; // Enable analog function on PE3

33 ADCO_ACTSS_R &= ~0x08; // Disable sample sequencer 3 (SS3)
during configuration

34 ADCO_EMUX_R = (ADCO_EMUX_R & OxXFFFFOFFF); // Use software trigger for SS3

35 ADCO_SSMUX3_R = 0x00; // Set SS3 to sample AINO (PE3)

36 ADCO_SSCTL3_R = 0x06; // Configure SS3: single—ended, interrupt
enabled

37 ADCO_ACTSS_R |= 0x08; // Enable SS3

40 // Function to poll ADC and read value
41 void ADC_Read (void) {

) if ((ADCO_RIS_R & 0x08) == 0) {

43 return; // Conversion not complete

44 }

45

46 adc_values[sample_index] = ADCO_SSFIFO3_R & OxFFF; // Read 12-bit ADC
value

47 ADCO_ISC_R = 0x08; // Clear interrupt flag for SS3

48

49 adc_sum += adc_values[sample_index];

50 sample_index++;

51

52 if (sample_index == SAMPLES_COUNT) {

53 adc_average = adc_sum / SAMPLES_COUNT; // Compute average after 16
samples

54 adc_sum = 0; // Reset sum

55 sample_index = 0; // Reset index

59 int main (void) {

60 SysTick_Init (); // Initialize SysTick Timer

61 ADC_Init (); // Initialize ADC

62

63 while (1) {

64 ADC_Read(); // Poll ADC values in main loop

66 }

Listing 2: ECE36200 Lab11 ChatGPT Results

1

ECE 46500 - Embedded Microprocessor

ECE 46500 - Lab02 The first project tested using ChatGPT comes from a question from Lab02
as follows:

Write a function using C language with this prototype sDec2BCD() defined as:
vold sDec2BCD (int32_t hex, char =xdec)

e

// sDec2BCD () convert —-9999 to 9999 signed number to a BCD
string for LCD display

/+ Input: hex: — a signed integer, =*dec, a point pointing to the

BCD ASCII code.
Below are the testing vectors:
—100000 x.**x%
—-10000 * .k oKk ok

-9999 -9.999
— o) — (01 CICie
—1 -0.001
0 0.000
123 0.123
1234 1.234
e N
10000 * . Kk k*
*/
// hex - 32-bit signed number, $-2"{31} - 27°{31}-1 $ \\
// dec — pointer to 6 8-bit (char) in ASCII code, as shown
above\\

// Output None

The first result from ChatGPT includes the body code of the main() and sDec2BCD() functions.
Inside the main function, test vectors are also included. A library function from stdio.h, snprintf(),
is used to convert the integer to a BCD ASCII string.

The second prompt is given to ChatGPT: “Do not use snprintf().” This time, the embedded C code
is generated using only the stdio.h library. The ChatGPT results from both prompts can be found
in the List[3

#include <stdint.h>

> #include <stdio.h>

void sDec2BCD (int32_t hex, char xdec) {
// Handle out-of-range values
if (hex < -9999 || hex > 9999) {
snprintf (dec, 6, "x.xxx");
return;

46

47

48

49

50

51

// Format the number correctly with a fixed-point format

if (hex < 0) {
snprintf (dec, 6, "-%1d.%03d", (~hex)
} else {

/ 1000, (-hex) % 1000);

snprintf (dec, 6, " %$1d.%03d", hex / 1000, hex % 1000);

// Test function

int main() {
int32_t test_values[] = {-100000, -10000,
9999, 10000};
char output[6];

for (int i = 0; 1 < 10; i++) {
sDec2BCD (test_values[i], output);
printf ("%$d -> %$s\n", test_values[i],

return 0;

#include <stdint.h>
#include <stdio.h>

void sDec2BCD (int32_t hex, char xdec) {
// Handle out-of-range values
if (hex < -9999 || hex > 9999) {
dec[0]
dec[1l] = ".";
dec[2]
dec[3]
dec[4] =
dec[5] = "\0’;
return;

p— 4 r .
= *';

= 1T .
= * H
= 1!

7 a0 o
* g

// Handle negative numbers
int32_t abs_hex = (hex < 0) ? —-hex : hex;
int is_negative (hex < 0);

// Convert integer to individual digits
int d4 = (abs_hex / 1000) % 10;

int d3 = (abs_hex / 100) % 10;
int d2 = (abs_hex / 10) % 10;
int dl = abs_hex % 10;

// Format output string

if (is_negative) {
dec[0] = "-";

} else {

-9999, -999, -1, 0, 123, 1234,

output) ;

74

)

~ W

dec[0] = (abs_hex >= 1000) 2 (’0’

9999, 10000};
char output[6];

for (int i = 0; 1 < 10; i++) {
sDec2BCD (test_values[i], output);

+ d4) : "7

printf ("$d -> %s\n", test_values[i], output);

return 0O;

Listing 3: ECE46500 Lab02 ChatGPT Results

ECE 46500 - Remote Controller RC Signal Width Measurement

(I OI

dec[1l] = (abs_hex >= 1000) 2 7.’ ((abs_hex >= 100) 2
dec[2] = (abs_hex >= 100) ? (0’ + d3) ((abs_hex >= 10)
97) g
dec[3] = (abs_hex >= 10) ? (0" + d2) 70" p
dec([4] = "0’ + di;
dec[5] = "\0’; // Null-terminate the string

}

3 // Test function

int main () {

int32_t test_values[] = {-100000, -10000, -9999, -999,

_1,

?

+ d3)

(’ O’

0,

123,

707);

+ d2)

1234,

Lab assignment: Write a C code to find the width of a 1.0ms to 2.5 ms Remote Control signal

using Tivaware firmware peripheral driver

The result, generated using ChatGPT 4.0, correctly distinguishes between the rising and falling
edges of the RC signal. The results can be found at List 4]

The generated results are properly commented with detailed explanations.

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/timer.h"
#include "driverlib/interrupt.h"
#include "driverlib/pin_map.h"

// Global variables to store the capture times

3 volatile uint32_t g _ui32StartTime = 0;

volatile uint32_t g_ui32EndTime = O0;
volatile uint32_t g_ui32PulseWidth = 0;
void TimerCaptureIntHandler (void)

{

14

19 uint32_t ui32Status;

21 // Get the timer interrupt status and clear the interrupt flag

2 uil32Status = TimerIntStatus (TIMERO_BASE, true);

23 TimerIntClear (TIMERO_BASE, ui32Status);

2%

25 // Check if the interrupt was caused by a rising or falling edge

26 if (ui32Status & TIMER_CAPA_EVENT)

27 {

28 // If it’s a rising edge, store the start time

29 g_ui32StartTime = TimerValueGet (TIMERO_BASE, TIMER_A);

30

31 // Switch to capture the falling edge

32 TimerControlEvent (TIMERO_BASE, TIMER_A, TIMER_EVENT_NEG_EDGE) ;

33 }

34 else if (ui32Status & TIMER_CAPB_EVENT)

35 {

36 // If it’s a falling edge, store the end time and calculate the pulse
width

37 g_ui32EndTime = TimerValueGet (TIMERO_BASE, TIMER_A);

38

39 // Calculate the pulse width (taking into account timer rollover if
needed)

40 if (g_ui32EndTime > g_ui32StartTime)

41 {

42 g_ui32PulseWidth = g_ui32EndTime - g_ui32StartTime;

43 }

44 else

45 {

46 // Timer rollover case

47 g_ui32PulseWidth = (OxXFFFFFFFF - g_ui32StartTime) + g_ui32EndTime;

