
Paper ID #48300

WIP: A Novel real-time circuit simulation tool – JSIM

John Francis Simonis, The Ohio State University at Marion
Dr. Qudsia Tahmina, The Ohio State University at Marion

Dr. Qudsia Tahmina, The Ohio State University at Marion

Dr. Qudsia Tahmina is an Associate Professor of Practice at The Ohio State University at Marion and
teaches engineering and engineering technology courses. She is involved in curriculum development,
assessment of learning outcomes and ABET accreditation.

©American Society for Engineering Education, 2025



A Novel real-time circuit simulation tool – JSIM 

 

Abstract 

Understanding the behavior of electrical circuits poses significant challenges for today’s 

experiential learners. Traditional teaching methods that rely on static circuit diagrams and 

manual calculations often fail to engage students who thrive on hands-on learning, programming, 

and simulation—an approach increasingly prioritized in modern engineering programs [1]–[3]. 

To address this gap, we introduce JSIM, a real-time circuit simulation tool designed to lower 

cognitive barriers in circuit analysis while enhancing practical interfacing with hardware through 

physical breadboarding and low-level programming. Developed exclusively in C++ with an 

original codebase and optimized for embedded systems, JSIM requires less than 100 KB of 

storage and achieves significantly faster simulation speeds compared to traditional simulators 

such as Falstad and MultiSim [5]- [6]. Our testing reveals that JSIM outperforms these 

simulators in both binary size and output completeness—requiring as little as 42.9 KB on 

resource-constrained platforms like the RP2350 microcontroller—while delivering accurate 

nodal and mesh analysis results, including augmented matrices. This reduced binary size makes 

JSIM a more accessible option for circuit simulation by dramatically lowering hardware 

requirements and thereby broadening student access. Moreover, unlike Falstad—which fails to 

provide critical circuit equations—JSIM offers comprehensive outputs that better align with the 

educational needs of engineering students [2]–[4]. By seamlessly integrating simulation with 

physical experimentation, JSIM presents a promising avenue for enhancing students’ 

comprehension of circuit theory in modern engineering education. Future research will 

rigorously evaluate its effectiveness within Electrical Engineering curricula. 

 

Keywords 

Mesh analysis, Nodal analysis, Electrical engineering, Circuit simulation, Circuit analysis 

 

Introduction 

JSIM is an emerging real-time circuit simulation tool designed to enhance students' 

understanding of nodal and mesh analysis techniques for basic resistive circuits. By providing 

circuit analysis feedback within milliseconds, JSIM enables students to iteratively refine their 

designs in a developmental environment that aligns with modern pedagogical approaches 

emphasizing experiential learning, hands-on engagement, and low-level programming [1]–[4]. 

Developed exclusively in C++ with an original codebase and utilizing only the C++ standard 

libraries, JSIM is highly efficient and uniquely optimized to run on resource-constrained 

hardware. Unlike traditional simulators such as Falstad or MultiSim—which require significant 

storage space (at least 75 MB) and advanced operating systems like Windows 10 [5]–[6]—JSIM 

requires less than 100 KB, making it well-suited for embedded environments such as the RP2350 

microcontroller. These lower-cost embedded environments promote greater accessibility in 

classroom settings. 

In addition to its portability, JSIM’s reduced computational overhead results in significantly 

faster simulations, providing immediate feedback in dynamic scenarios like breadboarding labs 



where students frequently modify circuit configurations. By dynamically constructing symbolic 

equations and augmented matrices for nodal and mesh analysis, JSIM creates an interactive 

learning environment that builds on fundamental programming and mathematical concepts 

taught in foundational engineering courses [1]–[4]. This unique integration reinforces students' 

understanding of circuit theory while enhancing their practical programming skills by requiring 

them to represent circuits via procedural C++ programming within the JSIM simulation 

framework. 

JSIM also employs dynamic memory allocation to ensure space efficiency, enabling it to handle 

circuits of varying complexity even on hardware with limited resources. While still a prototype, 

JSIM demonstrates significant promise for incorporation into sophomore-level circuit courses, 

where its lightweight design and alignment with educational objectives can simplify teaching and 

foster a deeper understanding of circuit behavior. By combining practical circuit analysis with 

hands-on programming experience, JSIM represents a novel tool for enhancing engineering 

education. 

 

Methods 

JSIM maintains a lightweight design with portability across platforms. It is purpose-built for 

helping students with nodal and mesh analysis for resistive circuits, unlike MultiSim and Falstad. 

This makes JSIM very difficult to compare to traditional circuit simulators. It accomplishes this 

by leveraging a compact and modular architecture, while also having a fully original codebase. 

 

JSIM is ultimately designed to provide a streamlined and adaptable approach to circuit 

simulation, distinguishing itself from pre-existing solutions like MultiSim and Falstad through its 

simplicity and efficiency. Unlike traditional simulators [6], JSIM consists of only eight source 

files, making it lightweight and highly capable of integrating into any standard main.cpp file. 

