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ADV-MITIGATION STRATEGIES OF FALSE DATA 
INJECTION ATTACKS ON LOAD FLOW-SMART GRIDS VIA 

THE BLOCKCHAIN

Abstract

In this research, Cyber-physical attacks on power grid networks, particularly 
false data injection attacks (FDIAs), have increased, leading to power outages 
and significant economic losses. These attacks pose a serious threat to smart 
grid load flow monitoring systems. This research explores advanced 
approaches using machine learning models and simulation case studies 
focused on mitigating FDIAs in smart grids. The study emphasizes resilience, 
traceability, and mitigation of these attacks through innovations in power 
load flow monitoring. The methodology involves advanced simulations with 
minimal programming technologies to decompose multi-node bus power grid 
generation and address false data load flow issues. A core objective is to 
standardize effective mitigation strategies to prevent power load flow 
disruptions, enhance resilience in critical data protection, and embedded 
blockchain technology for secure transaction management templates within 
the grid. A virtual platform for smart contracts is developed, facilitating load 
flow transactions securely. Additionally, a machine learning model is 
integrated to analyze, train, test, and forecast load flow data, enabling future 
predictions and improving the smart grid's resilience mechanisms against 
FDIAs.

Keyword: Load Flow, Machine Learning, Mitigation, Resilience, and 
Blockchain
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1. Introduction

This study focuses on applying machine learning concepts to enhance power 
flow analysis in smart grid networks, emphasizing the smart integration 
between data communication and energy distribution systems. The 
contribution of this research is directed toward the development of a 
sustainable, secure, and reliable grid infrastructure. A Python-based 
simulation approach is proposed, highlighting the fundamental role that 
renewable energy sources can play. Additionally, the modernization of 
energy infrastructure through smart grid load flow modeling involves the 
integrated use of advanced machine learning algorithms and virtual 
networking technologies for energy transportation. These systems enable 
next-generation distributed energy management protocols, whereby nodes 
collaboratively determine essential operational parameters, such as 
electricity output and security metrics, using consensus algorithms to 
optimize overall performance. Prominent research areas in multi-agent 
control and distributed systems have explored consensus protocols for 
securing virtual platforms within smart grids. However, significant 
challenges remain unresolved, leaving smart grids particularly vulnerable to 
false data injection (FDI) attacks. FDI attacks involve malicious actors 
injecting deceptive data into the network, jeopardizing the grid’s integrity, 
stability, and functionality. Accordingly, this study proposes intrusion 
detection strategies on virtual platforms and mitigation methods for FDI 
attacks. By utilizing machine learning and blockchain technologies, these 



approaches aim to enhance resilience and reliability in smart grid 
operations, ensuring the security and efficiency of energy distribution. 

2. Objective

This study contributes to Electrical and Computer Engineering (ECE) 
education by aligning with the American Society for Engineering Education 
(ASEE) objectives of curriculum enhancement and student collaboration 
through laboratory-based research. The findings of this study can be 
incorporated into the ASEE-ECE curriculum through course syllabi in areas 
such as machine learning, cybersecurity, power system engineering, and 
STEM-focused technical electives, as well as through integration into 
laboratory modules and student-led capstone projects.

The research addresses mitigation strategies and vulnerability analysis of 
smart grid networks against load-flow false data injection (FDI) attacks. It 
explores advanced detection methods, resilience mechanisms, and 
mitigation strategies, thereby contributing to the development of more 
robust machine learning models and secure smart grid infrastructures. This 
research-based methodology provides instructional content and serves as a 
practical framework for addressing real-world challenges in data analysis, 
machine learning, and load-flow smart grid engineering.

By incorporating this research into standard methodology courses within 
ECE and STEM programs—particularly capstone design projects—students 
gain hands-on experience with emerging technologies and power grid 
infrastructure protection. The study supports the development of skills in 
data analytics, system modeling, and cybersecurity, ultimately enhancing 
students' technical expertise and problem-solving abilities in a rapidly 
evolving engineering landscape.