48 }

49

50 // Switch back to capture the rising edge for the next pulse

51 TimerControlEvent (TIMERO_BASE, TIMER_A, TIMER_EVENT_POS_EDGE) ;

55 int main (void)

56 {

57 // Set the system clock to 50 MHz

58 SysCtlClockSet (SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ) ;

60 // Enable peripherals for GPIO port and Timer

61 SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOB) ;

62 SysCtlPeripheralEnable (SYSCTL_PERIPH_TIMERO) ;

63

64 // Wait for the peripherals to be ready

65 while (!SysCtlPeripheralReady (SYSCTL_PERIPH_GPIOB)) {}

66 while (!SysCtlPeripheralReady (SYSCTL_PERIPH_TIMERO)) {}
67

68 // Configure PB6 as TOCCPO (Timer capture pin)

69 GPIOPinConfigure (GPIO_PB6_TOCCPO) ;

92

94 }

GPIOPinTypeTimer (GPIO_PORTB_BASE, GPIO_PIN_6);

// Configure the timer for edge time capture
TimerConfigure (TIMERO_BASE, TIMER_CFG_SPLIT_PAIR | TIMER CFG_A_CAP_TIME_UP
)i

// Configure TimerOA to capture the rising edge initially
TimerControlEvent (TIMERO_BASE, TIMER_A, TIMER_EVENT_POS_EDGE) ;

// Enable interrupts for TimerOA capture
TimerIntEnable (TIMERO_BASE, TIMER_CAPA_EVENT) ;
IntEnable (INT_TIMEROA) ;

IntMasterEnable () ;

// Enable TimerOA
TimerEnable (TIMERO_BASE, TIMER_A);

while (1)
{

// Main loop - the pulse width will be updated by the interrupt
handler

// g_ui32PulseWidth contains the pulse width in timer ticks

// To convert timer ticks to time (in microseconds) :

// Pulse width (in microseconds) = (g_ui32PulseWidth / (SysCtlClockGet
() / 1000000));
}

Listing 4: ECE46500 RC PWM Width Measurement ChatGPT Results

ECE 48500 - Embedded Real-Time Operating Systems

In the testing using ChatGPT for ECE 48500 project assignments, the following assignments in
FreeRTOS are fed into ChatGPT. Each question is entered in sequence and the generated code are
compiled, tested on TI TM4C123GXL lanchpad and can runs smoothly with small changes.

ECE 48500 - Lab02a - FreeRTOS Practice Using FreeRTOS and the TivaWare firmware
peripheral driver library on the TI TM4C123GXL Launchpad, design a small RTOS system
where the Red LED toggles when the left key is pressed, and the Blue LED toggles when the right

key

is pressed.

Notes:

1.

Start with the FreeRTOS demo project and ensure that you create two tasks: an LED task
and a Switch task.

The Switch task should be configured with a higher priority.
. The LED task should be configured with a lower priority.

Create a queue to pass the switch press messages (left or right push button) to the LED task.

)

5. Suggested task priorities can be found in (priorities.h).

Here are the suggested priorities of these two tasks: (priorities.h)

#ifndef _ PRIORITIES\ H
#define _ PRIORITIES\ H

//**

//

// The priorities of the various tasks.

//
//**
#define PRIORITY_ SWITCH_TASK 2

#define PRIORITY_ LED_ TASK 1

#endif // _ PRIORITIES H

ChatGPT is able to generate working code using FreeRTOS. The code can be compiled and run
on the TT EK-TM4C123GXL Launchpad with a minor glitch. The glitch occurs because the
buttons are mechanical switches that need to be debounced. Mechanical switch bounce happens
due to the imperfect nature of mechanical switches. When a switch is pressed or released, there is
a brief period where the electrical signal is unstable. List[5] provides the generated codes.

#include <stdint.h>
#include <stdbool.h>

3 #include "inc/hw_memmap.h"

&

#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "FreeRTOS.h"
#include "task.h"

#include "queue.h"

#include "priorities.h"

// Define constants for the buttons

; #define LEFT_BUTTON GPIO_PIN_4

#define RIGHT_BUTTON GPIO_PIN_O

// Define LED pins
#define RED_LED GPIO_PIN_ 1
#define BLUE_LED GPIO_PIN_2

// Declare the queue handle
xQueueHandle g_pQueue;

3 // Function prototypes

void LEDTask (void xpvParameters);
void SwitchTask (void xpvParameters);
void SetupHardware (void) ;

int main (void) {
// Set up system clock and hardware peripherals

47
48
49
50

51

56
57
58
59
60
61
62
63

64

66
67
68
69

70

SetupHardware () ;

// Create the queue with space for 10 unsigned integers
g_pQueue = xQueueCreate (10, sizeof (uint32_t));

if (g_pQueue != NULL) {

// Create the Switch Task

xTaskCreate (SwitchTask, "Switch Task", 128, NULL, PRIORITY_SWITCH_TASK
, NULL) ;

// Create the LED Task
xTaskCreate (LEDTask, "LED Task", 128, NULL, PRIORITY_LED_TASK, NULL);

// Start the FreeRTOS scheduler
vTaskStartScheduler () ;

// The program should never reach here
while (1) {
}

// LED Task: Reads the queue and toggles LEDs based on switch presses
> void LEDTask (void xpvParameters) {

uint32_t button_press;

while (1) {
// Wait for data from the queue

if (xQueueReceive (g_pQueue, &button_press, portMAX_DELAY) == pdPASS) {
// Check which button was pressed and toggle the corresponding LED
if (button_press == LEFT_BUTTON) {

GPIOPinWrite (GPIO_PORTF_BASE, RED_LED,
GPIOPinRead (GPIO_PORTF_BASE, RED_LED) ~ RED_LED);

} else if (button_press == RIGHT_BUTTON) {
GPIOPinWrite (GPIO_PORTF_BASE, BLUE_LED,
GPIOPinRead (GPIO_PORTF_BASE, BLUE_LED) ~ BLUE_LED

// Switch Task: Detects button presses and sends messages to the LED task
void SwitchTask (void xpvParameters) ({

uint32_t left_button_state, right_button_state;
uint32_t left_button_last_state = LEFT_BUTTON;
uint32_t right_button_last_state = RIGHT_BUTTON;

while (1) {
// Read the current state of the buttons
left_button_state = GPIOPinRead (GPIO_PORTF_BASE, LEFT_BUTTON) ;
right_button_state = GPIOPinRead (GPIO_PORTF_BASE, RIGHT_BUTTON) ;

// Detect if the left button was pressed (falling edge detection)

82 if ((left_button_last_state != 0) && (left_button_state == 0)) {

83 uint32_t message = LEFT_BUTTON;

84 xQueueSend (g_pQueue, &message, portMAX DELAY) ;

85 }

86

87 // Detect if the right button was pressed (falling edge detection)
88 if ((right_button_last_state != 0) && (right_button_state == 0)) {
89 uint32_t message = RIGHT_BUTTON;

90 xQueueSend (g_pQueue, &message, portMAX DELAY) ;
9] }

92

93 // Save the current button states for edge detection

94 left_button_last_state = left_button_state;
95 right_button_last_state = right_button_state;
96

97 // Delay to avoid rapid polling

98 vTaskDelay (50 / portTICK_RATE_MS);

99 }

100 }

101

12 // Function to set up hardware peripherals

103 void SetupHardware (void) {

104 // Set the system clock to 50 MHz

105 SysCtlClockSet (SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ) ;

106

107 // Enable peripherals for Port F (for LEDs and buttons)
108 SysCtlPeripheralknable (SYSCTL_PERIPH_GPIOF) ;

