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Course-Job Fit: Understanding the Contextual Relationship Between
Computing Courses and Employment Opportunities

Abstract

In today’s world, where higher education is increasingly vital, aligning curricula with industry
demands is essential. This paper explores the contextual relationship between computing courses
and technical jobs using various transformer models to encode course syllabi and job descriptions
into high-quality fixed-sized vector spaces (embeddings), enabling efficient and nuanced compar-
isons that reveal deeper contextual relationships. Our research makes multiple unique contributions
that address gaps in existing work. First, we gather a large, recent data set of 197,296 jobs in five
technical fields. Secondly, we perform in-depth analysis between courses and job postings using
advanced transformer models, offering clear and deeper insights into how well academic content
aligns with the industry. Third, we investigate salary trends to identify courses and skills linked
to high-paying jobs. Fourth, we examine core and elective courses separately to provide insights
for curriculum development and assist students in choosing elective courses considering industry
demands.

Our findings show that top-ranking courses emphasize a combination of technical skills and pro-
fessional skills like communication and teamwork. Moreover, skills like cloud technologies and
databases are prevalent across multiple fields, highlighting their importance as essential skills for
success in various technical domains. We found that the core courses mandated by the curriculum
for all students to complete generally align better with job market demands compared to elective
courses. Interestingly, undergraduate courses exhibit stronger alignment with job postings over-
all, while graduate courses improve their alignment specifically with higher-paying jobs. This
highlights the importance of considering career goals when deciding whether to pursue graduate
education. Overall, this paper introduces a replicable methodology for analyzing curricula and
demonstrates its application through a case study of one institution’s computing programs.

1 Introduction

The rapid evolution of the job market, driven by artificial intelligence (AI) and automation, along-
side shifting economic demands, underscores the need for an adaptable education system. Al-
though educational institutions strive to equip students with the necessary knowledge for success-
ful careers, many graduates struggle to land jobs that match their qualifications, even with the high
demand for tech talent. A 2024 study conducted by Hanson et al. [21] found that approximately
37% of students in fields such as computer science (CS) are underemployed. A common factor
behind this phenomenon is the significant gap between academic curricula and employer expec-
tations [22]. Graduates may feel they are prepared to enter the workforce, but there is often a
mismatch between the skills and knowledge they have acquired and the requirements of employ-
ers [13, 22, 29, 41].

This research aims to bridge the gap between educational content and employment needs by lever-
aging advanced analytics techniques of machine learning (ML) and transformer models to analyze
and correlate course descriptions with job postings. By identifying the alignment or misalign-



ment between educational content (such as course syllabi) and employment needs (such as job
descriptions), this study aims to provide valuable insights for student career advising, curriculum
analysis, and policy-making. Ultimately, the goal is to enhance graduate employability and ensure
that educational institutions remain responsive to the evolving needs of the job market. This study
addresses the following research questions (RQs):

RQ1: How can we transform course syllabi and job descriptions into fixed-sized vector embed-
dings to compare and reveal how well academic content aligns with industry needs?

RQ2: How can we identify the courses and skills related to high-paying job opportunities?

RQ3: How do core and elective classes differ in their alignment to the job market?

Anonymized experimental data and source code will be made publicly available on GitHub
(https://github.com/Damrl-lab/Course-Job-Fit) to facilitate further research and extension into other
educational and job domains. While in this paper our focus is on technical jobs and computing
course syllabi from the computing department of an R1 Hispanic Serving Institution (HSI), this
approach could be extensively applied to compare other job fields and course contents such as cat-
alogs, syllabus, and lecture materials. Our findings are contextual to a single institution but provide
a framework for curriculum analysis that can be applied across diverse educational settings.

In the remainder of this paper, Section 2 elaborates on the related work in the field and our con-
tributions. Section 3 introduces the details of our data collection and pre-processing. Section 4
elaborates on our methodology to analyze and compare course syllabi with job descriptions. Sec-
tion 5 evaluates our implementation by ranking courses and analyzing them to identify trends.
Section 6 provides a clear guide for re-using our study. Section 7 discusses potential limitations of
this study, while Section 8 summarizes our work and concludes the paper.

2 Related Work

In this section, we discuss existing works on identifying employability skill gaps, efforts to stan-
dardize and understand curriculum changes, and job-to-course comparison studies, emphasizing
the gap in exiting works, unique context and need for our research in this paper.

Carnevale et al. [9] highlighted the growing importance for higher education in preparing stu-
dents for the job market emphasizing the need for cognitive and soft skills. Similarly, Markes
[32] reviewed employability skills needed in engineering, finding a disconnect between academic
training and industry requirements. Weligamage et al. [54] reinforced this concern, stressing the
need of keeping curriculum up-to-date with current demands. In recent years many comprehensive
reviews identified teamwork, communication, problem-solving, self-management, and technical
skills as crucial for workforce success, advocating for curriculum updates to incorporate these
skills [11, 14, 19, 25, 37, 45, 44, 46]. However, while these studies establish the importance of
aligning curricula with industry needs, they often rely on discussions or feedback rather than direct
comparisons between course syllabi and job postings making it difficult to identify how effectively
educational content covers these topics.

Previous research has also leveraged natural language processing (NLP) techniques to analyze
university curricula. Li et al. [27] used text mining and clustering to compare data science curricula
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across institutions finding a lack of standardization in course content. Bhaduri and Roy [5] used
Word2Vec [33] embeddings to analyze college mission statements, finding similarities in public
and private institutions. West [55] used Term Frequency-Inverse Document Frequency (TF-IDF)
to identify key skills taught in data science curricula, discovering that many institutions tend to
mimic each other’s curricula rather than developing programs tailored to the industry. Although
these studies present trends across academic institutions, they don’t provide concrete comparisons
between the job market and academic content.

