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Abstract

This work-in-progress focuses on the completed Phase 1 of a funded NSF-IUSE project employ-
ing explainable machine learning (ML) models to predict engineering attrition while identifying
malleable factors for individualized targeted intervention. Over the course of three years, three
common ML models (namely neural networks, random forest, and deep Bayesian networks) will
be trained using 5 years of retrospective data from a large southeastern university, in conjunction
with global and local ML explanations methods, to identify students at risk of attrition and deter-
mine the main malleable factors that lead to such predictions. This funded project essentially aims
at developing a general ML framework capable of answering which students are at risk and why,
so that targeted interventions can be proposed to meet individual needs. The completed phase in-
cludes data preprocessing and preliminary predictive models testing. The findings addressed in this
paper are related to the issue of data imbalance in ML modeling. Datasets related to engineering
persistence often exhibit significant imbalance,i.e., far fewer students leave programs than persist.
This imbalance poses challenges for ML model training and evaluation, often skewing predictions
toward the majority class (students who persisted). This short paper and poster presents how our
project addressed these challenges by employing a combination of random undersampling and
Synthetic Minority Over-sampling TechniquE (SMOTE). The combined effect of these techniques
improved the performance of the ML classifiers considered.

Introduction

Student attrition in engineering programs poses significant challenges to educators and policymak-
ers. Research has revealed that students decide to leave engineering for many interrelated reasons
(e.g., [1–4]), making it challenging to intervene and help many students at the same time. Iden-
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tifying at-risk students and understanding the factors contributing to their decisions is critical for
developing effective interventions. Machine learning (ML) techniques provide powerful tools for
predictive analytics, offering the ability to detect patterns and insights from complex datasets. This
funded effort focuses on three ML models: neural networks, random forests, and Bayesian models,
which are applied to identify engineering students at risk of attrition. Additionally, explainable ML
methods, specifically Local Interpretable Model-Agnostic Explanations (LIME) [5] and SHapley
Additive exPlanations (SHAP) [6], are later employed to interpret these predictions. To ensure ro-
bust analysis, techniques addressing data imbalance—a common issue in engineering persistence
datasets—were evaluated in Phase 1 and will be the focus of this paper.

Neural networks (NN) [7] are inspired by the structure of the human brain and consist of lay-
ers of interconnected nodes (neurons) that process input data to generate outputs (e.g., classifica-
tion outputs persistence/attrition). These networks learn by adjusting the weights of connections
through iterative training using labeled examples. Neural networks are particularly adept at captur-
ing non-linear relationships in data. For example, in predicting student attrition, neural networks
can identify intricate interactions between factors such as grades, demographic variables, and psy-
chological factors. Random forests (RF) [8] are an ensemble learning method based on decision
trees. A decision tree predicts outcomes by following a series of binary splits in the data based on
specific criteria (e.g., test scores above or below a threshold). Random forests combine multiple
decision trees to create a robust model, where each tree contributes to the final prediction through
majority voting (for classification) or averaging (for regression). Given that RFs are an aggregation
of multiple decision trees, they usually are less sensitive to data noise and/or incomplete data when
compared to other ML models. Bayesian models, particularly deep Bayesian networks (DBN),
bring a probabilistic perspective to ML. DBNs extend traditional neural networks by incorporating
uncertainty estimates into their predictions, and when incorporated with a generative stochastic
model (such as Bernoulli Restricted Boltzmann Machines, see [9]) that learns a probability distri-
bution over inputs, becomes especially useful in capturing latent structures in data, making them
valuable for analyzing student persistence patterns.

In engineering persistence datasets, data imbalance often arises because the majority of students
persist. This imbalance can bias ML models toward the majority class, reducing their effectiveness
in identifying at-risk students. To mitigate this, techniques such as random undersampling [10] and
Synthetic Minority Oversampling Technique (SMOTE) [11] can be used. Random Undersampling
reduces the size of the majority class by randomly removing samples, balancing the dataset. While
simple, it risks discarding potentially valuable information from the majority class. SMOTE gener-
ates synthetic examples for the minority class by interpolating between existing minority samples.
This approach preserves the majority class’s diversity while augmenting the minority class, lead-
ing to more balanced training data. By employing these strategies, ML models can achieve better
performance and fairness, ensuring that predictions are not disproportionately influenced by the
majority class.

Methods

Participants: Our study utilized retrospective data collected from the years 2018-2022. In total,
N = 2440 engineering students responded to the surveys. A preliminary investigation showed that
around 30% of our students (N = appx. 723) left by the second year. Persistence here is defined



as enrollment in the engineering school in the fall of the second year. The data in this preliminary
study included the following variables:

• Demographic Data: gender, race, Pell Grant eligibility
• Survey Data (collected at the beginning of the freshman year Fall semester and again at the

end of the same semester): individual interest, perceived effort, opportunity, and psycho-
logical costs, perceived academic competence, self-efficacy (surveys can be made available
upon request)

• Performance Data: ACT scores (composite, English, math, science reading), term 1 engi-
neering course grades (math, introduction to engineering, and chemistry)

• Financial Aid: source (federal, state, institutional, private), type (scholarship, loan, grant,
work-study), and cause (need, merit)

The data was split into two-time stamps: early and later data. Early data contained information
available within the first month of the semester: early survey responses, demographic information,
financial aid, and ACT scores. Later data included all of the early data in addition to end-of-
semester survey responses and student performance in their courses.