109

110 // Unlock PFO (for right button)

1 HWREG (GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;

112 HWREG (GPIO_PORTF_BASE + GPIO_O_CR) |= GPIO_PIN_O;

113 HWREG (GPIO_PORTF_BASE + GPIO_O_LOCK) = 0;

114

115 // Configure the LEDs (PF1l for red, PF2 for blue) as output

116 GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, RED_LED | BLUE_LED) ;

18 // Configure the switches (PFO0 for right, PF4 for left) as input with pull
—-up resistors

119 GPIOPinTypeGPIOInput (GPIO_PORTF_BASE, LEFT_BUTTON | RIGHT_BUTTON) ;

120 GPIOPadConfigSet (GPIO_PORTF_BASE, LEFT_BUTTON | RIGHT_BUTTON,
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU) ;

121}

Listing 5: ECE48500 Lab02a FreeRTOS LED/Button

A further prompt, ”Add debouncing functions to the switches,” was sent to ChatGPT, and this
time, the result came back remarkably well, as shown in List@

| #include <stdint.h>

> #include <stdbool.h>

3 #include "inc/hw_memmap.h"

4+ #include "inc/hw_types.h"

s #include "driverlib/sysctl.h"

W
<)

W

54
55
56
57

58

#include "driverlib/gpio.h"
#include "FreeRTOS.h"
#include "task.h"

#include "queue.h"

#include "priorities.h"

// Define constants for the buttons

; #define LEFT_BUTTON GPIO_PIN_4

#define RIGHT_BUTTON GPIO_PIN_O

// Define LED pins
##define RED_LED GPIO_PIN_1
##define BLUE_LED GPIO_PIN_2

// Declare the queue handle
xQueueHandle g_pQueue;

3 // Function prototypes

void LEDTask (void xpvParameters);

s void SwitchTask (void *pvParameters) ;

void SetupHardware (void) ;
bool DebounceButton (uint32_t button, uint32_t port, uint32_t delay_ms);

int main (void) {
// Set up system clock and hardware peripherals
SetupHardware () ;

// Create the queue with space for 10 unsigned integers
g_pQueue = xQueueCreate (10, sizeof (uint32_t));

if (g_pQueue != NULL) {

// Create the Switch Task

xTaskCreate (SwitchTask, "Switch Task", 128, NULL, PRIORITY_SWITCH_TASK
, NULL) ;

// Create the LED Task
xTaskCreate (LEDTask, "LED Task", 128, NULL, PRIORITY_LED_TASK, NULL);

// Start the FreeRTOS scheduler
vTaskStartScheduler () ;

// The program should never reach here
while (1) {
}

> // LED Task: Reads the queue and toggles LEDs based on switch presses
3 void LEDTask (void *pvParameters) {

uint32_t button_press;

while (1) {
// Wait for data from the queue
if (xQueueReceive (g_pQueue, &button_press, portMAX_ DELAY) == pdPASS) {

65

66
67
68
69
70

76
71
78
79
80
81

83
84
85
86
87
88
89

90

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

// Check which button was pressed and toggle the corresponding LED

if (button_press == LEFT_BUTTON) {
GPIOPinWrite (GPIO_PORTF_BASE, RED_LED,

GPIOPinRead (GPIO_PORTF_BASE, RED LED) ~ RED_LED);

} else if (button_press == RIGHT_BUTTON) {
GPIOPinWrite (GPIO_PORTF_BASE, BLUE_LED,
GPIOPinRead (GPIO_PORTF_BASE, BLUE_LED)

BLUE_LED

// Switch Task: Detects button presses, debounces them, and sends messages to

the LED task

> void SwitchTask (void xpvParameters) ({

while (1) {
// Check if the left button is pressed and debounced
if (DebounceButton (LEFT_BUTTON, GPIO_PORTF_BASE, 50)) {
uint32_t message = LEFT_BUTTON;
xQueueSend (g_pQueue, &message, portMAX DELAY) ;

// Check if the right button is pressed and debounced
if (DebounceButton (RIGHT_BUTTON, GPIO_PORTF_BASE, 50)) {
uint32_t message = RIGHT_BUTTON;
xQueueSend (g_pQueue, &message, portMAX DELAY) ;

// Delay between checking button states
vTaskDelay (50 / portTICK_RATE_MS) ;

// Debouncing function for buttons

> bool DebounceButton (uint32_t button, uint32_t port, uint32_t delay_ms)

// Read the current state of the button
uint32_t currentState = GPIOPinRead (port, button);

// Check if the button is pressed (low state, active low button)
if (currentState == 0) {

// Wait for the debounce delay

vTaskDelay (delay_ms / portTICK_RATE_MS) ;

// Read the state again to confirm the press
if (GPIOPinRead (port, button) == 0) ({
return true; // Button press confirmed

return false; // No valid press detected

// Function to set up hardware peripherals

{

111 void SetupHardware (void) ({

112

113

115

125

126

127

128

129

// Set the system clock to 50 MHz
SysCtlClockSet (SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
SYSCTIL_XTAL_16MHZ) ;

// Enable peripherals for Port F (for LEDs and buttons)
SysCtlPeripheralkEnable (SYSCTL_PERIPH_GPIOF) ;

// Unlock PFO (for right button)

HWREG (GPIO_PORTF_BASE + GPIO_O_LOCK) = GPIO_LOCK_KEY;
HWREG (GPIO_PORTF_BASE + GPIO_O_CR) |= GPIO_PIN_O;
HWREG (GPIO_PORTF_BASE + GPIO_O_LOCK) = 0;

// Configure the LEDs (PF1l for red, PF2 for blue) as output
GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, RED_LED | BLUE_LED) ;

// Configure the switches (PFO for right, PF4 for left) as input with pull
—-up resistors
GPIOPinTypeGPIOInput (GPIO_PORTF_BASE, LEFT_BUTTON | RIGHT_BUTTON) ;
GPIOPadConfigSet (GPIO_PORTF_BASE, LEFT_BUTTON | RIGHT_BUTTON,
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU) ;

}

Listing 6: ECE48500 Lab02a FreeRTOS LED/Button with Switch Debouncing

In part 2 of Lab 2a, the following assignment was given to ChatGPT: ”Continue with the previous
code and add the following functionality:

* When a message is sent in the switch_task function or received in the LED_task function, a
message is also sent to the UARTO terminal.

* To protect the shared UARTO resource between these two tasks, a mutex needs to be
created.