Other studies have applied basic NLP techniques for job-to-course comparisons. Kawintiranon
et al. [23] and Xun et al. [58] compared course content with specified skill lists from sources
such as the Association for Computing Machinery (ACM), by using latent semantic analysis (LSI)
and TF-IDF finding a gap between skills taught and listed. Alibasic et al. [1] and Fortino et al.
[17] took a more direct approach by comparing course and major descriptions with job postings,
identifying critical skill gaps by using TF-IDF and LSI. However, these methods (LSI and TF-IDF)
often fall short in capturing the nuanced context of job descriptions and course content, a limitation
that can be addressed using recent advancements in ML and NLP, particularly transformer models
[24, 31, 50, 59].

Our research stands out from previous studies in several ways:

1. Data Set: We collected a large dataset of 197,296 jobs posted between October-December
2024 from popular recruiting sites such as Glassdoor, Indeed, and ZipRecruiter to compare
courses with recent and relevant employment opportunities.

2. Semantic Depth: Unlike traditional NLP methods such as TF-IDF and LSI, our use of trans-
former models capture the nuanced context of job descriptions and course content, providing
a deeper semantic analysis.

3. Direct Comparisons: We perform direct 1:1 comparisons between course syllabi and job
postings, rather than relying on predefined skills.

4. Incorporation of Salary Data: We examine salaries to identify high-paying skills, offering
insights into the economic value of specific courses.

5. Core and Elective Analysis: We separately analyze core and elective courses to assist stu-
dents in class selection and assist universities in reevaluating their curriculum.

6. Computing Field: By focusing on computing and tech, some of the fastest-growing fields
[7, 18], our research helps an important knowledge group in today’s society.

In summary, while previous studies have laid the groundwork for understanding the alignment
between education and the industry, our research advances the field by leveraging advanced tech-
niques like transformer models, while also using a larger more recent dataset, and adding additional
layers to the analysis of the courses. To the best of our knowledge, none of the existing works ex-
plore the aspects of salaries and core vs. elective classes in their analysis.



3 Data Collection

In this section we present our methodology for gathering job postings and processing the course
syllabi and job descriptions.

3.1 Course Syllabi

We gathered course syllabi from the course catalog of a computing department at a public univer-
sity in the United States, where a total of 210 courses are listed. These courses come from
various computing programs such as undergraduate and graduate programs in IT, CS, Data Science
(DS), Cybersecurity (CYS), and more. The course syllabus is a PDF document typically between
1-3 pages that contain a detailed description of what each course covers. This includes fields such
as prerequisite requirements, learning outcomes, grading policies, and topics taught. While for-
mats and lengths would vary, they were generally similar in their structure. The average length of
these documents are 717.2 words making them sufficiently descriptive.

It’s important to note that different professors might adapt these syllabi based on their preferred
topics or teaching approaches. However, we used a standardized version designed to capture each
course’s content as accurately as possible regardless of the instructor. These standardized syl-
labi have been reviewed to ensure they effectively represent the course curriculum. We believe
this approach provides a reliable representation of course content while acknowledging that some
variation may exist in actual course delivery, a limitation further discussed in Section 7.

3.2 Job Fetching

Job postings were collected using JobSpy, a Python repository designed for scraping job listings
from various websites [53]. JobSpy can scrape data from recruiting websites, such as Glassdoor,
Indeed, LinkedIn, and ZipRecruiter [53]. We excluded LinkedIn for our job collection because
it tended to block requests after scraping 10-50 jobs, and could potentially lock us out from their
services after extensive usage. The scraper uses APIs from each recruiting website and sends a
request looking for jobs based on queries passed. The API returns multiple pages of jobs, where
pages are sorted by relevance to our queries, and fetches them page by page until the desired
number of jobs has been retrieved [53].

Computing degrees enable graduates to pursue multiple career options. To reflect this, we have
collected jobs from five different fields common for computing graduates to work in. These fields
were selected based on public data released by universities such as Carnegie Mellon and University
of Southern California about where their CS graduates go after graduation[8, 49]. These five fields
are:

• Cyber Security (CYS)

• Data Science (DS)

• Software Engineering (SWE)

• Technical Product Management (TPM)

• Information Technology (IT)



We acknowledge that a computing degree can lead to jobs outside these fields, however the selected
fields will represent the vast majority of graduates career outcomes and goals [8, 49]. Moreover, the
jobs within each field are very diverse, offering a broad range of technical roles. An example of this
were the Software engineering jobs where roles included topics like Fullstack development, Game
development, Systems engineering, DevOps engineering among others. Overall, we believe this
dataset is of high quality and covers recent, relevant, and diverse roles most computing graduates
pursue after completing their studies.

For our software engineering jobs we used these parameters: "Location: USA", "Search
Term: Software Engineer", "Results Wanted: 2,000", and "Hours Old:
24". Using these parameters we would receive up to 2,000 software engineering job postings that
were 24 hours old or less and located in the USA. The number of jobs would fluctuate based
on the day and field, where we would typically receive around 500-1,000 jobs for each category
per day. We used similar queries for the other fields, however we changed the search term to
Cyber security, Data scientist, Technical product manager or IT re-
spectively.

We executed the job fetching script starting on 10/10/2024 and repeated the data fetching every 1-3
days until the 12/30/2024, ensuring the jobs were recent, until we had gathered a total of 197,296
total job postings. The distribution is: 38,514 Cyber security jobs, 28,896 Data science jobs, 61,159
Software engineering jobs, 29,199 Product management jobs, and 39,528 IT jobs. The returned
job postings required further filtering and pre-processing because they included numerous fields
not relevant to our analysis, such as CEO name, job URL, and number of employees. Our primary
focus is on the job title, salary, and description. Additionally, job descriptions varied significantly:
some postings were longer due to information about the company, diversity policies, and contact
details, while others focused primarily on the job and its requirements. The average length of the
job descriptions is 715.8 words with a standard deviation of 386.6 words.

3.3 Data Processing

To analyze the job postings, we filtered and pre-processed the data to ensure it was clean, consis-
tent, unique and ready for input into the transformer models.