Specifically, the research focuses on investigating the vulnerabilities of 
smart grid networks to false load-flow data injection, and discusses 
improvements in detection and mitigation strategies to strengthen grid 
resilience. The study contributes to critical aspects of security, monitoring, 
and predictive analytics for load-flow systems through the application of 
machine learning and blockchain technologies. 

This study addresses the following specific areas:

• Mitigation of Smart Grid Load-Flow Data Vulnerabilities: Based on the 
virtual template for load-flow bus-generator (BUS-GEN) model 



reinforcement, this study proposes improved mitigation strategies (refer to 
Fig. 1).

• Countermeasures for Overall Grid Resilience Enhancement: 
Countermeasures are proposed to address cyber-physical threats, aiming to 
enhance the resilience of smart grid load-flow networks.

• Threat Landscape Mapping: An in-depth analysis of various threats is 
provided, along with corresponding countermeasures, establishing a 
detailed research framework for mitigating critical vulnerabilities, as 
illustrated in Fig. 1.

• Blockchain for Security: Blockchain technology is proposed for securing 
load-flow data transactions to ensure integrity and reliability within smart 
grid load-flow networks.

Through these contributions, the study advances the development of a 
resilient smart grid infrastructure capable of real-time monitoring, 
predictive analytics, and faster detection of intrusion attempts related to 
false data injection.

Fig. 1.  Load-flow model virtual template

3. Literature Review

The results are represented by trends in the aggregated values of load_q, 
sgen_p, bus_p, and line_q. These results demonstrate the dynamic machine 
learning mitigation model for load flow data over time series and provide 



validation for the reliability of the predictive load flow false data injection 
(FDI) model (see Eq. 3). In this study, load flow data injection attacks are 
identified as one of the most threatening cyber incidents within power 
grids, having attracted significant attention from both researchers and 
practitioners. This work reviews recent developments related to FDI 
attacks, focusing on adversarial models, attack targets, and their impacts on 
smart grid infrastructure. The review covers key cybersecurity threats to 
smart grids based on both theoretical and practical literature. Specifically, 
three aspects are pursued: (1) how FDI attacks can be constructed, (2) their 
impact on demand response market operations, and (3) corresponding 
defense strategies. This study discusses adversarial approaches, the 
consequences of market disruptions, and countermeasures from the 
perspective of system operators, while also identifying future research 
directions aimed at strengthening defense mechanisms against FDI attacks 
[1].

FDI attacks targeting critical virtual network electrical equipment can 
cause system frequency abnormalities, cascading failures, and large-scale 
blackouts. One proposed solution is a tri-level defense model, as seen in 
LREPS, which advocates collaboration between defenders, attackers, and 
operators in decision-making to mitigate the rate of change of frequency 
(RoCoF) and withstand cyberattacks [2]. This approach also includes pre-
event risk analyses and post-event strategies to enhance system 
functionality during future disruptions. The resilience of such systems is 
evaluated in terms of their resistance, restabilization, rebuilding, and 
reconfiguration capabilities after disruptive events [3].

State estimation is a fundamental function of energy management systems 
that rely on redundant measurements and network topology. FDI attacks 
can successfully evade traditional bad data detection (BDD) algorithms by 
injecting manipulated data vectors, thereby controlling state estimation 
outcomes. Machine learning has been widely adopted to overcome the 
limitations of traditional residual-based BDD methods, improving both 
detection speed and accuracy [4]. In smart grids, major themes in 
cyberattack detection include data integrity and reliability. Some proposals 
feature agent-based modeling of data integrity and decentralized security 
frameworks. For instance, cyberattacks have been detected with an 
accuracy of 98.19% using an artificial feedforward neural network [5]. 
Cybersecurity remains the primary challenge for smart grids, necessitating 
the development of new and efficient detection techniques that account for 
topological changes and other uncertainties arising from the intermittent 



nature of renewable energy sources. Among the promising techniques, long 
short-term memory (LSTM) recurrent neural networks (RNNs) have 
demonstrated the ability to effectively distinguish between natural changes 
in the grid and real-time cyberattacks, achieving high accuracy in system 
dynamics modeling [6]. Recent studies have also highlighted that 
adversaries can easily bypass existing BDD schemes, posing serious threats 
to grid stability. Researchers have thus focused on optimal attack strategy 
identification and defense mechanism development, including both 
protection- and detection-based approaches [7]. Blockchain technology has 
emerged as a resilient solution to secure communication within smart grids, 
mitigate data vulnerabilities, and enhance cyber-resilience [8].