Procedures: All variables were preprocessed before being fed into the ML models. Numeri-
cal attributes were standardized (i.e., mean 0 and standard deviation 1) and the categorical at-
tributes, such as gender, were converted to numerical variables (e.g., binary). Depending on the
model, some categorical features were one-hot encoded to increase performance. Previous research
shows large differences for some models based on encoding strategy [12]. Multiple Imputation by
Chained Equations (MICE) method, a statistical method for data imputation, was used to handle
any missing data (e.g., incomplete survey responses). Then, a split of 80% of the available data was
used for ML models training and validation, while the remaining 20% was reserved to test model
performance. Varying levels of random undersampling ratio (see Figure 1a) in conjunction with
SMOTE were employed to derive the training datasets. Undersampling is first used to create the
described class ratios and SMOTE is subsequently employed to balance the yielded dataset. Each
training set derived from a given undersampling ratio went to a training loop of 100 iterations (each
with a distinct initial condition, i.e., random seed) to improve tuned model parameters robustness.
On each training loop k-fold cross-validation (a technique that divides the dataset into k equally
sized folds, using k − 1 folds for training and the remaining fold for validation) was adopted to
minimize the chances of model overfitting. Subsequently, the ML models were trained to classify
student persistence, where student attrition was labeled as 1 and student persistence was denoted
as −1. Figure 1b provides a detailed description of the overall training procedure.
The classification results were assessed using common classification metrics, namely, accuracy
(proportion of correct predictions made by the model across all instances, students who persisted
and those who did not), recall or sensitivity (ratio of correctly identified at-risk students, empha-
sizing model’s capacity to identify as many at-risk students as possible), precision (ratio reflect-
ing model’s ability to minimize false alarms, e.g., 80% precision indicates that 8 out 10 students
flagged by the model are actually at-risk), and f1-score (precision and recall harmonic mean).



(a) Adopted undersampling strategy. (b) ML models training and testing procedure.

Figure 1: a) Undersampling percentages allude to the ratio of students who did not persist compared to students who
persisted during training. b) Overall model training and testing (evaluation of never-seen data) procedure.

Results and Analysis

Figure 2 illustrates the trend of the NN model performance when the proposed data balancing
strategy is employed. The values presented are related to the test set (the portion of available data
reserved for model evaluation) and considering later data. The observed spread is due to the multi-
ple iterations during the training loop, with the focus on the ML model’s median performance (red
bar of the boxplot). While accuracy and precision do not vary much with the proposed approach,
a significant increment is observed in recall and f1-score values as also noted in Table 1. Similar
trends are observed with early data but with lower performance metrics values.

For the purposes of the funded project, the goal is to achieve high f1-sores, given that this metric
is tied to the ML models’ ability to correctly identify as many at-risk students as possible while
reducing false positives and unnecessary allocation of resources to students who are not genuinely
at risk. The obtained results demonstrate that the proposed data balancing strategy had either a
positive (RF and NN) or neutral (DBN) impact on the ML models’ f1-scores. The greatest gain
was observed in the NN model, which went from a median value of 46% in the original dataset
to 83% with a 1 : 1(100%) undersampling ratio + SMOTE (see Tab. 1). The RF model showed
similar behavior, with ∼ 20% increment in recall and marginal gains in f1-score, at a detriment of
marginal losses in accuracy and precision. Such behavior is expected given that the proposed data
balancing procedure impacts the available information concerning the majority class (students who
persisted). This means that to increase the models’ ability to correctly identify at-risk students,
some not-at-risk students will be incorrectly flagged (thus impacting the accuracy and precision
metrics). The DBN model presented marginal variations in its performance metrics, suggesting
not being sensitive (neutral impact) to the proposed strategy.

Hence, the proposed data balancing strategy either increased the considered ML models’ ability
to correctly identify students at-risk of attrition or at least did not negatively impact model perfor-
mance (see the DBN case).



Table 1: Median (and max.) values of performance metrics in the testing set considering later data. Bold cells
indicate the best values for each ML model, while * highlights the best overall values.

Model Original Undersampling 1:1 SMOTE Under. + SMOTE
Acc. Recall Prec. F1 Acc. Recall Prec. F1 Acc. Recall Prec. F1 Acc. Recall Prec. F1

RF 82
(85)

58
(65)

75
(78)

65
(71)

79
(82)

76
(82)

60
(64)

67
(72)

80
(83)

70
(80)

63
(66)

67
(72)

80
(83)

74
(77)

62
(67)

68
(72)

NN 79
(81)

32
(44)

84
(74)

46
(58)

84
(85)

79
(79)

88
(90)

84
(84)

83
(87)

75
(81)

89*
(91)

81
(86)

84*
(86)

78*
(80)

88
(91)

83*
(85)

DBN 77
(77)

72
(75)

56
(60)

63
(66)

76
(76)

70
(70)

55
(55)

61
(61)

77
(77)

70
(71)

58
(58)

63
(64)

76
(77)

67
(71)

55
(55)

60
(61)

Figure 2: Random undersampling effect on NN performance considering varying ratios of imbalance.
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