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Identifying Struggling Students Using LMS Data 

Abstract 
Identifying struggling students has long been a key objective for educators and institutions. It 
allows for timely interventions that can improve student retention and graduation rates—two 
critical components of most institutional missions. This paper reports on our experimentation 
with developing and training machine learning models to identify struggling students using 
Learning Management System (LMS) data. Our findings indicate that while these models do not 
perform as well when making predictions over long-term periods, such as an entire semester, 
they perform significantly better over shorter timespans. 

The focus on LMS data stems from its ubiquity and the fact that instructors using LMS platforms 
for instruction have direct access to the collected data without needing to submit additional 
applications or navigate multiple levels of approval to acquire such access. However, this task is 
challenging for several reasons. First, course-related data is inherently imbalanced. Second, 
many factors can adversely affect student performance, and these can arise at any point during 
the semester. Most of these factors lie outside the LMS and, therefore, are not captured by its 
data. Finally, it often takes time for signs of student struggles to become evident in the data. 

This paper proposes a process through which struggling students within courses can be 
accurately and regularly identified. The process is evaluated using data spanning a three-year 
period from a public, four-year university. The data includes 274 lower-division Computer 
Science courses delivered in various formats (face-to-face, online, and virtual), involving 2,656 
students and 37 instructors. 

Introduction 
Identifying struggling students has long been a key objective for educators and institutions. It 
enables timely interventions that can improve student retention and graduation rates—two 
critical components of most institutional missions. Various methods and predictive models have 
been proposed to achieve this goal, with varying degrees of success. Some methods focus on the 
exam level, others on the course level, and still others on the degree level. These efforts draw 
from multiple data sources, including pre-college information, student information systems 
(SIS), and Learning Management Systems (LMS). 

This paper concludes a research project focused on the sole use of Learning Management System 
(LMS) data for identifying struggling students. While we recognize the importance of other data 
sources, there are three main reasons for concentrating on LMS data in this project. 

First, Learning Management Systems are ubiquitous and widely used by higher-education 
institutions across colleges and disciplines, to the point of becoming a standard component of 
classroom technology [15]. They provide a convenient and effective way to deliver learning 
materials to students. 

Second, although studies suggest that LMS platforms are underutilized [14], they remain central 
to much of the course-related activity, including discussions, student-instructor interactions, and 
assessments. This project uses data from these graded activities to capture the journeys of 

 

 



 

 

students in classes and determine whether they are struggling or doing well. Conveniently, LMS 
platforms maintain an extensive record of such activities and make this data accessible through 
dedicated API services. 

Third, LMS platforms offer direct access to collected data, allowing instructors to evaluate 
student performance without needing to navigate multiple levels of approval. This accessibility 
provides instructors with timely insights into their students' progress. 

The use of LMS platforms is not without challenges. First, many classroom-related activities that 
could take place within these systems often do not, resulting in the collected data being less 
comprehensive and accurate in reflecting students’ progress through courses than it could be. 
Second, there is significant inconsistency and variance in how these systems are used by 
instructors. Even sections of the same course at the same department/college can look vastly 
different depending on the instructor, the modality, and other factors. Such inconsistencies affect 
the quality of the data and can undermine its effectiveness. 

That said, a body of research has explored the use of LMS data to predict student performance at 
the course level. A frequently posed question in these studies is whether student performance can 
be accurately predicted early enough to intervene and provide struggling students with the help 
they need. 

The central question of this study is whether student performance can be predicted reliably and 
early enough to enable corrective action. To explore this question, the study employs a 
time-based data analysis approach. This approach represents student progress in courses as 
sequences or time series, where each time step corresponds to a student’s activities in the course, 
and each sequence reflects an individual student’s progress. At the end of each course, the result 
is a collection of time series, each capturing the progress of a single student in that course. 