Smart grids represent a seamless integration of digital communication 
networks, control technologies, and power systems that collectively ensure 
reliability and sustainability. Nevertheless, false data injections can result in 
disruptions, load shedding, and power theft. Most current robust FDI attack 
strategies rely on comprehensive knowledge of the grid network topology. 
To address this vulnerability, three topology-independent detection 
techniques have been proposed: linear regression, linear regression with 
timestamps, and delta threshold-based methods. These techniques improve 
the detection of injected false data by filling in missing real-time 
measurements [9].

The growth of cybersecurity concerns has been particularly evident with the 
integration of distributed energy resources (DERs) such as solar and wind 
power. New challenges related to communication and monitoring have 
emerged, and various studies have proposed blockchain-based resilient 
schemes for securing the monitoring and control of DERs within wireless 
sensor networks (WSNs) [21]. Additionally, interoperability and cyber-
resiliency are ensured for renewable smart microgrids by securing the 
underlying communication infrastructure, protocols, and intelligent 
electrical devices [22]. Moreover, comprehensive security solutions 
addressing vulnerabilities in key grid components have been presented [23].

Machine-learning-based frameworks have been tested to detect sensor FDI 
attacks on industrial control systems through simulation models and hybrid 
testbeds [24]. Different machine learning models utilizing Internet of Things 
(IoT) datasets for a 10 kV solar photovoltaic (PV) system have demonstrated 
their performance in detecting FDIA attacks [25]. These efforts are closely 
related to the increasing number of cyberattacks targeting power systems, 



emphasizing the need for fault-tolerant systems capable of adapting to and 
compensating for attacks to ensure reliable power delivery [26].

This study provides a state-of-the-art review that highlights the extensive 
research still required for the detection, mitigation, and prevention of FDI 
attacks on smart grids. Addressing critical cybersecurity vulnerabilities in 
the growing number of smart devices and DERs is essential for maintaining 
the resilience and stability of future power systems.

4. Methodology and Analyses

This study investigates the implementation of a multi–machine-learning-
based smart grid load flow data injection model, which is crucial for the 
integration of the next generation of microgrids. The model interacts with a 
hybrid power generation system through a smart virtual testbed (BUS-GEN 
model) to provide critical services that support grid operations. While 
performing various ancillary services and monitoring through the virtual 
model, the research further elaborates on the Virtual Testbed BUS-GEN 
model acquisition, which can be simulated accordingly. Specifically, a 
scalable smart grid system simulates neural network strategies within key 
design configurations, focusing on customized software configurations, 
testing, and maintenance. Additionally, modern communication protocol 
innovations, including master-slave and grid operation systems, are 
introduced. This virtual intrusion model of load flow data within a smart 
grid is essential for ensuring the efficient transmission and distribution of 
power. When embedded within the system, this approach leads to greater 
efficiency, reducing both energy and financial losses. Furthermore, its 
robustness against cyber-physical disruptions and cyberattacks ensures 
rapid recovery from outages, thereby improving the restoration time series 
and overall security of the smart grid framework.

4.1.  Data Resources

Data resources leverage various datasets and computational tools to 
enhance forecasting processes and system analysis. The datasets used 
include PandaPower, Pandas, and Simbench, which were integrated into 
machine-learning models within a blockchain-enabled virtual testbed. 
Advanced simulation capabilities were supported by a Python-based virtual 
environment utilizing machine-learning libraries such as sktime, scikit-learn 
(sklearn), and linear regression techniques, while graphical visualizations 
were produced using tools such as Matplotlib and NumPy. The blockchain 
framework was supported by resources including Web3, Infura, Ganache, 



and Ethereum, enabling secure and decentralized simulation workflows. 
This holistic integration of datasets and tools forms the foundation for 
accurate modeling and reliable evaluation of system performance.

