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BPE: Year Three of Developing a New Dataset for Analyzing Engineering Curricula 

 

Abstract 

This paper presents progress from Year 3 of a National Science Foundation-supported 

Broadening Participation in Engineering project, which investigates structural barriers 

contributing to the attrition of diverse student subgroups in engineering. Specifically, we focus 

on curricular factors using an emerging network analysis framework that quantifies the 

"complexity" of engineering curricula. Our study leverages a dataset of 497 plans of study across 

five engineering disciplines (Mechanical, Civil, Electrical, Chemical, and Industrial) from 13 

institutions represented in the Multiple Institution Database for Investigating Engineering 

Longitudinal Development (MIDFIELD) – and the database itself. MIDFIELD includes course-

taking records and demographic information for all students enrolled at these institutions. Year 3 

of this project focused on our final proposed tasks: analyzing course-taking trajectories in the 

MIDFIELD data to find patterns across groups of students, finalizing a scoping review of 

additional metrics to facilitate curricular analyses, and distributing an R package to employ the 

metrics found in the scoping review and associated analyses conducted throughout this project.  

 

Context of Project 

This project integrates two approaches to studying student progression in engineering: the 

Multiple Institution Database for Investigating Engineering Longitudinal Development 

(MIDFIELD) [1] and a framework for assessing a curriculum’s "complexity" known as 

Curricular Analytics [2]. MIDFIELD is a widely used resource in engineering education 

research, particularly for examining retention across disciplines. The data contains a wealth of 

information for each student, including demographics, academic standing, major, course records, 

GPA, and graduating term. Although MIDFIELD has been primarily studied in terms of retention 

and graduation, the student course records remain relatively underexplored, which offers a 

promising opportunity to synergize with an emerging framework for analyzing curricula, 

Curricular Analytics. Introduced in its current form by Heileman et al. [2], Curricular Analytics 

models a degree program's plan of study as a network, with courses represented as nodes and pre 

and corequisites as edges connecting them. This type of representation allows us to explicitly 

capture all the dependencies underlying a student's journey toward a degree in engineering using 

network analysis, which provides quantitative evidence suitable for comparison.  

 

Curricular Analytics is most concerned with two metrics: (1) the blocking factor, which is the 

number of courses rendered inaccessible if a given course is failed and (2), the delay factor, 

which is the length of the longest prerequisite chain that includes a given course. When these 

metrics are added together, we obtain what's called the cruciality. The cruciality can be 

interpreted as a local measure of the course's importance in a particular plan of study. To get a 

global measure of the curriculum's complexity, each of the crucialities can be summed to yield 

the structural complexity. Structural complexity has been linked to program completion rates—

higher structural complexity is associated with lower completion rates [2], [3], [4]. 

Within Curricular Analytics, the latent factors of a curriculum, such as the availability of peer 

tutoring programs, instructional quality, and academic advising, are also captured in what's called 



instructional complexity. Despite being a vital component of what drives student flow through a 

curriculum, instructional complexity has not seen the level of attention theoretically or 

analytically as the structural complexity metric (c.f., [5]). The current proxy for instructional 

complexity is the pass rate for a course [2], which is the minimum data needed to model student 

flow using techniques like Markov Chains or Agent-Based Modeling (ABM). To be theoretically 

complete, more work is needed to operationalize instructional complexity.  

 

Research Questions 

In our project, we combine the course-taking data in MIDFIELD with the plan of study data for 

five disciplines of engineering (Mechanical, Electrical, Civil, Chemical, and Industrial) at 13 

institutions [6]. We also included a longitudinal element in our data collection by extracting 

program data that looked back ten years from the most recent entry in MIDFIELD. Our primary 

research question in this project is: How does the complexity of the codified curriculum vary 

among institutions and disciplines? With student course-taking data, we are expanding upon this 

question by addressing the following questions: (1) How do different populations and pathways 

(e.g., FTIC, changing majors) navigate the curriculum?; (2) To what extent do students follow 

the codified curriculum?; and (3) How is the curricular complexity experienced by students 

related to overall GPA, discipline stickiness, and migration yield? 

 

Summary of Year 2 Project Activities 

In Year 2, we expanded on the work in Year 1, which was almost exclusively collecting data to 

build a plan of study dataset amenable to Curricular Analytics and developing an R package to 

facilitate customized analyses with the dataset. We focused on three primary tasks in Year 2: 

verification of the plan of study dataset and calculating the descriptive statistics for the data, 

expansion of the R package through a systematic literature review, and the analysis of curricular 

design patterns. 

 

Verification of the Plan of Study Dataset and Descriptive Statistics. Much of our time in 

Year 2 was spent ensuring the accuracy of the data after running preliminary analyses and noting 

anomalies in the data. We used Python to check for inconsistencies in prerequisite structures, 

such as mismatched or missing prerequisites, across disciplines and years. These were then 

manually corrected by referring to the institutional catalog. The corrections increased the mean 

structural complexity scores by approximately 2% [7]. The mean structural complexity is 319, 

and the median is 301. The smallest structural complexity we observed was 122, whereas the 

largest was 897. Chemical engineering exhibited the largest mean structural complexity of 436, 

followed by mechanical engineering with 374. The means of the remaining disciplines – 

electrical, industrial, and civil – were much closer to one another (295, 257, and 240, 

respectively).  