This task, however, is not straightforward. As we will see, student performance data is often 
imbalanced, with fewer struggling students compared to those performing well. Such an 
imbalance complicates the use and interpretation of traditional performance metrics, such as 
accuracy. Additionally, many factors can adversely affect student performance, and these factors 
can happen at any point during the semester. Most of these factors lie outside the scope of the 
LMS and are therefore not captured in its data. Lastly, it often takes time for signs of student 
struggles to become evident in the available data. 

The rest of this paper is organized as follows. The next section briefly reviews the background 
and related work relevant to this study. The following section outlines the research question and 
details the approach taken regarding data acquisition, cleanup, preprocessing, feature 
engineering, and modeling. The subsequent section examines the preprocessed data and its 
diversity. Afterward, the paper presents and discusses the results of all experiments conducted. 
Finally, the concluding section explores potential future work and offers final remarks. 

Background and Related Work 
Various approaches to predicting student performance have been explored. Some studies involve 
designing specific randomized experiments [1], [2], [4], [6], while others, like this one, focus on 
leveraging data collected by ubiquitous Learning Management Systems (LMSs) based on student 

 

 



 

 

activities and interactions with course materials [3], [8], [9]. Additionally, some research 
evaluates the efficacy of specific teaching methodologies [4], [5], while others aim to identify 
struggling students early in the semester to enable timely interventions [6], [7], [9]. Like many of 
these studies, this paper emphasizes the early prediction of student performance, utilizing 
machine learning (ML) algorithms trained on LMS data. 

The use of machine learning (ML) and Learning Management Systems (LMS) to predict student 
performance is not new. For example, Umer et al. [1] employed several ML algorithms to predict 
student outcomes by mining LMS activity log data. They emphasized the importance of this data 
for making such predictions but found that it does not necessarily lead to improved predictive 
accuracy. Similarly, Van Goidsenhoven et al. [2] analyzed LMS activity log data to predict 
student success, specifically including courses with blended learning environments. They 
discovered that predicting student success based on activity streams is more challenging in these 
types of courses. Both studies utilized a variety of ML algorithms, including random forest and 
logistic regression, and concluded that while counting activities is helpful for predictions, it 
alone is not sufficient. 

Shayan et al. [3] explored predicting student performance based on their behavior in an LMS. 
However, their focus was on student performance in formative assessments rather than 
summative ones. Conijn et al. [4] investigated predicting student performance by comparing 17 
blended courses. Their primary focus was on examining the portability of predictive models 
across multiple courses and the timeliness of these predictions. In doing so, they replicated a 
study by Gašević et al. [5] on the impact of instructional conditions on predicting success, but 
with a larger sample size and using predictors available for all courses. They noted the 
significant diversity in the number of variables used as predictors and highlighted the 
inconsistency of findings (and non-robustness) when the same or similar predictors are 
employed. They emphasized the need to expand the empirical base regarding portability, 
especially since some studies suggest that prediction accuracy improves over time. 

Two previous papers in this project have demonstrated that machine learning models can be used 
to predict and identify at-risk students [8], [9]. The issues of portability and robustness have also 
been explored in another paper from this research project [13]. In this context, portability refers 
to the adaptability and effectiveness of a predictive model when applied to different educational 
settings or teaching styles. A portable model should maintain its predictive accuracy and 
generalizability when trained on various datasets, such as courses with different modalities, 
different semesters, or taught by different instructors. Robustness, on the other hand, refers to the 
ability of a predictive model to sustain its performance despite variations, uncertainties, or 
changes in data distribution or input conditions. A robust model should not be overly sensitive to 
minor changes in input data, such as variations in data quality or shifts in the student population. 
It should provide reliable predictions under a range of conditions. 

To address the issue of small sample sizes prevalent in previous studies, Gonzalez et al. [6] 
conducted an analysis of massive LMS log data with the goal of achieving early, course-agnostic 
predictions of student performance. They employed several ML models in a course-agnostic 
manner to classify students into "fail," "at-risk," and "excellent" groups at various intervals 
(10%, 25%, 33%, and 50%) throughout the course. Data from all courses within a single 
university over the course of one year were utilized. 