Functioning as an advanced library or framework, JSIM offers modular support for both mesh 

and nodal analysis, enabling developers to compile only the functionalities they require into the 

final binary. This design minimizes both binary size and memory usage, making JSIM 

particularly well-suited for resource-constrained environments. 

 

The eight source files that form JSIM are as follows: 

• circuit.cpp and circuit.h: Handle the overall circuit representation and management. 

• elements.cpp and elements.h: Define the behavior and properties of individual circuit 

elements. 

• mesh.cpp and mesh.h (module): Implement the mesh analysis functionalities. 

• nodal.cpp and nodal.h (module): Provide the nodal analysis functionalities. 

 

For minimal compilation without evaluation capabilities (e.g., simulating and analyzing circuit 

behavior), only the circuit and elements source files are required. This modularity allows 

developers and students to tailor JSIM to specific use cases, such as focusing exclusively on 

nodal or mesh analysis whilst also reducing runtime memory usage and binary size. An added 



benefit of this approach is that JSIM is fully extensible using C++ which integrates fundamental 

programming curricula with Electrical Engineering curricula. 

 

JSIM is also designed to be platform-agnostic, leveraging only the C++ standard library to 

ensure portability across a wide range of platforms. On Linux-based systems, for example, this 

can be achieved by using packages like libstdc++. Other embedded hardware platforms, such as 

the RP2350 microcontroller, include development kits with detailed instructions for installing 

necessary packages for C and C++ development. By relying solely on the C++ standard library, 

JSIM maintains compatibility with different compilers as it ultimately requires no external 

dependencies. 

 

To assess JSIM’s effectiveness in educational and practical applications, a comparison was 

conducted with Falstad, a widely used open-source circuit simulator. The evaluation focused on 

key metrics: 

• Binary Size: Space required for the complete compiled program. 

• Correctness of Results: Accuracy of solutions for nodal and mesh analyses. 

• Completeness of Outputs: Coverage and clarity of results provided by each tool. 

• Critical Circuit Constraints: Ability to detect and address constraints like floating 

nodes and incorrect connections. 

 
Figure 1: Example of a Supernodal Circuit Problem 

 

 
Figure 2: Example of a Simple Resistive Circuit Problem 



These two circuit problems were selected to assess the capabilities of each simulator. These 

circuits were chosen for specific criteria: 

• Figure 1: This circuit contains a super node and is a suitable candidate for evaluating 

nodal analysis techniques. 

• Figure 2: This circuit features only a current source, making it an ideal candidate for 

testing mesh analysis techniques. 

 

JSIM was compiled for multiple platforms, including MacOS (Intel and ARM), Linux, and 

Windows—the same platforms supported by Falstad [6]. The binary sizes of JSIM and Falstad 

were compared across these platforms, with the results expressed as percentage differences. A 

positive percentage indicates a smaller binary size for JSIM, whereas a negative percentage 

favors Falstad. 

 

For testing a simple declarative structure for each circuit was used in JSIM where components 

were placed via their nodal connections. JSIM keeps track of each component through a 

beginning node, ending node, value, and a label. This allows JSIM to map the position of each 

component within a netlist as well as retaining its orientation for elements like Current and 

Voltage sources which change certain values depending on their orientation. An example setup 

for the circuit shown in Figure 1 can be seen below in Figure 3. 

 

 
Figure 3: Basic JSIM Setup for Supernodal Circuit Problem 



Results 

To evaluate the effectiveness of JSIM, a comparison was conducted with the Falstad Circuit 

Simulator using two test circuits: a supernodal circuit (Figure 1) and a simple resistive circuit 

with a current source (Figure 2). These circuits were selected to assess JSIM’s capabilities in 

performing nodal and mesh analyses, respectively. The evaluation criteria included binary size, 

correctness of results, and completeness of outputs, as well as the ability to detect critical circuit 

constraints. 

 

JSIM demonstrated superior performance in several key areas. It successfully produced accurate 

nodal and mesh analysis results for both circuits, including detailed KCL equations and 

augmented matrices. By contrast, Falstad failed to generate meaningful equations, limiting its 

utility as an educational tool for verifying circuit calculations. Additionally, JSIM’s ability to 

produce augmented matrices offers a unique advantage for students learning circuit theory, as it 

provides a clearer representation of system equations that align with mathematical techniques 

taught in foundational courses [1] - [4]. 

 

 
Figure 4: Falstad test for Supernodal Circuit Problem 

 

 
Figure 5: Falstad test for Simple Circuit Problem 



 
Figure 6: JSIM test for Supernodal Circuit Problem 

 

 
Figure 7: JSIM test for Simple Circuit Problem 

Binary Size Comparison 

JSIM’s lightweight design is a major differentiator from Falstad. As shown in Table 1, JSIM’s 

compiled binary size is significantly smaller across all tested platforms, requiring as little as 42.9 

KB on the RP2350 microcontroller and only 65.9 KB on Linux. In comparison, Falstad requires 



between 75 MB and 109 MB, depending on the platform, due to its dependency on the Java 

Runtime Environment (JRE) [5], [6]. This compact size makes JSIM the only viable option for 

circuit simulation on resource-constrained hardware like the RP2350. 