4.2. Architecture Framework Mitigation Strategies

This research targets the development of architectural framework 
mitigation strategies designed to model smart grid load flow, supplemented 
with enhanced security capabilities and blockchain integration. The study 
was conducted in three phases. The initial phase focused on creating the 
structural framework and simulation platform for the smart grid load flow. 
This model consists of generic templates and virtual BUS elements that 
support a standard load flow simulation. Additionally, an intrusion detection 
system (IDS) was implemented on this platform to detect and flag data 
anomalies (see Fig. 2).

In the second phase, the model was refined to address root-level intrusions 
by redetecting cyber threats to ensure secure data acquisition. This step 
involved integrating blockchain technology into the simulation. Spurious 
data were intentionally introduced into the load flow model as part of the 
testing process to apply a blockchain-based mitigation framework. The 
performance of the overall system in identifying and resolving data 
inaccuracies was subsequently evaluated. Preliminary results indicate that 
the blockchain framework reliably identifies and validates false data in load 
flow simulations, demonstrating strong capabilities in maintaining 
cybersecurity standards.

The final phase of the research focused on the validation, tracing, and 
feedback of load flow data using the blockchain-based mitigation 
framework. Both manipulated and normal simulation data were considered 
at this stage to verify the reliability of blockchain in tracking and securing 
data. Therefore, this study comprehensively addresses the improvement of 
data accuracy and cybersecurity to ensure grid stability, thereby 
contributing to the resilience of smart grid systems, as illustrated in Fig. 2.



Fig. 2: Architecture framework mitigation strategies

 4.3. Load-Flow Analysis and Countermeasures

This research establishes partial foundations for fundamental principles, 
including load flow analysis, optimization methodologies, and scalability 
criteria, in the design of smart grid systems. In this respect, it highlights the 
dynamic adaptability of smart grids through advanced models of smart grid 
load flow, addressing the challenges of evolving systems with specific 
attention to minimizing risks associated with false data in virtual load flow 
models.

The study focuses on developing a smart grid that is more resilient to false 
data injection (FDI) attacks by integrating cybersecurity strategies, 
including mitigation mechanisms, resilience frameworks, and false data 
detection algorithms. Furthermore, the methodology incorporates the 
integration of blockchain technology into the smart grid infrastructure. 
Blockchain, with its decentralized and tamper-resistant architecture, 
provides a more robust means of safeguarding load flow data and 
associated transactions. In this study, blockchain is utilized to introduce an 
additional layer of protection that ensures data integrity and enhances the 
reliability and operational stability of smart grid systems.

4.4. Simulation of Mitigation Re-Tracking Model



This study developed mitigation strategies within machine learning models 
by examining the impacts of false data injection attacks on load flow 
simulations, utilizing blockchain technology for data integrity retracking, 
confirmation, and verification. The steps developed for the simulation 
process are outlined below. First, blockchain technology was employed to 
enhance data integrity by retracking and confirming the validity of the load 
flow simulation. A blockchain-based verification mechanism was initially 
implemented to verify the authenticity of the load flow data injections 
corresponding to GEN 1 and BUS 1. Subsequently, a similar verification 
process was performed for the data corresponding to BUS 2, where 
validation and confirmation were integrated through blockchain technology 
into the load flow simulation. Furthermore, LOAD 1 served as a template for 
conducting load flow model data injection simulations. Finally, the smart 
grid load flow data injection framework integrated GEN 2, GEN 3, and 
LOAD 2 data into the blockchain for authenticity and coherence. This 
method is designed to ensure that smart grid load flow simulations remain 
secure against false data injection attacks, thereby maintaining their 
dependability. The simulation framework is illustrated in Fig. 3.