Filtering: First, we filtered the data to exclude job entries that did not include a job description and
removed duplicate job postings from each field, which reduced the dataset to 95,376. Many job
postings listed their salaries in ranges where a minimum and maximum salary are given. For our
analysis, we used the average of these values. Some jobs listed salaries on an hourly basis, while
others used a yearly format. We converted hourly salaries to yearly amounts by multiplying by 52
(weeks per year) and then by 40 (hours per week). We understand that job salary may depend on
location and additional benefits, but this is outside the scope of this study, as we are focusing only
on the average earnings.

Pre-processing: After filtering, we pre-processed the job descriptions to make them easier for the
models to process. This involved converting all text to lowercase and removing extra white space.
To pre-process the course syllabi we apply the same text cleaning process as we did for the job
descriptions, which involves converting all characters to lowercase and removing extra whitespace.



4 Methodology

Our methodology for comparing courses with jobs is summarized in Figure 1. It involves gathering
and processing the data, inputting it into the models, which tokenizes the input and generates an
embedding for each token, passing the embeddings through multiple transformer layers, combining
these embeddings into a single sentence embedding, and finally calculating the similarities between
each course and job embedding to rank and analyze the courses. Each model was run separately
on a single NVIDIA A100-PCIe-40GB GPU with a total execution time between 78-140 minutes
based on the model used.

Figure 1: Process Overview

4.1 Model Selection

Extensive research has shown the effectiveness of transformer models in tasks such as creating
sentence embeddings and calculating semantic similarities, where they consistently outperform
classical NLP methods like LSTM networks, algorithms such as TF-IDF and LSI, and word-level
embedding models like Word2Vec [10, 12, 43, 50]. Their advantage lies in the self-attention mech-
anism that enables them to process entire sequences simultaneously and capture relationships and
contexts between words that traditional approaches might miss [12, 50].

For example, when analyzing a course syllabus describing ”Python applications in data analy-
sis,” traditional methods like TF-IDF might treat these as separate concepts, while transformers
can understand how they relate to job requirements. Additionally, transformers can recognize se-
mantic similarities even when different terminology is used, such as understanding that ”software



development” and ”programming” describe related concepts, or that ”cloud computing” relates to
specific platforms like AWS or Azure. This capability is particularly valuable for our study, as
job descriptions and course syllabi often use different terminology to describe similar skills and
concepts [50]. In this study we use encoder-only transformer models which have been specifically
designed for converting text to embeddings [6, 26, 42]. When selecting which models to use we
look at the following criteria.

1) Open source: We want our study to be easily replicable and free, which is why we decided to
use open source models.

2) Accuracy: We want to use models designed specifically for creating text embeddings that
achieve top performance for tasks such as semantic similarity comparisons.

3) Performance: We want to use models which can generate embeddings efficiently without the
need of extensive computing power, further enhancing the replicability of this study.

Looking at these three criteria, we decided to use these five models.

• Sentence-BERT (SBERT) [43]

• BAAI General Embedding (BGE) [57]

• General Text Embeddings (GTE) [28]

• MPNet [47]

• E5 [51].

SBERT and MPNet were chosen due to their speed, popularity and compact size [43, 47], while
E5, BGE and GTE were chosen as they are some of the most recent and powerful embedding
models to date [28, 51, 57]. The decision to use multiple models stems from our effort to alleviate
varying limitations of individual transformers. Transformers have been documented to struggle
with technical or domain-specific terminology if they are not trained on this type of data [2, 30].
Furthermore, their embeddings can be sensitive to changes in text structure or wording, which can
result in inconsistent similarity comparisons [52]. Lastly, their fixed token lengths require creative
approaches for handling longer documents [3, 39] which we discuss further in Section 4.2. By
using multiple models we can mitigate these limitations as it offers several advantages such as:

1. Training Data: Each model has been trained on different data. For example, MPNet was
primarily trained on BookCorpus and English Wikipedia [47], while E5 included technical
documentation and academic papers [51]. These differences can therefore lead to strengths
in different domains which is crucial when working with the large diverse dataset employed
in this study.

2. Architectural Variations: The models use different architectures (e.g., SBERT’s siamese ar-
chitecture [43] or BGE’s contrastive learning approach [57]) which affect how they capture
semantic relationships. Prior work has shown that these differences can make the models
capture and focus on different aspects of the text when encoding it, complementing each
other when used together [10, 28, 35].



3. Domain Specialization: Individual models may show stronger performance in certain do-
mains or writing styles. For example, some models might better capture technical terminol-
ogy while others excel at understanding broader conceptual relationships. This phenomenon
has been documented in [2, 30].

By combining multiple models, we create a more robust evaluation system where individual mod-
els’ strengths and limitations balance each other out. Table 1 compares the five models based on
the number of parameters, Massive Text Embedding Benchmark (MTEB) score [35], release year,
token limit, and embedding dimension. The MTEB score is the standard evaluation metric for em-
bedding models, evaluating their performance for tasks such as semantic similarity, classification,
and clustering, using various datasets [35]. All the models used have respectable MTEB scores
reflecting their capability at generating high-quality embeddings. While SBERT and MPNet have
slightly lower scores compared to the newer, larger models like GTE and BGE, their smaller size
and faster processing times make them valuable for scenarios requiring computational efficiency.

Model Params MTEB Year Token lim Dim.
SBERT 22M 56.09 2019 256 384
BGE 335M 64.23 2023 512 1024
GTE 335M 63.13 2023 512 1024
MPNet 110M 57.17 2021 384 768
E5 335M 62.20 2023 512 1024

Table 1: Comparison of Embedding Models.

4.2 Generating embeddings

All five models are based on the transformer architecture, although they differ in their specific
implementations. The general process of converting text to embeddings follows these steps:

1. Tokenization: Text is broken into tokens where each token represents a word or a subword
and their numerical representation which the models can process.

2. Input Encoding: Each token is converted into an embedding which combines token embed-
dings (numerical and contextual representation of each token), position embeddings (infor-
mation about where each token appears in the sequence), and special tokens in certain models
(tokens like [CLS] which represents the entire sequence for classification purposes or [SEP]
which marks boundaries between different text segments) that help the model understand the
structure of the input.