 

 



 

 

Furthermore, Dias et al. [7] introduced DeepLMS, a deep learning predictive model designed to 
support online learning, particularly during the Covid-19 era. They employed deep learning (DL) 
techniques to forecast the quality of interaction (QoI) with the LMS using Long Short-Term 
Memory (LSTM) networks, with RMSE errors used as evaluation metrics. By leveraging online 
learning to overcome the temporal and spatial limitations of traditional courses, they emphasized 
that a student's QoI serves as a strong indicator of the effectiveness of course design. 

In addition to the use of LMS data, a growing number of studies have leveraged data from 
various other sources, including student records, institutional surveys, and external data sources, 
to provide a more comprehensive understanding of student performance. These studies have 
emphasized the importance of considering temporal relationships when developing models for 
student performance prediction. Liu et al. [16] explored how clickstream data can be used to 
predict students' learning behaviors, identify at-risk students, and inspire potential improvements 
in teaching and learning. Gamulin et al. [17] investigated the use of student access time series to 
predict final learning outcomes in blended learning courses. They applied discrete Fourier 
transforms and principal component analysis to improve and compress time series data, then 
built classification models based on naïve Bayes and support vector machines to predict student 
performance. Liu et al. [18] proposed a student course result prediction model based on historical 
course results and basic course information. Their model incorporates numeric and non-numeric 
feature vector embedding, along with model optimization through data augmentation and 
integration. Mitrovic et al. [19] used a feed-forward neural network to predict the number of 
errors a student will make in database courses based on all actions performed by the student in 
class. 

In summary, there is great interest in developing methods and models that help educators and 
institutions better understand the journeys students undergo during their course enrollments. The 
central question in many of these studies has been whether student performance can be 
accurately predicted early enough to allow for timely intervention and support. Various data 
sources have been used to make such predictions, with many previous studies relying on 
fine-grained interaction and activity logs. However, these methods often suffer from issues of 
portability and robustness. 

Approach 

This study views a student's journey through a course as a sequence of activities captured as a 
time series, rather than as a single data point. This perspective provides a more detailed 
understanding of the journey and allows for better utilization of the readily available data. The 
main question of this study is: 

How can struggling (at-risk-of-failing) students be accurately and reliably identified? 

This paper addresses this question in three ways: 

1.​ By extracting key features from the sequences of activities captured in the time series and 
using them as predictors in traditional machine learning models. 

2.​ By using time series data to build forecasting models that predict student performance at 
any point during the course. 

 

 



 

 

3.​ By proposing a process through which struggling students within courses can be 
accurately and regularly identified. 

The detection of at-risk students in this study is framed as a binary classification problem with 
two distinct classes: POSITIVE (coded as 1) for struggling students, and NEGATIVE (coded as 
0) for all others. This classification is based on a threshold of C- (a cumulative score of <74%) or 
below.  

Data Acquisition 

All data used in this study were extracted from the Canvas Learning Management System via 
RESTful and GraphQL APIs. The dataset includes information from 274 lower-division 
Computer Science (CS) courses, involving 2,656 students and 37 instructors. These courses are 
offered in various modalities, including face-to-face, online, and virtual formats, at a public 
four-year university. The courses exhibit diversity in terms of topics, class sizes, academic levels 
(1st and 2nd year), modalities (face-to-face, virtual, and online), semesters (spring, summer, and 
fall), and instructors. 

The data analyzed in this paper comprises 10 required lower-division CS courses taught over a 
span of three years, from Spring 2019 to Summer 2022, catering to students pursuing their 
associate CS degrees during the same period. Across these courses, there were 274 sections, 
averaging 27.6 sections per course. As mandatory CS courses, they typically accommodate more 
students and are offered in various modalities compared to other courses. Many of these courses 
are taught multiple times in different modalities by various instructors within the same semester. 