Fig. 3. Mitigation re-track model simulation

5. Results and Discussion

This project focuses on developing mitigation strategies for load flow false 
data injection (FDI) testbeds by emulating various smart grid scenarios, 



using machine learning techniques to acquire data and generate functions 
aimed at minimizing the impact of such attacks. Accordingly, most 
investigations in this research concentrated on reducing the risk of false 
data injection attacks (FDIA) by analyzing load flow data injected using 
different interval-based tools, such as PandaPower, Pandas, and SimBench, 
for forecasting purposes. These tools were integrated with machine learning 
models within blockchain-enhanced virtual testbeds. Simulations were 
conducted using the Python-based Virtual Testbed BUS-GEN model, which 
enabled the construction of a scalable power grid architecture. Python 
provided flexibility for precise modeling, simulation, and analysis, thereby 
increasing the system's efficiency, accuracy, and security against potential 
FDIA attacks. Blockchain technology was integrated into the smart grid 
infrastructure to enhance system security by ensuring the integrity of load 
flow data and safeguarding transactions against manipulation. The 
proposed integration of machine learning and blockchain technologies was 
tailored to meet the demands of hybrid systems, supporting robust data 
integrity within dynamic energy networks composed of conventional power 
lines, smart meters, and advanced communication technologies.

FDIA mitigation was thus incorporated into the processes of tracking and 
verifying the authenticity of load flow data during simulation. The major 
steps included:

• Mitigation by retracking: Blockchain retracked load flow simulations to 
ensure data integrity.

• Verification of GEN 1 and BUS 1 load flow injection data: Blockchain 
verified the precision and coherence of data blocks generated for GEN 1 
and BUS 1.

• Re-verification of BUS 2 data: Blockchain maintained the integrity of 
simulation data associated with BUS 2.

• Simulation training and prediction: Load flow models were simulated and 
predicted using the LOAD1 template.

• Data integration for GEN 2 and LOAD 2: Real and false data injections 
were administered using blockchain tools such as Ganache, Ethereum, and 
Web3.

Machine learning models were subsequently applied to analyze the impacts 
of false data injections on load flow simulations, enhancing the mitigation, 
resilience, and security of smart grid networks. This integrated approach of 



blockchain and machine learning provides a comprehensive framework for 
mitigating FDIA risks and strengthening smart grid infrastructure.

5.1. Mitigation Strategies and Stages

The mitigation strategy employed a three-stage methodology to prepare and 
analyze the load flow data injection attack simulation model, as follows: 

• Initial Stage: Mitigation retracking was performed on a specified data 
frame, which involved the creation of load flow data profiles, including 
but not limited to, active generator power, active load power, and 
reactive load power of lines (see Fig. A and Fig. 4).

• Mid-Stage: Retracking at specific time intervals provided insights into 
the dynamics that may prevail within the grid (see Fig. B and Fig. 5).

• Final Stage: Refinement of the load flow data injection network model 
resilience was achieved through mitigation retracking by 
implementing percentage adjustments (see Fig. C and Fig. 6).

Injecting the results of the load flow data into the virtual testbed emulated 
each stage virtually. Intrusion detection mechanisms were implemented to 
simulate false data injections, with consistency and authenticity of the data 
guaranteed by blockchain technologies, such as Ganache, Ethereum, Infura, 
and Web3. Enlightening conclusions regarding system responses under 
FDIA threat conditions were drawn through active and reactive power 
parameter analyses conducted during these stages.

5.1.1.  Stage 1. Initial-Level Simulation Model: Mitigation Re-
Tracking Through Data-Range Simulation

The initial phase of the simulation involved training and testing datasets to 
predict load flow data for different scenarios, including interruptions and 
normal load flow conditions injected into the network. The dataset ranged 
from 20 to 100 data frames, with specific data sets processed sequentially. 
The training data were divided into X_train, X_text, y_train, and y_test, 
while the testing data covered training sizes ranging from 10 to 100 data 
points (see Eq. 1). A linear regression model was employed to predict load 
flow data by isolating sequential data frame proportions within the ranges 
of 10, 20, 40, 60, 80, and 100 frames (see Fig. A).

Eq.1



The initial setup of the mitigation retracking simulation model was 
evaluated using the mean squared error (MSE) metric, and its time 
efficiency was assessed by analyzing prediction latency. First, profile data 
were concatenated along two axes, the x- and y-axes, incorporating 
generator power and line reactive power parameters (sgen_p, line_q, 
load_q, and line_q) to ensure a comprehensive representation of the input 
data. The entire dataset was divided into frames ranging from 20 to 100 
frames, corresponding to different time intervals. The simulation results, 
shown in Fig. A, validated the effectiveness of the model.