3. Attention Processing: The encoded input is then passed through multiple transformer layers
which apply self-attention mechanisms. This helps the model evaluate the relationships
between different tokens and determine which tokens are the most relevant for each other
based on their context. The output is then refined further by feed-forward networks, where
each layer progressively builds a deeper understanding of the text.

4. Pooling: Finally, to get a single embedding for the entire text we need to merge the em-
bedding of each token together. SBERT and MPNet use mean pooling over their last layer
[43, 47], while for GTE, BGE and E5, this must be implemented manually [28, 51, 57].



The resulting embeddings are high-dimensional vectors (between 384-1024 dimensions) that cap-
ture the semantic meaning of the input text, allowing for similarity comparisons between different
texts. When tokenizing the course syllabi and job descriptions, a possible issue that can arise is
the token limit. If our text exceeds the token limit, the tokenizers will by default truncate our text
to fit the limit, meaning that the embeddings created will not represent the entire course syllabi or
job description.

To address this issue, we developed a weighted embedding strategy to effectively represent all the
text in the job descriptions and course syllabi represented in Algorithm 1. When a description
exceeds the token limit, we split the tokens into chunks with a maximum size of max seq len
which represents the largest number of tokens each model can process (line 6-8). Then we pass the
chunks through the models which return an embedding for each of them (line 10). We make sure to
keep track of the number of tokens each embedding represents (line 11-13). Finally, we combine
these embeddings, where we weigh them based on how many tokens they represent (line 14-17).
This strategy ensures that all of the text is included, while also giving fairness to embeddings
representing more text.

No method for solving this problem is perfect, and drawbacks of this approach include additional
computational overhead [3, 39]. Moreover, this approach will give more importance to embeddings
representing more text although more text doesn’t necessarily equal more importance. As most
of the course syllabi and job descriptions contained substantial content, around 80-90% of them
exceeded the token limit, based on which models was used, making this step crucial for keeping
all information.

Algorithm 1: Generate Embeddings
Input: text, max len, tokenizer, model

1 tokens = tokenizer(text);
2 if tokens.length ¡= max len then
3 embedding = model(tokens);
4 return embedding ;
5 else
6 chunk = [ ], embeddings = [ ], token lens = [ ];
7 foreach (token, i) in tokens do
8 chunk.append(token);
9 if chunk.length == max len or i == tokens.length - 1 then

10 chunked embedding = model(chunk);
11 embeddings.append(chunked embedding);
12 token lens.append(chunk.length);
13 chunk = [ ];

14 final embedding = [ ];
15 foreach (emb, t len) in (embeddings, token lens) do
16 final embedding += emb * (t len / tokens.length);

17 return final embedding;



4.3 Course Rankings

After transforming every job and course into an embedding, we calculated the cosine similarity
between them, which gave us a normalized value between 0-1, where 0 means no similarity, and
1 means that they are identical. With 210 courses and 95,376 jobs we made 210 ∗ 95, 376 =
20, 028, 960 different comparisons. Cosine similarity was selected as our comparison metric, as it
gives us a normalized range (0-1) while also being the recommended metric for similarity compar-
ison of text embeddings [43, 47]. We then find the average similarity each course has to every field
by using Equation 1,

ASi =

∑N
j=1 Sij

N
, (1)

where ASi is the average similarity of course i, N is the total number of jobs, and Sij is the
similarity between course i and job j. As seen in Table 2, the range and mean values for the
average similarity differ based on the model used. This behavior comes from the differences in
the models’ structure, training, and purpose. To normalize these values, we rank each course from
1-210 (1 being the best) and calculate their combined rank given by:

Ri =
Ri(SBERT ) +Ri(BGE) +Ri(GTE) +Ri(MPNet) +Ri(E5)

5
, (2)

where the rank of a course Ri is calculated by summing its rank from the five models and averaging
them out.

Model Mean Min Max
SBERT 0.29 0 0.81

BGE 0.66 0.39 0.89
GTE 0.81 0.66 0.95

MPNet 0.25 0 0.82
E5 0.79 0.67 0.89

Table 2: Average Similarity Model

4.4 Course Analysis

To analyze the courses, we perform a topic analysis, a salary analysis, and a core vs. elective
comparison. The results of the topic analysis can be found in Section 5.2, the results of the salary
analysis can be found in Section 5.3, and the results of the core vs. elective comparison can be
found in Section 5.4.

Topic Analysis: While the course rankings provide valuable information and can be used to iden-
tify courses with little or high alignment to the industry, they fail to explain why courses perform
better or worse in each field. To gain a better understanding of what drives these rankings, we
performed a topic analysis of the course content by examining the specific skills covered in each
course. To achieve this, we extracted keywords from each course using KeyBERT [20]. The pro-
cess works in three steps: First, KeyBERT generates two types of embeddings, one for the entire
course syllabus (document embedding) and individual embeddings for each word in the syllabus.



Second, it calculates the cosine similarity between each word embedding and the document em-
bedding to determine how semantically important each word is to the overall document. Finally,
we select the 15 words with the highest similarity scores and save them as keywords [20].

For this analysis, we excluded generic keywords such as ”prerequisite,” ”textbook,” or ”course”
as they are present in a majority of courses (ranked high and low) and offer little insight into the
course’s subject. After filtering, the remaining keywords provide a detailed summary of the core
topics covered in each course, helping us identify what skills the industry values. This method
allows us to connect the rankings to specific themes or trends, offering actionable insights for
curriculum development.

Salary Analysis: Understanding salary trends and their association with courses is critical for
aligning educational offerings with student aspirations. While students choose majors and courses
based on multiple factors such as personal interest, career goals, and academic strengths, salary
potential remains a significant consideration. Studies show that students increasingly select college
majors and courses based on their perceived potential to secure high-paying jobs, reflecting a
growing trend of prioritizing economic returns on educational investment, especially in fields like
computing and engineering [4, 34, 36, 56].

Recognizing that salary is just one of many factors in course selection, but an important one for
many students, we analyze the relationship between courses and high-paying jobs to help students
who prioritize salary potential in their course selection. To address RQ2 and identify the courses
most closely aligned with high-paying jobs, we follow a similar approach to the course rankings.
However, instead of comparing every course with every job, we first identify the top 1% highest
paying jobs and then calculate the similarities between the courses and these high paying jobs.
Using Equations 1 and 2, we re-rank the courses based on their alignment with these high-paying
job postings and analyze the new course rankings.