Primarily relying on the Learning Management System (LMS) as the main platform for 
instruction, these courses use the LMS for posting learning materials, facilitating discussions, 
and collecting assignments and other graded activities. The LMS meticulously records all 
activities and events within its interface. In addition to basic student information, it captures data 
related to assignments, quizzes, and other graded activities, including submission attempts, 
scores, and due dates. The LMS also maintains activity logs that document student interactions 
with resources such as pages, modules, or assignments, including details on what was accessed, 
when, and how frequently. This paper specifically focuses on the LMS data associated with 
assignments and other graded activities. 

Data Cleanup and Preparation 
The LMS data underwent two preparatory steps: anonymization and normalization. During the 
anonymization step, randomly assigned IDs replaced identifying names for course sections, 
instructors, students, assignments, and assignment groups. each course added up to 100%. This 
was essential to prevent discrepancies between scores on different assessments. For example, a 
score of 90% on a quiz worth 5% of the final grade should not be treated the same as a score of 
90% on an exam worth 30%. Normalizing these scores was complex, as each course was 
structured differently. All calculations were carefully verified by comparing the cumulative 
scores at the end of each course with the actual final scores obtained from the LMS. 

Courses without student activity in the LMS were removed from the dataset. Additionally, 
students whose cumulative normalized scores did not match their final scores were excluded. 

 

 



 

 

The resulting dataset consists of time series sequences indexed by student IDs, course IDs, and 
timestamps. It includes columns for normalized scores, possible scores, and cumulative 
normalized and possible scores. 

Finally, to standardize the representation of each student in every course, a fixed length of 100 
was applied to each time series sequence. This choice allows us to interpret each data point as 
representing the student's status at a specific percentage point in the course. For longer time 
series, where two or more data points needed to be combined, a new time point was created by 
summing the normalized and possible scores. This process maintains the order of events (except 
for combined time points) and preserves the relative distances between data points. 

Feature Engineering 
In addition to compressing and fixing the length of the time series sequences, seven additional 
quantities were calculated at each point in time, t. Here are the first five features. 

●​ Missed opportunity: This represents the amount of coursework that the student has 
missed up to that point in time and is calculated as: 

missed_opportunityt = possible_scoret - actual_scoret  

●​ Relative achievement: This indicates how much of what is possible for a student to 
achieve has been accomplished and is calculated as: 

relative_achievementt = (actual_scoret / possible_scoret) × 100 

●​ Number of missed assessments: A missed assessment is defined as one for which the 
student achieved a zero score out of a non-zero possible score they could have achieved. 

●​ Number of late assessments: A late assessment is defined as one that does not align 
timewise with its corresponding possible score, indicating it was not submitted on time. 

●​ Number of failed assessments: This represents the count of assessments that the student 
submitted but failed to achieve a passing score. 

During the normalization step, all these features are calculated cumulatively. This means that at a 
given time point t, the cumulative value of any of these features will be the sum of all the 
individual values of these features up to and including that point. This approach allows us to 
view the journey as a whole, rather than as individual data points scattered across the course 
timeline.  

Furthermore, calculating relative achievement cumulatively has the advantageous property of 
aligning with the final total grade at the end of the course (or at time point 100). The focus on 
relative achievement stems from two main reasons: 

●​ It is a strong predictor of student performance [9].  
●​ The way it changes can provide insight into how students progress in courses. These 

changes are not linear; they fluctuate, depending on various factors/events in students' 
lives not totally captured in the data. From this, we extract the remaining two features. 

 

 



 

 

These two additional features are: 

●​ Speed or the rate at which cumulative relative achievement changes: This can be 
captured by fitting a line to the relative achievement points up to a given time point and 
calculating its slope. A low slope value indicates a near-constant speed, suggesting 
smooth progress through the course. A high absolute slope, on the other hand, indicates 
either an upward trend (e.g., doing well after a period of struggling) or a downward trend. 