* Here are the four messages that will be sent to the serial terminal when each event occurs:

#define LEFTSEND "LEFT SEND\r\n" // when the left
button is pressed/released in the switch task

#define RIGHTSEND "RIGHT SEND\r\n" // when the right
button is pressed/released in the switch task

#define LEFTRECEIVE "LEFT RECV\r\n" // when the left
button message is received in the LED task

#define RIGHTRECEIVE "RIGHT RECVAr\n" // when the right

button message is received in the LED task

This time ChatGPT is able to generates fully functional code, as shown in List|[7]

#include <stdint.h>

> #include <stdbool.h>
3 #include "inc/hw_memmap.h"

4
5

6

#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"

£

45
46
47
48
19
50

51

53
54

55

57
58

59

#include "driverlib/uart.h"
#include "driverlib/pin_map.h"
#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

#include "semphr.h"

3 #include "priorities.h"

// Define constants for the buttons
##define LEFT BUTTON GPIO_PIN_ 4
##define RIGHT BUTTON GPIO_PIN_O

// Define LED pins
#define RED_LED GPIO_PIN_1
#define BLUE_LED GPIO_PIN_2

3 // Define UART messages

#define LEFTSEND "LEFT SEND\r\n"

5 #define RIGHTSEND "RIGT SEND\r\n"

#define LEFTRECEIVE "LEFT RECV\r\n"
#define RIGHTRECEIVE "RIGT RECV\r\n"

// Declare the queue handle and mutex handle
xQueueHandle g_pQueue;
xSemaphoreHandle g_pUARTMutex;

// Function prototypes
void LEDTask (void xpvParameters);

5 void SwitchTask (void *pvParameters) ;

void SetupHardware (void) ;
void UARTSend (const char xmessage);
bool DebounceButton (uint32_t button, uint32_t port, uint32_t delay_ms);

int main (void) {
// Set up system clock and hardware peripherals
SetupHardware () ;

// Create the queue with space for 10 unsigned integers
g_pQueue = xQueueCreate (10, sizeof (uint32_t));

// Create a mutex to protect UARTO access
g_pUARTMutex = xSemaphoreCreateMutex() ;

if (g_pQueue != NULL && g_pUARTMutex != NULL) {

// Create the Switch Task

xTaskCreate (SwitchTask, "Switch Task", 128, NULL, PRIORITY_SWITCH_TASK
, NULL) ;

// Create the LED Task
xTaskCreate (LEDTask, "LED Task", 128, NULL, PRIORITY LED_TASK, NULL);

// Start the FreeRTOS scheduler
vTaskStartScheduler();

69

83
84
85
86
87
88

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110

// The program should never reach here

while

}

// LED Task:

(1) |

void LEDTask (void xpvParameters) {
uint32_t button_press;

while

(1) {

// Wait for data from the queue
(xQueueReceive (g_pQueue,
// Take the UART mutex before sending a message

if

if (xSemaphoreTake (g_pUARTMutex,

&button_press, portMAX_DELAY)

if (button_press == LEFT_BUTTON) {

UARTSend (LEFTRECEIVE); // Send "LEFT RECV\r\n"

GPIOPinWrite (GPIO_PORTF_BASE, RED_LED,
GPIOPinRead (GPIO_PORTF_BASE,

RED_LED) ;

} else if

(button_press == RIGHT_BUTTON) {

portMAX_DELAY)) {

Reads the queue and toggles LEDs based on switch presses

== pdPASS)

RED_LED) ~

UARTSend (RIGHTRECEIVE); // Send "RIGT RECV\r\n"

GPIOPinWrite (GPIO_PORTF_BASE,

BLUE_LED) ;

// Switch Task:

}

xSemaphoreGive (g_pUARTMutex) ;

the LED task
void SwitchTask (void xpvParameters)

while

(1) {

BLUE_LED,

GPIOPinRead (GPIO_PORTF_BASE,

{

// Check if the left button is pressed and debounced

if

(DebounceButton (LEFT_BUTTON, GPIO_PORTF_BASE,

uint32_t message = LEFT_BUTTON;

// Send the

if (xSemaphoreTake (g_pUARTMutex,

"LEFT SEND"

UARTSend (LEFTSEND) ;
xSemaphoreGive (g_pUARTMutex) ;

xQueueSend (g

_pQueue,

message to UART

50))

portMAX_DELAY)) {

// Send "LEFT SEND\r\n"

&message, portMAX_ DELAY) ;

// Check if the right button is pressed and debounced
(DebounceButton (RIGHT_BUTTON, GPIO_PORTF_BASE,
uint32_t message = RIGHT_BUTTON;

if

// Send the

"RIGHT SEND"

message to UART

50))

BLUE_LED)

{

// Release the mutex

{

Detects button presses, debounces them, and sends messages to

{

135
136
137
138
139
140
141

142

146
147
148
149
150
151

152

156
157
158
159
160
161
162

163

if (xSemaphoreTake (g_pUARTMutex, portMAX_ DELAY))
UARTSend (RIGHTSEND) ; // Send "RIGT SEND\r\n"
xSemaphoreGive (g_pUARTMutex) ;

xQueueSend (g_pQueue, &message, portMAX DELAY) ;

// Delay between checking button

states

vTaskDelay (50 / portTICK_RATE_MS) ;

// UART send function to send strings over UARTO

5 void UARTSend (const char xmessage) {

while (*message) {

UARTCharPut (UARTO_BASE, *message+t);

// Debouncing function for buttons

bool DebounceButton (uint32_t button, uint32_t port,

// Read the current state of the button
uint32_t currentState = GPIOPinRead (port, button);

// Check if the button is pressed (low state,

if (currentState == 0) {
// Wait for the debounce delay

vTaskDelay (delay_ms / portTICK_RATE_MS) ;

// Read the state again to confirm the press

if (GPIOPinRead (port, button) ==
return true; // Button press

0) {

confirmed

return false; // No valid press detected

// Function to set up hardware peripherals

void SetupHardware (void) {
// Set the system clock to 50 MHz

SysCtlClockSet (SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN

SYSCTL_XTAL_16MHZ) ;

// Enable peripherals for Port F (for LEDs and buttons)

SysCtlPeripheralEnable (SYSCTL_PERIPH_
SysCtlPeripheralEnable (SYSCTL_PERIPH_
SysCtlPeripheralEnable (SYSCTL_PERIPH_|

// Unlock PFO (for right button)
HWREG (GPIO_PORTF_BASE + GPIO_O_LOCK)

GPIOF) ;
UARTO) ;
GPIOR);

= GPIO_LOCK_KEY;

HWREG (GPIO_PORTF_BASE + GPIO_O_CR) |= GPIO_PIN_O;

HWREG (GPIO_PORTF_BASE + GPIO_O_LOCK)

{

uint32_t delay_ms)

active low button)

and UARTO

164

165 // Configure the LEDs (PF1l for red, PF2 for blue) as output

166 GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, RED_LED | BLUE_LED) ;

167

168 // Configure the switches (PFO for right, PF4 for left) as input with pull
—-up resistors

169 GPIOPinTypeGPIOInput (GPIO_PORTF_BASE, LEFT_BUTTON | RIGHT_BUTTON) ;

170 GPIOPadConfigSet (GPIO_PORTF_BASE, LEFT_BUTTON | RIGHT_BUTTON,
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU) ;

172 // Configure UARTO for communication with the terminal

173 GPIOPinConfigure (GPIO_PAO_UORX) ;

174 GPIOPinConfigure (GPIO_PAl_UOTX) ;

175 GPIOPinTypeUART (GPIO_PORTA_BASE, GPIO_PIN_O0 | GPIO_PIN_1);

177 UARTConfigSetExpClk (UARTO_BASE, SysCtlClockGet (), 115200,

178 (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE)) ;

179

180 // Enable UARTO0 FIFO and interrupts
181 UARTFIFOEnable (UARTO_BASE) ;
182 UARTEnable (UARTO_BASE) ;

Listing 7: ECE48500 Lab02a FreeRTOS UART/Timer

ECE 48500 - Lab02b - FreeRTOS Practice

In Lab02b, the following assignment is sent to ChatGPT, Continue to add the following functions:
add the following functions:

* Configure TimerO to count periodically every 20 ms, with interrupts enabled and priority 1
(very high).

* Inside the TimerO ISR, read ADC channel 1. After 2 seconds with 100 samples, calculate
the average value of channel 1’s ADC, turn on the Blue LED, and then signal the
ADCSample task.