Core vs. Elective Comparison: Courses can be divided into core and elective courses, where core
courses are required to complete your major, and electives can be chosen. While universities design
curricula considering multiple factors including fundamental knowledge, theoretical foundations,
and broader educational and social goals, understanding industry alignment can provide valuable
insights. Core courses serve dual purposes as they cover essential foundations while preparing
students for professional success. Analyzing this alignment can reveal whether courses we assume
to be industry-relevant might be missing certain skills or topics highly valued in the industry,
helping universities better understand potential gaps in their curriculum. It is therefore important
to compare core and elective courses separately for two main reasons:

1. Students can decide which electives to take based on their relevance and alignment with their
career goals.

2. Universities can identify potential gaps between core course content and industry require-
ments, while balancing this with fundamental knowledge.

To compare core and elective courses (RQ3), we calculate the average ranking of each group.
First, we determine each course’s ranking using Equation 2. Then we separately compute the
mean ranking of core and elective courses allowing us to compare their overall alignment with the
industry across all five fields. The core and elective courses compared in Section 5.4 come from



the B.S in CS program.

5 Results

In this section, we conducted a comprehensive analysis of the results based on our methodology.
Section 5.1 shows the results regarding the top course rankings and model agreement, Section 5.2
identifies the keywords of the top courses and analyzes them, Section 5.3 shows the results of the
salary analysis and Section 5.4 compares core and elective courses. The results in this section
come from analyzing one institution’s computer science curriculum and therefore serve as a case
study demonstrating our methodology’s application.

Our analysis reveals three distinct types of insights:

1. Ranking Methodology Validation (Section 5.1): This section evaluates the consistency and
reliability of our course ranking approach across different models.

2. Industry-Level Findings (Section 5.2): This section includes findings of more general trends
in the job market and what skills or topics they favor in curricula.

3. Institution-Specific Findings (Sections 5.3 and 5.4): Our analysis of salary potentials and
relationship between core and elective courses is specific to our institution’s curriculum and
might vary at different universities. In these sections we highlight results to look for and
how to interpret them to analyze and improve curricula.

5.1 Evaluating Course Ranking Metrics

Figure 2 shows the Spearman correlation [48] of the course rankings in all fields. The Spearman
correlation measures the strength and direction of association between two ranked variables which
in our case means how similarly each pair of models ranks the same set of courses. The Spearman
correlation is calculated as:

ρ = 1− 6
∑

d2i
n(n2 − 1)

(3)

where di is the difference between the two ranks of each course and n is the number of courses.
This coefficient ranges from -1 to +1, with values closer to +1 indicating stronger positive correla-
tion. The correlations in our study range from 0.58 - 0.90, showing moderate to high agreement in
the course rankings. Although the exact similarities produced by the models differ as seen in Table
2, the rankings of the courses are very similar. The top 10 courses in each field are summarized
in Table 3. Courses marked with C and E represent core and elective courses respectively. For a
complete list, all our code and data is available on GitHub and can be used to identify courses with
little or high alignment to the industry. The course rankings for the core courses are particularly
important as every computing student must take them, while the course rankings for the elective
courses can help students in course selection based on what fields they’re interested in.

https://github.com/Damrl-lab/Course-Job-Fit


Figure 2: Model Rank Spearman Correlation

Field Top Ranked Courses
CYS Empowering Emerging Tech Talent E, Enterprise IT Troubleshooting E,

Emerging Topics in Digital Life C, Cloud Essentials E, Secure Application
Programming C, Enterprise Cybersecurity Policies and Practices C, Software
Engineering I C, Internship Ready Software Development E, IT Automation E,
Software Engineering II C

DS Advanced Data Science C, Empowering Emerging Tech Talent E, Introduction
to Data Science C, Internship Ready Software Development E, Introduction to
Data Mining E, Fundamentals of Data Science C, Introduction to Deep Learn-
ing C, Artificial Intelligence for All E, Senior Project Cm Artificial Intelligence
E

SWE Empowering Emerging Tech Talent E , Internship Ready Software Develop-
ment E , Software Engineering I C , Software Engineering II C , Enterprise IT
Troubleshooting E , Senior Project C , Cloud Essentials E , Components-Based
Software Development C , Software Design and Development Project E , Ad-
vanced Data Science C

TPM Empowering Emerging Tech Talent E , Internship Ready Software Develop-
ment E , Software Engineering I C , Introduction to Data Science C , Senior
Project C , Software Engineering II C , Enterprise IT Troubleshooting E , Ad-
vanced Data Science C , IT Automation E , Cloud Essentials E

IT Empowering Emerging Tech Talent E , Enterprise IT Troubleshooting E , In-
ternship Ready Software Development E , Software Engineering I C , Senior
Project C , Cloud Essentials E , IT Automation E , Software Engineering II C ,
IT Fundamentals C , Introduction to Data Science C

Note: C and E markers represent core and elective courses respectively.

Table 3: Top Ranked Courses based on Current Course Syllabi



5.2 Findings - Key Terms

Using KeyBert [20], Table 4 shows a list of keywords for the 10 highest ranked courses in each
field. The keywords extracted from the top courses can generally be grouped into three categories:

1. Teaching or Course Related: Any words or topics related to teaching. These include words
like: Course, Prerequisite, Textbook etc. These words are filtered out.

2. Technical Skills: Words that highlight specific technical skills taught in a course like:
Python, AWS, Data mining, etc.

3. Professional Skills: Words related to professional skills taught in a course like: project,
career, communication etc.

Our analysis of the technical terms revealed both field-specific and cross-disciplinary skills. While
each field maintains its core technical focus (e.g., security specific terms in cyber security and
AI related terms in data science), several terms related to Cloud technologies, database skills,
or programming languages like Python appeared consistently across all fields. These skills are
therefore essential for the industry as they are applicable for various technical roles. Product
management had the most diverse technical skills, combining topics from IT, software engineering,
and data science.