 

PLATFORM\PROGRAM JSIM Falstad 

RP2350 42.9 KB N/A 

Linux (Fedora) 65.9 KB 82 MB 

Windows 73.2 KB 75 MB 

MacOS (Intel) 81.4 KB 88 MB 

MacOS (ARM) 80.3 KB 109 MB 

Table 1: Compilation Size Comparison 

 

Completeness of Outputs 

JSIM produced comprehensive outputs that included nodal and mesh equations, voltage 

calculations, and augmented matrices for both test circuits. These results align closely with the 

educational needs of engineering students, offering a more robust and interactive learning 

experience. For example, in the supernodal circuit problem (Figure 1), JSIM provided clear KCL 

equations and accurately calculated node voltages, surpassing Falstad’s limited output, which 

only displayed voltages without associated equations or matrices. It also properly recognized a 

supernode constraint which modifies the algorithm for standard nodal analysis, something that is 

largely beneficial to students learning the rules of these techniques for the first time. 

 

Educational Usability 

The immediate feedback provided by JSIM, along with its ability to handle dynamic circuit 

changes efficiently, makes it particularly suitable for hands-on learning environments like 

breadboarding labs. By delivering detailed mathematical representations and solutions, JSIM can 

enhance students' comprehension of circuit theory and reinforce programming skills, as 

highlighted by its alignment with educational objectives in introductory engineering courses [1] - 

[4]. As a tool, JSIM was explicitly designed to aid students in the process of validation when it 

comes to calculations. 

 

Future Work 

While JSIM shows significant promise, it is still a prototype that is in development and needs 

rigorous classroom testing. There are several areas where it can be enhanced to broaden its 

functionality and educational impact: 

1. Support for Time-Dependent Components: Currently, JSIM lacks the ability to 

simulate time-dependent components such as inductors and capacitors. Adding support 

for these elements would enable students to explore transient responses and AC circuit 

analysis, extending its applicability to more advanced circuit topics. 

2. Graphical User Interface (GUI): A user-friendly GUI or CLI could make JSIM more 

accessible to students unfamiliar with basic C/C++ programming, 

3. Integration with Breadboarding Hardware: Developing compatibility with popular 

breadboarding platforms like Arduino or Raspberry Pi would allow real-time interaction 



between simulated and physical circuits, enhancing experiential learning. This could 

create an integrated hardware environment for students to breadboard around popular 

Microcontroller development boards to observe calculated and measured values in the 

tandem. 

4. Expanded Educational Resources: Creating tutorials, example problems, and 

documentation tailored to introductory engineering courses would help instructors 

integrate JSIM seamlessly into their curricula. 

5. Trial Use in Classroom: To ensure JSIM is viable in the classroom, JSIM will be 

integrated and tested on real students to evaluate its full educational potential. 

 

References 

[1] The Ohio State University, "First-Year Engineering Program," [Online]. Available: 

https://eed.osu.edu/node/2130/first-year-engineering-program. [Accessed: Jan. 1, 2025]. 

[2] University of Michigan, "Engineering 101: Introduction to Computers and 

Programming," [Online]. Available: https://adue.engin.umich.edu/engr101-computers-

programming/. [Accessed: Jan. 3, 2025]. 

[3] Purdue University, "First-Year Engineering Requirements," [Online]. Available: 

https://engineering.purdue.edu/Honors/current-students/first-year-engineering-

requirements. [Accessed: Jan. 2, 2025]. 

[4] University at Buffalo, "Computer Programming Requirement - UB School of 

Engineering and Applied Sciences," [Online]. Available: 

https://engineering.buffalo.edu/home/academics/undergrad/advisement/computer-

programming-requirement.html. [Accessed: Jan. 1, 2025]. 

[5] National Instruments, "NI Multisim and Circuit Design Suite 14.0.1 Readme," [Online]. 

Available: https://www.ni.com/pdf/manuals/375231b.html. [Accessed: Jan. 1, 2025]. 

[6] P. Falstad, "Circuit Simulator (Offline Version)," [Online]. Available: 

https://www.falstad.com/circuit/offline/. [Accessed: Jan. 12, 2025]. 

https://eed.osu.edu/node/2130/first-year-engineering-program
https://adue.engin.umich.edu/engr101-computers-programming/
https://adue.engin.umich.edu/engr101-computers-programming/
https://engineering.purdue.edu/Honors/current-students/first-year-engineering-requirements
https://engineering.purdue.edu/Honors/current-students/first-year-engineering-requirements
https://engineering.buffalo.edu/home/academics/undergrad/advisement/computer-programming-requirement.html
https://engineering.buffalo.edu/home/academics/undergrad/advisement/computer-programming-requirement.html
https://www.ni.com/pdf/manuals/375231b.html
https://www.falstad.com/circuit/offline/