●​ Acceleration or deceleration: Since the rate at which cumulative relative achievement 
changes is not constant, we also need to consider acceleration or deceleration. These 
measures capture how the rate of change in cumulative relative achievement slows down 
or speeds up. This can be assessed by fitting a line to the speed feature above and taking 
the slope of that line. 

All seven of these features will be used as input for the predictive models that we will build and 
train using the scikit-learn library [10]. 

Results 
Before making predictions, we explore the data to understand its structure, relationships, and 
underlying patterns. 

Data Exploration 
The normalized dataset consists of 100 data-point time series per student per course, with each 
data point representing a cumulative snapshot of the student's progress at a specific percentage 
point in the course. Table 1 highlights the diversity of the dataset. The first three courses are at 
the first-year level, while the remaining courses are at the second-year level. All courses are 
offered in Spring, Summer, and Fall. Notably, the first three courses attract a larger number of 
students, including many non-CS students from engineering and other majors. This could lead to 
a different student population compared to that of second-year courses. 

Table 1: Courses' sections, modalities, instructors and students. 

# Course Modality # of 
Sections  

# of 
Instructors 

# of 
Students  

1 Computing Foundations F2F, ONL, VTL 47 10 1210 

2 Programming I F2F, ONL 35 13 773 

3 Object-Oriented Programming F2F, ONL, VTL 20 10 607 

4 Computational Structures F2F, ONL, VTL 26 7 562 

5 Client Side Web Development F2F, ONL, VTL 25 7 565 

6 Data Structures & Algorithms F2F, ONL, VTL 19 5 532 

7 Software Engineering I F2F, ONL, VTL 23 5 497 

 

 



 

 

8 Database Design & SQL F2F, ONL 40 8 843 

9 Network Fundamentals F2F, ONL 20 3 509 

10 Computer Architecture F2F, ONL 21 5 534 

 

Figure 1 (top) shows what these time series look like for two randomly selected students. It 
displays the cumulative normalized and possible scores, as well as the relative achievement of 
both students. The progression of a student's time in the course is depicted as an upward 
stair-like pattern. The width of the horizontal steps is determined by the number and distribution 
of graded activities throughout the course, while the height reflects the weights of these 
assignments and activities. 

 

Figure 1: The progression of two struggling and passing students. 

 

A student's struggle in a course can be visualized by the difference between their cumulative 
normalized and possible score curves. This difference tends to increase over time, particularly for 
at-risk students, indicating a steeper decline in performance. Additionally, this data allows for 
comparisons between the progress of an average at-risk student and an average passing student. 
Figure 1 (bottom) displays such progressions, averaged across the entire training dataset, side by 
side. Averaging results in smoother, almost linear curves, while maintaining similar gaps 
between actual and possible scores. Notice that by the end of the course, the relative achievement 
meets the cumulative normalized score. 

 

 



 

 

As mentioned earlier, student progress through courses is not linear. This can be captured by the 
ups and downs of the relative achievement feature. Figure 2 (top) shows the relative achievement 
speed (velocity) and acceleration/deceleration for the same randomly selected students from 
Figure 1. This figure illustrates that the speed of these changes is not always constant, especially 
at the beginning of the course. It also shows that the changes smooth out in the latter part of the 
course, with both speed and acceleration becoming nearly constant. This trend can also be see in 
the averaged curves of Figure 2 (bottom). 

 

Figure 2 : The speed and acceleration of the relative achievement for the same two students. 

Looking more closely at struggling students, one might ask how early they can be identified in a 
course. Figure 3 shows that cumulative relative achievement can be used to identify struggling 
students. It indicates that while most struggling students can be identified by the first third of the 
course, new struggling  students continue to emerge until the end of the semester. This suggests 
that remedial services are needed throughout the semester. However, those identified earlier tend 
to have a better chance of turning things around and achieving better outcomes than those 
identified later. The histogram, along with the distribution curve superimposed on it, shows an 
increase in detected struggling students toward the end of the semester. These are students who 
performed well for most of the course but began to struggle toward the end, possibly due to 
personal events or circumstances not captured in the data. These students might require different 
types of remedial services. 