Importantly, terms like ”team”, ”project”, and ”internship” appeared consistently across all fields,
highlighting the industry’s focus on practical experience and collaborative skills. This focus on
professional skills suggests that the industry seeks well-rounded students who can combine tech-
nical expertise with strong communication, management, and real-world experience. Additionally,
our analysis found that broader knowledge areas like ”Data Mining” or ”Data Analysis” appeared
more frequently than specific technologies or programming languages related to them. Based on
these findings, we recommend universities to:

1. Integrate more professional skills related to careers, internships, and communication into
their curriculum.

2. Ensure comprehensive coverage of cloud and database technologies across core and elective
courses.

3. Focus on teaching broader technical concepts rather than specific programming languages
or frameworks.

5.3 Salary Results

This section evaluates the salary potential of courses by comparing how well graduate and under-
graduate courses align with jobs in general versus high-paying jobs specifically. Course alignment
is measured using the average similarity score and rank described in Section 4.3, where we cal-
culate the average rank of graduate and undergraduate courses across all jobs and compare it to
their average rank when considering only the top 1% highest-paying jobs. The course ranks com-
pares each course’s alignment to the industry with the other courses, where a lower rank indicates
a stronger alignment. This is shown in Figure 3 where:

• Light blue bars show graduate course alignment with all jobs.



• Light orange bars show undergraduate course alignment with all jobs.

• Dark blue bars show graduate course alignment with top 1% highest-paying jobs.

• Dark orange bars show undergraduate course alignment with top 1% highest-paying jobs.

Field Keywords in Top Ranked Courses
CYS patterns enterprise, systems assessment, integration cloud, ipt1 architectures,

team, troubleshooting coverage, cybersecurity, sharing, cloud certifications,
azure, vulnerabilities security, stackguard, enterprise cybersecurity, counter-
measures, risk analysis, model assessment, analysis, internship, automation
mgmt, systems basics, software planning, project, iot risk, ip, mobile analysis,
security subject, tcp, java, scripting basics, systems shell, computing network,
administrating computing, python, internet, computer design, computer ethics

DS data science, data analysis, internship, data mining, robotics, visualizations,
introduction ai, ai problems, force computing, programming, planning mul-
tiagent, models assessment, learning, algorithm runtime, certifications cloud,
azure object, computational thinking,queries course, enterprise database, ex-
cel, patterns enterprise, systems assessment, integration cloud, troubleshooting
coverage, team project, mastery

SWE database, software components, creating web, integration cloud, project team,
software testing, software planning, systems assessment, internship, assess-
ment, patterns enterprise, troubleshooting coverage, implement requirements,
certifications cloud, analysis experiences, azure object, software engineering,
data science, data, automation mgmt, systems basics, information science, jsp
sending, queries, application, administration computing, python

TPM software testing, management, technical writing, communications, analysis
experiences, internship, models assessment, data, software planning, patterns
enterprise, systems assessment, integration cloud, troubleshooting coverage,
data science, automation, systems, project team, master problems, knowledge
focus, information science, cybersecurity, software engineering, queries, enter-
prise database’, computational thinking, algorithms, sharing digital, telecom-
munications, software components

IT patterns enterprise, systems assessment, integration cloud, ipt1 architectures,
troubleshooting coverage, cybersecurity, team, analysis experiences, intern-
ship, models assessment, certifications cloud, azure object, automation mgmt,
systems basic, software planning, information science, data course, project,
technical writing, communications, administration computing, downloading
internet, telecommunications embedded, cybersecurity beginners, sharing dig-
ital, vulnerabilities security, stackguard, queries course, enterprise database,
introduction linux’,software engineering

Note: Keywords are selected based on semantic relevance using KeyBERT, with ordering not indicating
relative importance.

Table 4: Keywords in Top Ranked Courses



We noticed three following trends:

1. Graduate Course Improvement: Graduate level courses improved their alignment with
higher-paying jobs (comparing light vs. dark blue bars), specifically noticeable in the fields
of Cyber Security, IT and Software Engineering.

2. Undergraduate Course Performance: Undergraduate courses showed strong alignment in
all fields with a slight decrease in performance for higher-paying jobs (comparing light vs.
dark orange bars).

3. Consistent Top Courses: The course rankings for the top 10-20 courses remained consis-
tent with our findings in Section 5.1 (comparison of courses with every job), suggesting that
higher paying positions similarly value a combination of technical knowledge and profes-
sional skills.

Based on these findings, several insights emerge. First, the consistently stronger performance of
undergraduate courses across all fields suggests that our undergraduate curriculum is more strongly
aligned with industry needs. This could indicate that undergraduate courses more successfully
balance fundamental concepts with practical skills that employers value.

The lower alignment of graduate courses shouldn’t necessarily be viewed as a weakness. Graduate
education serves multiple purposes beyond industry alignment, as it often focuses on research
methodology, theoretical foundations, and specialized knowledge that may not be immediately
reflected in many of our job postings [15, 40, 16, 38]. However, the improvement in graduate
course alignment with high-paying jobs in fields like Cybersecurity, IT, and Software Engineering
suggests that advanced knowledge becomes more valuable at senior level roles in these domains.

This pattern raises important questions about the role of graduate education. For students primarily
focused on maximizing job opportunities, it is important to determine whether their target careers
explicitly require an advanced degree or if work experience alone can lead to similar or better career
progression. Graduate school should be pursued strategically, particularly for those aiming for
research-intensive roles, academic careers, or positions that explicitly demand advanced education.

5.4 Core vs. Elective Results

Figure 4 shows the average rank for the core and elective courses for the B.S in CS program in
each field. The core courses outperform the elective courses in all fields, as their rankings are lower
across the board (1 being the top course and 210 being the worst). The field with the smallest dif-
ference was Data Science, while Cyber Security exhibited the greatest difference between core and
elective rankings. The B.S in CS elective courses at this university were divided into three groups:
Systems, Mathematics, and Applications, making the topics quite diverse. Many electives focused
on more theoretical concepts, which likely contributed to their lower rankings, as theoretically and
mathematically oriented courses tended to score poorly in terms of similarity measurements.