* For the ADCSample task, wait for the 2-second signal from the Timer0 ISR, and then
convert the ADC average value to the 6.2d format (xxxx.xx).

» Send this average value to the UARO serial terminal.
 After that, delay the task for 500 ms and turn off the Blue LED.

The priorities of these three tasks are defined as:

#define PRIORITY_SWITCH_TASK 3
#define PRIORITY_LED_TASK 2
#define PRIORITY_ADCSAMPLE_TASK 4

As expected, ChatGPT is able to significantly enhance working code by providing detailed
comments and explanations. However, it uses the snprintf() function and does not recognize that
snprintf() may not be thread-safe, as shown in List[§]

44
45
46
47
48
49
50

51

#include <stdint.h>

#include <stdbool.h>

#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/uart.h"
#include "driverlib/pin_map.h"
#include "driverlib/timer.h"
#include "driverlib/adc.h"
#include "FreeRTOS.h"
#include "task.h"

3 #include "queue.h"

#include "semphr.h"
#include "priorities.h"

7 // Define constants for the buttons and LED

#define LEFT_BUTTON GPIO_PIN_4
#define RIGHT_BUTTON GPIO_PIN_O
#define RED_LED GPIO_PIN_1
#define BLUE_LED GPIO_PIN_2

3 // Define UART messages

#define LEFTSEND "LEFT SEND\r\n"

5 #define RIGHTSEND "RIGT SEND\r\n"

#define LEFTRECEIVE "LEFT RECV\r\n"
#define RIGHTRECEIVE "RIGT RECV\r\n"

// Define task priorities

#define PRIORITY_SWITCH_TASK 3
#define PRIORITY_LED_TASK 2
#define PRIORITY_ADCSAMPLE_TASK 4

// Global variables

5 xQueueHandle g_pQueue;

xSemaphoreHandle g_pUARTMutex;
xSemaphoreHandle g_pADCSampleSignal;
volatile uint32_t g_adcAccumulator = 0;
volatile uint32_t g_adcSampleCount
volatile uint32_t g_adcAverage = 0;

Il
(@)
~.

// Function prototypes

3 void LEDTask (void xpvParameters);

void SwitchTask (void xpvParameters);
void ADCSampleTask (void *pvParameters);
void SetupHardware (void) ;

void UARTSend (const char xmessage);

bool DebounceButton (uint32_t button, uint32_t port,

void TimerOISR (void) ;

// Timer configuration for 20 ms interrupts
void TimerOConfig(void) {

SysCtlPeripheralEnable (SYSCTL_PERIPH_TIMERO) ;
TimerConfigure (TIMERO_BASE, TIMER_CFG_PERIODIC);

uint32_t delay_ms);

55
56 // Set the timer period for 20 ms

57 uint32_t ui32Period = (SysCtlClockGet () / 50); // 20ms = 50Hz
58 TimerLoadSet (TIMERO_BASE, TIMER_A, ui32Period - 1);

59

60 // Enable Timer interrupts

61 IntPrioritySet (INT_TIMEROA, 0x20); // Priority 1

62 IntEnable (INT_TIMEROA) ;

63 TimerIntEnable (TIMERO_BASE, TIMER_TIMA_TIMEOUT) ;

64

65 TimerEnable (TIMERO_BASE, TIMER_A);

66 }

68 // TimerO ISR: Accumulates ADC samples every 20 ms
0 void TimerOISR (void) {

70 TimerIntClear (TIMERO_BASE, TIMER_ TIMA_TIMEOUT);

71

72 uint32_t adcValue;

73

74 // Trigger ADC conversion on channel 1

75 ADCProcessorTrigger (ADCO_BASE, 1);

76

77 // Wait for conversion to complete

78 while (!ADCIntStatus (ADCO_BASE, 1, false)) {}

79 ADCIntClear (ADCO_BASE, 1);

80 ADCSequenceDataGet (ADCO_BASE, 1, &adcValue);

81

82 // Accumulate the ADC samples

83 g_adcAccumulator += adcValue;

84 g_adcSampleCount++;

85

86 // If 100 samples (2 seconds) have been collected
87 if (g_adcSampleCount >= 100) {

88 // Calculate the average

89 g_adcAverage = g_adcAccumulator / g_adcSampleCount;

90

91 // Reset the accumulator and sample count

92 g_adcAccumulator = 0;

93 g_adcSampleCount = 0;

94

95 // Turn on the Blue LED

96 GPIOPinWrite (GPIO_PORTF_BASE, BLUE_LED, BLUE_LED) ;
97

98 // Signal the ADCSample task

99 xSemaphoreGiveFromISR (g_pADCSampleSignal, pdFALSE) ;
100 }

101 }

102

103 // UART send function to send strings over UARTO

04 void UARTSend (const char xmessage) {

105 while (*message) {

106 UARTCharPut (UARTO_BASE, xmessage++);

107 }

108 }

109

110

114
115
116

117

118

126

128
129
130
131

132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

159

// ADCSample Task: Waits for the 2-second signal and converts the ADC average

to 6.2d format
void ADCSampleTask (void *pvParameters) ({
char uartMessage[20];
while (1) {
// Wait for the signal from the Timer0 ISR

if (xSemaphoreTake (g_pADCSampleSignal, portMAX_ DELAY) == pdTRUE) ({
// Convert the average ADC value to 6.2d format
float adcValue = (float)g_adcAverage * 3.3 / 4096; // Assuming

12-bit ADC with 3.3V reference

snprintf (uartMessage, sizeof (uartMessage), "AVG: %04d.%02d\r\n",

int)adcValue, (int) ((adcValue - (int)adcValue) * 100));

// Take the UART mutex and send the formatted string
if (xSemaphoreTake (g_pUARTMutex, portMAX_DELAY)) {
UARTSend (uartMessage) ;
xSemaphoreGive (g_pUARTMutex) ;

// Delay the task for 500 ms and turn off the Blue LED
vTaskDelay (500 / portTICK_RATE_MS) ;
GPIOPinWrite (GPIO_PORTF_BASE, BLUE_LED, O0);

3 // Switch Task: Detects button presses and sends messages to the LED task

void SwitchTask (void xpvParameters) ({
while (1) {
// Check if the left button is pressed and debounced
if (DebounceButton (LEFT_BUTTON, GPIO_PORTF_BASE, 50)) {
uint32_t message = LEFT_BUTTON;

// Send the "LEFT SEND" message to UART

if (xSemaphoreTake (g_pUARTMutex, portMAX_DELAY)) {
UARTSend (LEFTSEND); // Send "LEFT SEND\r\n"
xSemaphoreGive (g_pUARTMutex) ;

xQueueSend (g_pQueue, &message, portMAX DELAY) ;

// Check if the right button is pressed and debounced
if (DebounceButton (RIGHT_BUTTON, GPIO_PORTF_BASE, 50)) {
uint32_t message = RIGHT_BUTTON;

// Send the "RIGHT SEND" message to UART

if (xSemaphoreTake (g_pUARTMutex, portMAX_ DELAY)) {
UARTSend (RIGHTSEND) ; // Send "RIGT SEND\r\n"
xSemaphoreGive (g_pUARTMutex) ;

xQueueSend (g_pQueue, &message, portMAX DELAY) ;

160
161
162
163
164
165
166
167
168
169
170

171

176

178

179
180

181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204

205
206
207
208
209

210

// Delay between checking button states
vTaskDelay (50 / portTICK_RATE_MS) ;