Moreover, since new struggling students continue to emerge throughout the course, the process 
of detecting them should be ongoing throughout the semester as well. 

 

 



 

 

 

Figure 3 : How early can students be identified? 

 

We can also visualize how distinguishable struggling students are from others. Figure 4 uses 
t-distributed stochastic neighbor embedding (t-SNE) to reduce the dimensionality of the training 
dataset from 7 dimensions to 2, allowing data visualization at four different points of course 
completion. Each circle represents a student in a course. As shown in the figure, early in the 
course, while most struggling and passing students are separable, there is still considerable 
overlap between the two classes. As the semester progresses, the overlap decreases, and the 
classes become much more separable, especially toward the end of the course. Although the 
shapes of the data distributions should not be overinterpreted, this visualization supports the idea 
that struggling students are not all detected at once, and emphasizes the need for a continuous, 
semester-long monitoring process. 

Lastly, it is important to recognize that this dataset like this are unbalanced, with a significantly 
larger number of passing students compared to failing ones. This imbalance must be carefully 
considered during the training and evaluation of predictive models, as it can substantially affect 
the interpretation and usefulness of performance metrics. 

 

 



 

 

 

Figure 4 : Visualization of struggling and passing students. 

 

Making Predictions 

Previous research has shown that predictive models struggle to forecast student performance at 
the end of the semester [2]. However, they perform much better when, instead of predicting who 
will fail by the semester's end, they focus on identifying students who will be struggling 2 to 3 
weeks from a given time point in the semester. To achieve this, the normalized time series 
representing students' journeys through courses are transformed into a dataset suitable for 
supervised machine learning modeling. Using two parameters,"starting-from" and "look-ahead", 
a new dataset is constructed by reading the aforementioned seven input features at the 
starting-from time point, while the relative achievement at the look-ahead time point is used to 
calculate the output class. 

The "starting-from" and "look-ahead" parameters define the left and right boundaries of a time 
window, which is then slid one time step to the right to calculate the next data point. This process 
continues until the sliding window reaches the end of the semester. To ensure predictions are not 

 

 



 

 

made prematurely, the sliding window process begins after a warm-up period, such as after the 
second week of the semester. 

Using a starting-from value of 14 and a look-ahead value of 21, the resulting dataset consists of 
455,975 data points, which are then split into training, validation, and testing subsets in a 
60/20/20% ratio. Four models were trained using this data, and Table 2 presents these models 
along with their performance. 

Table 2: Trained models' performance. 

Model Accuracy Recall Precision F1 

Random Forest 93.639 75.324 89.600 81.844 

Logistic Regression 93.871 74.892 91.345 82.304 

Multilayer Perceptron 93.752 77.409 88.319 82.505 

Decision Tree 91.022 75.488 76.912 76.193 

 

While these models are similar in their performance, the top-performing models are the Random 
Forest, Logistic Regression and Multilayer Perceptron, with accuracy values exceeding 93% and 
F1 scores above 81%. Although a higher accuracy value is important, one must be cautious not 
to overstate its significance, given the imbalance of the data. However, the table shows that 
predictive models can indeed be used to detect struggling students with good accuracy. Notably, 
all these models show higher precision values than recall. Ideally, we would prefer to see higher 
recall values, as higher recall indicates fewer false negatives—meaning fewer struggling students 
are misclassified as doing well. 

The remainder of this section will focus on the Random Forest model for several reasons: 

●​ A simple t-test using the F1 scores reveals that the performance of Random Forest is not 
statistically significantly different from the other models, with a p-value of 0.555. 

●​ Random Forests do not require standardizing the input features before training, unlike 
Multilayer Perceptron. This reduces the number of steps to manage when deploying the 
model in production. 