 

Expansion of the R Package. The R package developed in Year 1 to scale Curricular Analytics 

was planned to be enhanced with additional metrics identified through a scoping literature 

review (SLR). The SLR examined 159 papers and identified 61 that expanded on Curricular 

Analytics, after which metrics were extracted from the papers. At the time, the metrics were 

categorized by type (structural or instructional) and level (student, course, or curriculum).  

 



Analysis of Curricular Design Patterns. Finally, once the data were verified, we explored 

curricular design patterns across the data by parsing the plans of study into components such as 

the Calculus sequence and first-year engineering programs (see [8]). Courses were standardized 

to allow for cross-institutional comparisons, leveraging GPT-4 to generalize the course names.  

 

Major Activities During Year 3 

Our Year 3 efforts have shifted to spotlight the possible insights to be gained from MIDFIELD in 

light of the new dataset we collected while closing the loose ends in Year 2. Accordingly, our 

activities centered on analyzing course-taking trajectories, finalizing our scoping review, and 

distributing the developed R package (in addition to the dataset and resources). 

 

Analyzing Course-Taking Trajectories. At the onset of Year 3, we began work on the 

following research question: How do different populations and pathways (e.g., FTIC, changing 

majors, transfer) navigate the curriculum? To address this question, we planned to use 

association analysis to discover frequent groupings of courses and association rules among them 

to build course-taking trajectories. The concept of association analysis [9] is classically applied 

to analyzing transaction data to observe what items are bought together and develop association 

rules of the form, "the people who bought item(s), A, also tended to buy item(s), B." Those 

bundles of items we are trying to relate, A and B, are called itemsets, and the association rule 

would be written as 𝐴 → 𝐵 (A is the antecedent and B is the consequent). The output of these 

analyses looks like suggestions provided by online retailers like Amazon, where each product 

page is supplemented by a "Customers also bought these items" section. Instead, the output here 

is "Students also took these courses." 

 

We intended to use association analysis to identify typical course-taking trajectories for various 

groups of students. However, the results of our initial application of the technique did not unearth 

deviant pathways to the extent we needed because of lower frequencies relative to the dominant 

path. Instead, we are leveraging an emerging clustering technique that can process data with a 

dimensionality that far exceeds the sample size, Thresholding After Random Projects (n-TARP) 

[10], [11]. This technique projects the data to a one-dimensional space by multiplying each data 

point by a random vector using a dot product; k-means is then run to form two clusters. Because 

the technique uses random vectors to generate the one-dimensional projection, n-TARP produces 

a collection of possible solutions. Although n-TARP only produces two clusters in a single 

solution, the researcher can rerun the analysis on specific clusters to uncover sub-patterns.  

 

We have converted the instances of students' course-taking into a bag-of-words representation, a 

vector containing each instance of a course being taken by the student, which includes courses 

that were retaken. We are currently experimenting with clustering student trajectories at single 

institutions to iteratively split clusters of students who start in a specific year to identify 

trajectories to completing an engineering degree – or not. To explore differences between 

clusters, we are comparing the normalized frequency of the courses across the clusters, the 

number of major switchers, transfer status, and other demographic categories. We expect to have 

results of the n-TARP clustering by the time of the conference. 



Finalizing Scoping Review. Starting in Year 2, we conducted a scoping review to identify 

additional metrics that researchers and practitioners could use with our dataset and their data [7]. 

The metrics were drawn from 61 papers citing foundational Curricular Analytics research since 

its introduction in 2013. Figure 1 provides a visual summary of our review. 

 
Figure 1. Summary of scoping review with selection of metrics  

We extracted 47 unique metrics from the papers. While mapping the relationships between the 

metrics, we found there is a lack of instructional complexity metrics in the literature, and those 

that exist do not fully capture the intention of instructional complexity. 

 



Developing and Distributing an R Package. Based on the scoping review results, we have 

added metrics like bottleneck course, centrality, curriculum rigidity, and deferment factor to our 

package and plan to add more. The package, including the dataset, will be available on GitHub 

by the closure of the project. In the meantime, we plan to host workshops on using the package 

through the network of MIDFIELD researchers and at a future ASEE and Frontiers in Education 

conference.  

Future Work and Conclusion 

Next, we plan to address the last two questions in our project: To what extent do students follow 

the curriculum as codified? And how the curricular complexity experienced by students is 

related to overall GPA, discipline stickiness, and migration yield. These will be addressed 

through correlational analyses. By deconstructing the varied pathways students take to an 

engineering degree, we can better understand what curricular bottlenecks exist for students and 

find appropriate ways to increase the flexibility of our programs. 
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