// LED Task: Reads the queue and toggles LEDs based on switch presses
void LEDTask (void xpvParameters) {

uint32_t button_press;

while (1) {
// Wait for data from the queue
if (xQueueReceive (g_pQueue, &button_press, portMAX_DELAY) == pdPASS)
// Take the UART mutex before sending a message
if (xSemaphoreTake (g_pUARTMutex, portMAX_DELAY)) {
if (button_press == LEFT_BUTTON) {
UARTSend (LEFTRECEIVE) ; // Send "LEFT RECV\r\n"
GPIOPinWrite (GPIO_PORTF_BASE, RED_LED, GPIOPinRead (
GPIO_PORTF_BASE, RED_LED) ~ RED_LED);
} else if (button_press == RIGHT_BUTTON) {
UARTSend (RIGHTRECEIVE) ; // Send "RIGT RECV\r\n"
GPIOPinWrite (GPIO_PORTF_BASE, BLUE_LED, GPIOPinRead (
GPIO_PORTF_BASE, BLUE_LED) ~ BLUE_LED) ;

}
xSemaphoreGive (g_pUARTMutex); // Release the mutex

// Debouncing function for buttons
bool DebounceButton (uint32_t button, uint32_t port, uint32_t delay_ms) {

uint32_t currentState = GPIOPinRead (port, button);

if (currentState == 0) {
vTaskDelay (delay_ms / portTICK_RATE_MS) ;
if (GPIOPinRead (port, button) == 0) {

return true;

}

return false;

// Function to set up hardware peripherals
void SetupHardware (void) {

// Set the system clock to 50 MHz
SysCtlClockSet (SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN |
SYSCTL_XTAL_16MHZ) ;

// Enable peripherals for Port F and ADCO
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOF) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH_ADCO) ;

// Enable UARTO for terminal communication

{

227
228

229

)

231

)

SysCtlPeripheralknable (SYSCTL_PERIPH_UARTO) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH_GPIOA) ;

GPIOPinConfigure (GPIO_PAO_UORX) ;

GPIOPinConfigure (GPIO_PAl_UOQOTX) ;

GPIOPinTypeUART (GPIO_PORTA_BASE, GPIO_PIN_O | GPIO_PIN_1);
UARTConfigSetExpClk (UARTO_BASE, SysCtlClockGet (), 115200,
UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE) ;

// Configure the buttons and LEDs

GPIOPinTypeGPIOOutput (GPIO_PORTF_BASE, RED_LED | BLUE_LED);
GPIOPinTypeGPIOInput (GPIO_PORTF_BASE, LEFT_BUTTON | RIGHT_BUTTON) ;
GPIOPadConfigSet (GPIO_PORTF_BASE, LEFT_BUTTON | RIGHT_BUTTON,
GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD_WPU) ;

// Configure ADC channel 1 (AIN1, PE2)

GPIOPinTypeADC (GPIO_PORTE_BASE, GPIO_PIN_2);

ADCSequenceConfigure (ADCO_BASE, 1, ADC_TRIGGER_PROCESSOR, O0);
ADCSequenceStepConfigure (ADCO_BASE, 1, 0, ADC_CTL_CH1 | ADC_CTL_IE |
ADC_CTL_END) ;

ADCSequenceEnable (ADCO_BASE, 1);

// Configure Timer0
TimerOConfig () ;

Listing 8: ECE48500 Lab02b FreeRTOS Generated Codes using snprintf Function

In the prompt, it was specified: “Do not use the snprintf() function as it may not be thread-safe in
an RTOS system.” After further prompting, ChatGPT addresses the concern of avoiding snprintf()
in a FreeRTOS system (since it may not be thread-safe) by manually formatting the ADC value
into the xxxx.xx format using basic string manipulation. This ensures that the formatting
operation does not introduce thread-safety issues.

The updated version of the code replaces the snprintf() function with manual conversion to the
required format. The generated code is shown in List[9]

#include <stdint.h>
#include <stdbool.h>

3 #include "inc/hw_memmap.h"

&

#include "inc/hw_types.h"
#include "driverlib/sysctl.h"
#include "driverlib/gpio.h"
#include "driverlib/uart.h"
#include "driverlib/pin_map.h"
#include "driverlib/timer.h"
#include "driverlib/adc.h"
#include "FreeRTOS.h"

#include "task.h"

3 #include "queue.h"

#include "semphr.h"
#include "priorities.h"

// Define constants for the buttons and LED
#idefine LEFT BUTTON GPIO PIN 4

v #define RIGHT_BUTTON GPIO_PIN_O
20 #define RED_LED GPIO_PIN_1
21 #define BLUE_LED GPIO_PIN_2

3 // Define UART messages

2+ #define LEFTSEND "LEFT SEND\r\n"
»5 #define RIGHTSEND "RIGT SEND\r\n"
% #define LEFTRECEIVE "LEFT RECV\r\n"
27 #define RIGHTRECEIVE "RIGT RECV\r\n"

2 // Define task priorities

30 #define PRIORITY_SWITCH_TASK 3
31 #define PRIORITY_LED_TASK 2
3» #define PRIORITY_ADCSAMPLE_TASK 4

14 // Global variables

35 xQueueHandle g_pQueue;

36 xSemaphoreHandle g_pUARTMutex;

37 xSemaphoreHandle g_pADCSampleSignal;

33 volatile uint32_t g_adcAccumulator = 0;
volatile uint32_t g_adcSampleCount
40 volatile uint32_t g_adcAverage = 0;

Il
o
~

// Function prototypes

43 void LEDTask (void *pvParameters) ;

4 void SwitchTask (void xpvParameters);

5 void ADCSampleTask (void xpvParameters);

46 void SetupHardware (void) ;

47 void UARTSend (const char xmessage);

48 bool DebounceButton (uint32_t button, uint32_t port, uint32_t delay_ms);
19 void TimerOISR (void) ;

s1. // Timer configuration for 20 ms interrupts
52 void TimerOConfig(wvoid) {

53 SysCtlPeripheralEnable (SYSCTL_PERIPH_TIMERO) ;

54 TimerConfigure (TIMERO_BASE, TIMER_CFG_PERIODIC) ;

55

56 // Set the timer period for 20 ms

57 uint32_t ui32Period = (SysCtlClockGet () / 50); // 20ms = 50Hz
58 TimerLoadSet (TIMERO_BASE, TIMER_A, ui32Period - 1);

59

60 // Enable Timer interrupts

61 IntPrioritySet (INT_TIMEROA, 0x20); // Priority 1
62 IntEnable (INT_TIMEROA) ;

63 TimerIntEnable (TIMERO_BASE, TIMER_TIMA_TIMEOUT) ;
64

65 TimerEnable (TIMERO_BASE, TIMER_A);

¢ // Timer0O ISR: Accumulates ADC samples every 20 ms
09 void TimerOISR (void) ({
70 TimerIntClear (TIMERO_BASE, TIMER_TIMA_TIMEOUT) ;

72 uint32_t adcValue;

73
74
75
76
77
78
79
80
81

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111

116
117
118
119
120
121

122

126

// Trigger ADC conversion on channel 1
ADCProcessorTrigger (ADCO_BASE, 1);

// Wait for conversion to complete

while (!ADCIntStatus (ADCO_BASE, 1, false)) {}
ADCIntClear (ADCO_BASE, 1);

ADCSequenceDataGet (ADCO_BASE, 1, &adcValue);

// Accumulate the ADC samples
g_adcAccumulator += adcValue;
g_adcSampleCount++;

// If 100 samples (2 seconds) have been collected
if (g_adcSampleCount >= 100) {
// Calculate the average
g_adcAverage = g_adcAccumulator / g_adcSampleCount;