●​ Random Forests are more explainable than Multilayer Perceptrons, providing insight into 
which features are most important in making decisions. Figure 5 shows the feature 
importance produced by the Random Forest model in Table 2, with cumulative relative 
achievement and missed opportunity being the most important features. 

The results in Table 2 and Figure 4 are based on a dataset generated with a look-ahead value of 
21 (approximately 3.36 weeks for a 16-week semester). But how does the dataset and the 
performance of the models change when using different look-ahead values? Figure 6 answers 
this question by generating datasets with varying look-ahead values and training Random Forest 
models on these datasets. The figure shows that all performance metrics decline as the 
look-ahead value increases. This indicates that predictive models lose performance as they 

 

 



 

 

attempt to predict further into the future, and that they perform significantly better when making 
short-term predictions (with lower look-ahead values). 

 

Figure 5 : Random forest feature importance. 

 

Apart from the limitation in long-term predictions, these models have been shown to be portable 
and robust [13]. 

 

Figure 6 : The effect of the look ahead parameter. 

 

 



 

 

Discussion 
The results above suggest that having a one-time process for detecting struggling students is not 
as effective as having a process that runs regularly throughout the semester. The former process 
requires the models to make long-term predictions, whereas the latter relies on short-term 
predictions, for which the models are better suited. 

We now outline a simple process by which these trained models can be used for short-term 
detection of struggling students. The process is as follows: 

1.​ Starting 2 or 3 weeks into the semester (warm-up), download the data from the LMS 
using the appropriate API calls. 

2.​ Convert the downloaded data into time series and normalize it by converting actual 
timestamps to percentages, with the entire course duration corresponding to 100%. The 
steps outlined under the Data Cleanup and Preparation subsection were chosen to be 
applicable to data from both in-progress and completed courses. 

3.​ For every student in the course, calculate the cumulative input data and feed it into the 
model to get predictions about whether the student will be struggling or doing well at the 
look-ahead value of the model into the future. 

4.​ Report the identified students to available remedial services. 
5.​ Repeat steps 1-4 regularly (weekly, biweekly, etc.) until the end of the semester. 

This process leverages the strengths of these models by running them regularly throughout the 
semester. It can be implemented by individual instructors or as part of a coordinated effort by a 
department, college, or university. 

Concluding Remarks and Future Work 
As shown in the previous sections, LMS data alone can be useful in identifying struggling 
students throughout the semester. Once properly processed, this data can be used to train 
machine learning models that make short-term predictions. However, the usefulness of these 
models should not be overstated. In other words, false negatives will still occur due to both the 
limitations of the models and, more importantly, the incompleteness of the data they were trained 
on. Despite its value, LMS data cannot account for all factors that may adversely affect student 
performance. Many such factors can arise at any point during the semester and, because they lie 
outside the LMS, are not captured by its data. 

While these models can be improved with more complete data drawn from multiple sources 
beyond the LMS, access and practicality should always be considered before making such 
improvements. Since there is no perfect predictive model, the goal should be to improve 
performance, but 'better' should not be allowed to become the enemy of 'good.' In other words, if 
a better solution is harder to implement or out of reach for many instructors, it may not 
necessarily be the best option. 

Little hyperparameter tuning was done on the models in this paper. Further efforts in this area 
should improve their performance.  

 

 



 

 

While the results of this paper are based on lower-division CS courses, it is reasonable to assume 
that they may also apply to other CS and non-CS courses. However, it remains an open question 
whether and how these findings will generalize to other non-CS courses. 

In summary, this paper demonstrated how time series sequences of graded activities can provide 
insights into student progression through courses. It evaluated various machine learning models 
for detecting struggling students. These models are better suited for making short-term 
predictions rather than long-term ones, and a process for utilizing these models throughout the 
entire semester in a production setting is outlined. Such models and processes can be crucial for 
higher education institutions in providing timely support to struggling students, thereby 
improving learning outcomes and student retention. 
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