The trend of core courses outperforming electives is advantageous, as students can choose elec-
tives with higher rankings, while core courses are mandatory. Therefore, our university has made
a strong selection of core courses. We encourage other universities to add this aspect to their cur-
riculum analysis and if core courses are being outperformed by electives, changes based on our



Figure 3: Salary Trends: Graduate vs. Undergraduate

Figure 4: Core vs. Elective Course Rankings

findings and recommendations in Section 5.2 could be made to make them more relevant to the
industry.



6 Reproduce and Use

As this study aims to enhance employability by analyzing curricula, our ultimate goal is for in-
stitutions to adopt and build on our methodology. Although this study focuses specifically on
computing majors and five technical fields, it can be replicated to compare any major with any
industry field. To reproduce our study, the following six steps should be taken:

1. Data Collection: Select the fields and majors you wish to compare, and collect syllabi and
job postings from those fields. While our dataset of 197,296 job postings is available online,
you can gather your own dataset by using our data-fetching code and adjusting the search
parameters. Although our dataset is large and significantly expands on previous works [1, 17,
23, 58], a smaller dataset is also acceptable. Our codebase includes logic for reading course
syllabi PDF files and cleaning both course and job data. Alternatively, course descriptions
can be used, which provides less information about a course but gives a general idea of what
it covers.

2. Generate Embeddings: While this study uses five different models, using fewer (or even
just one) can also produce good results. Our codebase includes logic for generating sentence
embeddings with five different transformer models while handling text exceeding the token
limit. The code will automatically calculate the similarities between courses and jobs and
save the results in a CSV file for easy analysis.

3. Course Ranking: After generating sentence embeddings, our codebase calculates the aver-
age similarity for each course and ranks them to normalize the values across all five models.
While average similarity is a logical choice for comparing courses, other metrics could also
be explored. Our codebase includes logic for comparing model rankings.

4. Course Analysis: After ranking the courses, we analyze the top courses to understand what
makes them highly rated. Our codebase includes logic for using KeyBERT to extract key-
words, however other approaches could also be explored.

5. Core vs. Elective: We encourage researchers to analyze core and elective courses sepa-
rately. As core courses are mandatory, the results should ideally show that core courses
perform better across industry fields. Moreover, examining elective courses independently
can highlight which electives are best suited for each field, aiding students in course selec-
tion. Our codebase can be copied directly for this step.

6. Salary Analysis: To identify the courses with the greatest salary potential, we compare the
courses to the highest-paying jobs. We also analyze graduate and undergraduate courses
separately to observe how trends might differ. This step is important for students driven by
salary potentials but not strictly necessary for a thorough curriculum analysis.

7 Discussion

A current limitation of this study is the misleading evaluation of prerequisite courses. As prerequi-
site courses often cover fundamental topics necessary for other courses, they can potentially have
a lower similarity with the industry. An example of this is the Data Structure course, which had
an average rank of 79.6 out of 210. While it covers topics like recursion, searching, sorting and



data structures (lists, stacks, queues, trees etc.), concepts fundamental to programming and com-
puter science, these terms rarely appear explicitly in job descriptions. While transformer models
are able to capture the similarity between a specific course and job very effectively, our current
methodology does not take a specific course’s importance for other courses into account.

While this limitation might lead to some unfair rankings, our findings show that this limitation only
affects a minority of the prerequisite courses. In the core vs. elective analysis, we found that core
courses (which include many prerequisites) generally outperform elective courses. Additionally,
many prerequisite courses scored highly in their rankings as they included professional skills or
general knowledge applicable to multiple fields. The prerequisite courses most affected were typ-
ically more theoretical, like the Data Structures course. We encourage other researchers to study
this problem and build on our methodology to evaluate them differently.

Another potential limitation concerns the course syllabi. Our study assumes that the course syllabi
accurately reflect the learning outcomes of a course. If these documents are outdated or unrepre-
sentative of the topics taught, the course rankings would be flawed. Moreover, even when syllabi
are current, the actual course content and learning outcomes can vary between different instruc-
tors. For example, two professors teaching the same ”Database” course might focus on different
aspects, such as theoretical or practical concepts. This difference in course delivery and learning
outcomes is not captured in our current methodology, which only relies on syllabus content. How-
ever, conducting a comprehensive analysis of course delivery and learning outcomes for different
instructors requires a separate study beyond the scope of this paper, which we plan to explore in
the future.

8 Conclusion

In conclusion, our research offers a comprehensive analysis of computing curricula by comparing
them to the technical demands of five diverse fields. By ranking courses based on their similarity
to industry needs, we identified those that best align with the evolving job market. Our findings
emphasize the importance of curricula that balance both technical proficiency and professional
skills, with top-performing courses incorporating these elements. Through a detailed analysis of
core and elective courses, we provide valuable insights into elective prioritization, core course
sequencing, and potential curriculum updates. This data-driven approach holds the potential to
significantly improve student employability by helping universities tailor their offerings to better
meet industry demands, addressing a crucial gap in higher education.

Our study also highlights the salary potential of courses, revealing that while undergraduate courses
generally align better across all fields, graduate courses show notable improvement when it comes
to higher-paying jobs. This insight is particularly important for students who are focused on max-
imizing their career earnings. Although this study focuses primarily on computing majors and
technical fields like software engineering, our methodology is versatile and can be adapted to com-
pare any academic discipline with its corresponding industry field. Although limitations such as
biases in transformer models and the challenge of evaluating prerequisite courses exist, we have
taken steps to mitigate these issues by employing multiple models. Additionally, we encourage
future researchers to explore alternative methods for assessing prerequisite courses. Despite these
limitations, we believe that our study sets a new standard for curriculum analysis, offering a valu-



able framework for future research, and providing actionable insights for both institutions and
students.

9 Acknowledgments

This work was supported by the following NSF grants: CSR 2402328, CAREER 2338457, CSR
2406069, CSR 2323100, and HRD 2225201.