// Reset the accumulator and sample count
g_adcAccunmulator = 0;
g_adcSampleCount 0;

// Turn on the Blue LED
GPIOPinWrite (GPIO_PORTF_BASE, BLUE_LED, BLUE_LED) ;

// Signal the ADCSample task
xSemaphoreGiveFromISR (g_pADCSampleSignal, pdFALSE);

// UART send function to send strings over UARTO
void UARTSend (const char xmessage) {

while (*message) {
UARTCharPut (UARTO_BASE, *message+t);

// Convert ADC average value to string in 6.2d format
void FormatADCValue (uint32_t adcValue, char xbuffer) {

// Assuming a 12-bit ADC with 3.3V reference
float voltage = (float)adcValue » 3.3 / 4096;

// Convert to integer values for "xxxx.xx" format
int integerPart = (int)voltage;
int fractionalPart = (int) ((voltage - integerPart) = 100);

// Manually format the string
buffer[0] = (integerPart / 1000) + ’0’; // Thousands place

buffer[1l] = ((integerPart / 100) % 10) + '0’; // Hundreds place
buffer[2] = ((integerPart / 10) % 10) + '0’; // Tens place
buffer[3] = (integerPart % 10) + '0’; // Ones place

buffer[4] = ".’; // Decimal point

buffer[5] = (fractionalPart / 10) + ’0’; // Tenths place
buffer[6] = (fractionalPart % 10) + '0’; // Hundredths place

127 buffer([7] = '"\r’;
128 buffer([8] = "\n’;
129 buffer[9] = "\0’; // Null terminator

130 }

132 // ADCSample Task: Waits for the 2-second signal and converts the ADC average
to 6.2d format
133 void ADCSampleTask (void xpvParameters) {

134 char uartMessage[20];

135 while (1) {

136 // Wait for the signal from the TimerO ISR

137 if (xSemaphoreTake (g_pADCSampleSignal, portMAX DELAY) == pdTRUE) {
138 // Format the ADC average value into the buffer

139 FormatADCValue (g_adcAverage, uartMessage);
140

141 // Take the UART mutex and send the formatted string
142 if (xSemaphoreTake (g_pUARTMutex, portMAX_ DELAY)) {

143 UARTSend (uartMessage) ;

144 xSemaphoreGive (g_pUARTMutex) ;

145 }

146

147 // Delay the task for 500 ms and turn off the Blue LED
148 vTaskDelay (500 / portTICK_RATE_MS) ;

149 GPIOPinWrite (GPIO_PORTF_BASE, BLUE_LED, O0);

150 }
151 }
152}

154 // Switch Task: Detects button presses and sends messages to the LED task
155 void SwitchTask (void xpvParameters) {

156 while (1) {

157 // Check if the left button is pressed and debounced

158 if (DebounceButton (LEFT_BUTTON, GPIO_PORTF_BASE, 50)) {
159 uint32_t message = LEFT_BUTTON;

160
161 // Send the "LEFT SEND" message to UART

162 if (xSemaphoreTake (g_pUARTMutex, portMAX_DELAY)) {
163 UARTSend (LEFTSEND); // Send "LEFT SEND\r\n"
164 xSemaphoreGive (g_pUARTMutex) ;

165 }

166

167 xQueueSend (g_pQueue, &message, portMAX DELAY) ;

168 }

169

170 // Check if the right button is pressed and debounced
171 if (DebounceButton (RIGHT_BUTTON, GPIO_PORTF_BASE, 50)) {
172 uint32_t message = RIGHT_BUTTON;

173

174 // Send the "RIGHT SEND" message to UART

175 if (xSemaphoreTake (g_pUARTMutex, portMAX_DELAY)) {
176 UARTSend (RIGHTSEND) ; // Send "RIGT SEND\r\n"

177 xSemaphoreGive (g_pUARTMutex) ;
178 }

179

188
189
190
191
192
193
194
195
196
197
198

199

200
201

202

203
204
205
206
207

208

xQueueSend (g_pQueue, &message, portMAX DELAY) ;

// Delay between checking button states
vTaskDelay (50 / portTICK_RATE_MS) ;

// LED Task: Reads the queue and toggles LEDs based on switch presses
void LEDTask (void xpvParameters) {
uint32_t button_press;

while (1) {
// Wait for data from the queue

if (xQueueReceive (g_pQueue, &button_press, portMAX_DELAY) == pdPASS)

// Take the UART mutex before sending a message
if (xSemaphoreTake (g_pUARTMutex, portMAX_ DELAY)) {

if (button_press == LEFT_BUTTON) {
UARTSend (LEFTRECEIVE); // Send "LEFT RECV\r\n"
GPIOPinWrite (GPIO_PORTF_BASE, RED_LED, GPIOPinRead (
GPIO_PORTF_BASE, RED_LED) ~ RED_LED);
} else if (button_press == RIGHT_BUTTON) {
UARTSend (RIGHTRECEIVE) ; // Send "RIGT RECV\r\n"
GPIOPinWrite (GPIO_PORTF_BASE, BLUE_LED, GPIOPinRead (
GPIO_PORTF_BASE, BLUE_LED) ~ BLUE_LED);
}
xSemaphoreGive (g_pUARTMutex); // Release the mutex

// Debouncing function for buttons
bool DebounceButton (uint32_t button, uint32_t port, uint32_t delay_ms)
uint32_t currentState = GPIOPinRead (port, button);
if (currentState == 0) {
vTaskDelay (delay_ms / portTICK_RATE_MS) ;
if (GPIOPinRead (port, button) == 0) {
return true;

Listing 9: ECE48500 Lab02b FreeRTOS Thread-Safe Generated Code

Discussions

In the era of Generative Al, such as ChatGPT, even embedded systems design—which requires

specific knowledge of hardware and software—can benefit from Al-generated solutions.

However, these results must be carefully analyzed and tested. Essential knowledge and practical

skills remain crucial, even in the age of Al. It has become challenging to assign students

traditional projects, as ChatGPT can replace much of the students’ work. Therefore, innovative

approaches need to be explored.

{

The findings in this paper highlight both the advantages and limitations of using ChatGPT in

{

embedded systems teaching. While it helps students navigate documentation, debug code, and
grasp complex topics, it falls short in key areas—it can’t interact with hardware, sometimes
provides inaccurate information, and lacks real-world context. These gaps emphasize the
importance of hands-on learning and critical thinking. To address this, educators can incorporate
more in-class debugging exercises, mini-projects, and assignments that challenge students to
critically evaluate Al-generated solutions. Teaching Al literacy—guiding students to critically
assess ChatGPT’s responses—ensures they use it as a tool rather than a substitute for learning. By
balancing Al assistance with practical experience, students can build both technical expertise and
problem-solving skills.

Assessing students’ learning in embedded system design in the era of ChatGPT requires
innovative approaches that go beyond traditional methods, ensuring that students learn effectively
and apply their knowledge creatively. Assessing students’ achievements remains challenging,
particularly in distinguishing between the following three categories:

* Students’ work without any Al assistance
¢ Students’ work with some Al assistance
¢ Students’ work with lots of Al assistance

With these considerations in mind, how can educators design assignments that leverage Al while
maintaining rigorous learning outcomes? The key is to integrate Al and modern tools
thoughtfully, ensuring students develop essential skills rather than passively relying on
automation.

To address these challenges, we propose several pedagogical strategies that balance AI’s benefits
while ensuring students develop fundamental embedded systems expertise. Here are some
strategies for crafting effective programming assignments in embedded systems—assignments
that encourage learning, foster problem-solving, and account for AI’s role in the development
process.

1. Pop Quiz

Assignment: Students will be given unannounced, short tests designed to quickly evaluate
their understanding of embedded systems material. These pop quiz questions should be
brief, typically 5-10 questions, to quickly gauge students’ grasp, such as, “How would you
connect a sensor to an MCU using a CAN bus?”

Objective: Evaluate their understanding of key concepts such as microcontroller
functionality, sensor interfacing, and communication protocols, in a real-time, practical
manner.

2. Lab Checkout Questions

Assignment: During the hands-on lab checkout, students will be asked specific questions
related to that lab practice to assess whether they have grasped and understood the
necessary knowledge. Their answers will be graded, and similar questions may appear in
future exams.

Objective: Evaluate students’ understanding of key concepts such as microcontroller
functionality, sensor interfacing, and communication protocols for that lab practice.

Note: We have adopted this approach in ECE 46500 - Embedded Microprocessor Lab and
found it to be effective. By incorporating verbal assessments during lab checkout, we
ensure that students engage with the material beyond simply completing the lab exercises.
This method encourages them to think critically, articulate their understanding, and apply
concepts in real-time scenarios. Additionally, it provides instructors with immediate
feedback on common misconceptions, allowing for timely intervention. As a result,
students develop a deeper comprehension of embedded systems principles, better preparing
them for exams and real-world applications.

. Mini-Project in Classroom

Assignment: Carefully designed, quick, focused mini-projects are assigned to students,
which they can complete within an hour in the classroom. Each project is designed to build
foundational skills and confidence with embedded concepts.

Objective: These mini-projects are hands-on and achievable within an hour, even without
the assistance of Al, providing a manageable introduction to key concepts in embedded
systems. Each mini-project allows students to learn essential concepts while developing
practical skills in designing, testing, and debugging embedded systems.

. Code Refactoring and Optimization

Assignment: Provide students with a fully functioning, yet inefficient embedded system
code (e.g., code that controls an 10T sensor network or motor control in a robot). Their task
is to refactor and optimize the code to improve performance, memory usage, or energy
efficiency.

Objective: Assess students’ ability to optimize embedded system code for constraints like
speed or memory.

Al Integration: ChatGPT can assist students in suggesting optimizations, but students must
document how they identified and applied each optimization. Their own explanations of the
changes should demonstrate independent understanding.

. Al-Assisted Code Debugging Challenge

Assignment: Give students buggy embedded system code, such as code with timing issues
in real-time systems, incorrect sensor data handling, or faulty communication protocols.
Their task is to debug the code and provide a report on how they fixed the issues.

Objective: Test students’ debugging and problem-solving skills, especially in low-level
programming environments.

Al Integration: Students can use ChatGPT to get suggestions or debugging tips, but they
must submit a step-by-step explanation of how they solved each issue and what specific role
Al played in the process.

. Hardware-Software Co-Design Project
Assignment: Students are tasked with developing both the software and hardware interface
for a small embedded system (e.g., an automatic door system, temperature control system,

or smart light control using a microcontroller). The code should interface with sensors and
actuators.

Objective: Assess the ability to write embedded system code that interacts with hardware
components (sensors, actuators) and manage real-time constraints.

Al Integration: ChatGPT can help students with code structure or offer advice on hardware
interfacing, but students must explain their hardware choices and the specifics of their
custom implementation. For example, they should justify why they used particular sensor
libraries and how they configured interrupt handling.

7. Code Review and Al Critique
Assignment: Students are asked to write embedded system code for a given task (e.g.,
controlling a motor or reading data from a sensor). After submission, they must use
ChatGPT to review their own code, focusing on efficiency, potential bugs, and best
practices.
Objective: Improve students’ ability to critically evaluate their own code and identify areas
for improvement.
Al Integration: The final submission includes the student’s original code, ChatGPT’s
feedback, and a report on what changes they made based on Al suggestions. Students must
justify why they agreed or disagreed with the Al feedback.

Summary

The paper explores the integration of ChatGPT in embedded systems education. It highlights the
challenges of using Al tools in specialized fields like bare-metal embedded systems, where
hardware and software intricacies are critical. ChatGPT proves beneficial in assisting students
with tasks such as code generation and understanding complex documentation. However,
practical experience and foundational knowledge remain indispensable for success. The paper
presents case studies from courses like Introduction to Microprocessors, Embedded Systems, and
Real-Time Operating Systems, illustrating how ChatGPT complements but cannot replace
traditional learning methods. Educators are encouraged to adapt their teaching strategies to ensure
effective learning in the Al era. As educators continue to adapt, incorporating Al thoughtfully
into curricula will be key to preparing students for an evolving engineering landscape.

References

[1] L. Kloub and A. Gupta, “Chatgpt in computer science education: Exploring benefits, challenges, and ethical
considerations,”’ in 2024 ASEE North East Section, no. 10.18260/1-2-45758. Fairfield, Connecticut: ASEE
Conferences, April 2024, https://peer.asee.org/45758.

[2] S. Onal, “Exploring the potential benefits and risks of chatgpt in engineering education,” in 2023 IL-IN Section
Conference, no. 10.18260/1-2-118-45100. Edwardsville, IL: ASEE Conferences, December 2023,
https://peer.asee.org/45100.

[3] A. Kavianpour, “Teaching programming languages by two teachers: Instructor and chatgpt,” in 2024 ASEE
Annual Conference & Exposition, no. 10.18260/1-2-48065. Portland, Oregon: ASEE Conferences, June
2024, https://peer.asee.org/48065.

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]
[12]
[13]

R. D. Manteufel and A. Karimi, “Student use of chatgpt to write an engineering report,” in 2024 ASEE Annual
Conference & Exposition, no. 10.18260/1-2-48021. Portland, Oregon: ASEE Conferences, June 2024,
https://peer.asee.org/48021.

Keil MDK. [Online]. Available: |https://developer.arm.com/ToolsandSoftware/KeilMDK

IAR Embedded Workbench for ARM. [Online]. Available:
https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/

STM32CubelDE Integrated Development Environments for STM32. [Online]. Available:
https://www.st.com/en/development-tools/stm32cubeide.html

MCUXpresso Integrated Development Environment. [Online]. Available:
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/
mcuxpresso-integrated-development-environment-ide: MCUXpresso-IDE

Arm Development Studio. [Online]. Available:
https://developer.arm.com/ToolsandSoftware/ArmDevelopmentStudio

TI Code Composer Studio Integrated Development Environment. [Online]. Available:
https://www.ti.com/tool/download/CCSTUDIO/12.8.0

ARM GNU Toolchain. [Online]. Available: https://developer.arm.com/ToolsandSoftware/GNUToolchain
EK-TM4C123GXL Launchpad from TI. [Online]. Available: https://www.ti.com/tool/EK-TM4C123GXL
SW-TMA4C TivaWare for C Series. [Online]. Available: https://www.ti.com/tool/SW-TM4C

https://developer.arm.com/Tools and Software/Keil MDK
https://www.iar.com/products/architectures/arm/iar-embedded-workbench-for-arm/
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://www.nxp.com/design/design-center/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-integrated-development-environment-ide:MCUXpresso-IDE
https://developer.arm.com/Tools and Software/Arm Development Studio
https://www.ti.com/tool/download/CCSTUDIO/12.8.0
https://developer.arm.com/Tools and Software/GNU Toolchain
https://www.ti.com/tool/EK-TM4C123GXL
https://www.ti.com/tool/SW-TM4C