References

[1] Armin Alibasic, Himanshu Upadhyay, Mecit Can Emre Simsekler, Thomas Kurfess, Wei Lee
Woon, and Mohammed Atif Omar. Evaluation of the trends in jobs and skill-sets using data
analytics: A case study. Journal of Big Data, 9(1):32, 2022.

[2] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific
text. arXiv preprint arXiv:1903.10676, 2019.

[3] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document trans-
former. arXiv preprint arXiv:2004.05150, 2020.

[4] Mark C. Berger. Predicted future earnings and choice of college major. ILR Review, 41(3):
418–429, 1988. ISSN 00197939, 2162271X. URL http://www.jstor.org/stable/
2523907.

[5] Sreyoshi Bhaduri and Tamoghna Roy. A word-space visualization approach to study college
of engineering mission statements. In 2017 IEEE Frontiers in Education Conference (FIE),
pages 1–5, 2017. doi: 10.1109/FIE.2017.8190704.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020.

[7] U.S. Department of Labor Bureau of Labor Statistics. Computer and infor-
mation technology occupations, 2023. URL https://www.bls.gov/ooh/
computer-and-information-technology/home.htm. Accessed: 2024-07-06.

[8] Carnegie Mellon University. First destination outcomes - employment, 2024. URL https:
//www.cmu.edu/career/outcomes/post-grad-dashboard.html. Last up-
dated: January 12, 2024.

[9] Anthony P Carnevale, Nicole Smith, and Jeff Strohl. Recovery: job growth and education
requirements through 2020. georgetown public policy institute, 2020.

[10] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah
Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. Universal sentence en-
coder. arXiv preprint arXiv:1803.11175, 2018.

http://www.jstor.org/stable/2523907
http://www.jstor.org/stable/2523907
https://www.bls.gov/ooh/computer-and-information-technology/home.htm
https://www.bls.gov/ooh/computer-and-information-technology/home.htm
https://www.cmu.edu/career/outcomes/post-grad-dashboard.html
https://www.cmu.edu/career/outcomes/post-grad-dashboard.html


[11] David C Curtis and Phillip McKenzie. Employability skills for australian industry: Literature
review and framework development. 2002.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[13] Catherine A. DiBenedetto and Victoria C. Willis. Post-secondary students’ perceptions
of career readiness skills. Journal of Agricultural Education, 61(1):44–59, Mar. 2020.
doi: 10.5032/jae.2020.01044. URL https://jae-online.org/index.php/jae/
article/view/2047.

[14] Nuryake Fajaryati, Budiyono, Muhammad Akhyar, and Wiranto. The employability skills
needed to face the demands of work in the future: Systematic literature reviews. Open Engi-
neering, 10(1):595–603, 2020.

[15] David J Feola, Esther P Black, Patrick J McNamara, and Frank Romanelli. Development of
guiding principles for a new era in graduate education. American Journal of Pharmaceutical
Education, 83(2):7422, 2019. doi: 10.5688/ajpe7422.

[16] Denise Fleith. The role of creativity in graduate education according to students
and professors. Estudos de Psicologia (Campinas), 36, 01 2019. doi: 10.1590/
1982-0275201936e180045.

[17] Andres Fortino, Qitong Zhong, Wei Chieh Huang, and Roy Lowrance. Application of text
data mining to stem curriculum selection and development. In 2019 IEEE Integrated STEM
Education Conference (ISEC), pages 354–361, 2019. doi: 10.1109/ISECon.2019.8882067.

[18] World Economic Forum. The future of jobs report 2023, 2023. URL https:
//www.weforum.org/reports/the-future-of-jobs-report-2023/. Ac-
cessed: 2024-07-06.

[19] G Gowsalya and M Kumar. Employability skill: A literature review. International Journal
of Advance Research in Computer Science and Management Studies, 3(3), 2015.

[20] Maarten Grootendorst. Keybert: Minimal keyword extraction with bert., 2020. URL https:
//doi.org/10.5281/zenodo.4461265.

[21] Andrew Hanson, Carlo Salerno, Matt Sigelman, Mels de Zeeuw, and Stephen Moret.
Talent disrupted: Underemployment, college graduates, and the way forward, February
2024. URL https://stradaeducation.org/wp-content/uploads/2024/
02/Talent-Disrupted.pdf.

[22] John Jerrim. Do uk higher education students overestimate their starting salary? Fiscal
Studies, 32(4):483–509, 2011. ISSN 01435671, 14755890. URL http://www.jstor.
org/stable/24440182.

https://jae-online.org/index.php/jae/article/view/2047
https://jae-online.org/index.php/jae/article/view/2047
https://www.weforum.org/reports/the-future-of-jobs-report-2023/
https://www.weforum.org/reports/the-future-of-jobs-report-2023/
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://stradaeducation.org/wp-content/uploads/2024/02/Talent-Disrupted.pdf
https://stradaeducation.org/wp-content/uploads/2024/02/Talent-Disrupted.pdf
http://www.jstor.org/stable/24440182
http://www.jstor.org/stable/24440182


[23] Kornraphop Kawintiranon, Peerapon Vateekul, Atiwong Suchato, and Proadpran Pun-
yabukkana. Understanding knowledge areas in curriculum through text mining from course
materials. In 2016 IEEE International Conference on Teaching, Assessment, and Learning
for Engineering (TALE), pages 161–168. IEEE, 2016.

[24] Henrik Kortum, Jonas Rebstadt, and Oliver Thomas. Dissection of ai job advertisements: A
text mining-based analysis of employee skills in the disciplines computer vision and natural
language processing. 2022.

[25] Dawn Lees. Graduate employability-literature review. 2002.

[26] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed,
Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7871–
7880, 2020.

[27] Duo Li, Elizabeth Milonas, and Qiping Zhang. Content analysis of data science graduate
programs in the u.s. CUNY Academic Works, 2023. URL https://academicworks.
cuny.edu/ny_pubs/798.

[28] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang.
Towards general text embeddings with multi-stage contrastive learning. arXiv preprint
arXiv:2308.03281, 2023.
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