In the initial stage, the interception of load flow false injection attacks was 
simulated using data frames containing ranges from 0 to 20, processed in 
three iterations. Each sample was processed and sent to the blockchain 
model for validation and analysis (see Fig. A).

Fig. A. Mitigation re-tracking by data-range

Mitigation strategies for false load flow data injection use time series data 
to enhance the accuracy and reliability of intrusion detection simulations. 
The proposed Load Flow Injection Data serve as a critical component in 
combining training datasets and predicted values, forming a robust 
foundation for these simulations. LOAD1 is a predicted load flow dataset 
designed for integration into mitigation models. Its training included both 
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datasets from opposite conditions—normal operation and false data 
injection—to ensure robust grounds for simulation and analysis.

This mitigation process aligns with an extensive data verification approach. 
The integrity of the initial data set was ensured by first simulating GEN 1 
and BUS 1 in the Load Flow simulation before further validating and 
incorporating data for BUS 2. Additional simulations were then conducted 
by integrating GEN 2 and LOAD 2 data using the LOAD1 template. This 
structured and methodical approach significantly enhances smart grid 
modeling and strengthens system reliability against potential threats from 
data injection. An overview of the simulation framework is presented in Fig. 
4.

Fig. 4. Mitigation load-flow normal time series

Simulations of the load flow data injection parameters, ranging from 0 to 
3500 kV/kVAR, were also conducted at time intervals between 0 and 600 
seconds. Realistic load-flow data were extracted from the training datasets 
to closely represent real-world operational scenarios. The proposed 
simulation framework incorporates the use of training data with predictive 
analytics to improve intrusion detection capabilities. Both real and 
simulated virtual testbed platforms contribute to the FDIA framework, while 



LOAD1 is used as the predicted dataset for simulating mitigation strategies. 
LOAD1 is trained under both normal operating conditions and under false 
data injection scenarios to ensure the effectiveness of the mitigation 
strategies against various types of threats.

The model development process employs secure blockchain mechanisms 
that enable progressive improvements in data mitigation, resilience, 
integrity, and traceability during simulations. Specifically, the model was 
developed by verifying GEN 1 and BUS 1, with blockchain integration 
extended to validate BUS 2 data within the simulation framework. A 
predefined template for LOAD1 facilitated the performance of load flow 
simulations more efficiently. Finally, GEN 2 and LOAD 2 data were 
integrated to study and validate the load flow behavior of the smart grid 
under different scenarios. This methodology ensures that both actual and 
forecasted load flow scenarios are robustly evaluated, as shown in Fig. 5.

Fig. 5.  Actual and predicted load-flow mitigation

5.1.2. Stage 2. Mid-level Simulation Model: Mitigation Re-Tracking 
by Time Interval



The mitigation retracking model for load flow false data injection was 
developed using profile data concatenated along two axes. The dataset 
integrates active and reactive smart grid parameters as the x-axis, while the 
y-axis includes active and reactive power. This dataset spans data frames 
recorded at time intervals of 5, 10, and 15–50 seconds. Training and testing 
splits were performed using sgen_p.sum, line_p.sum, and load_p.sum sets, 
with 20% of the data allocated for training (refer to Eq. 2). In this 
experiment, a linear regression model was applied to predict the load flow 
data and to analyze data sequences proportionally from 10 to 100 data 
frames. The model's performance at different time intervals is presented in 
Fig. B.

Eq.2

Mid Stage: In the second phase of the load flow false data injection attack 
simulation, data frames were intercepted at specific time intervals, such as 
5–10 seconds, and so on. This process was repeated three times, with each 
data set sent to the blockchain model for validation (see Fig. B).

Fig. B. Mitigation re-tracking by time interval

5.1.3. Stage 3. Final-Level Simulation Model: Mitigation of Load-
Flow Data via Percentages

The final-level virtual simulations for load flow data mitigation combined 
training and testing datasets to simulate and predict load flow behavior 
under varying conditions, including normal operations and interruptions. 
The dataset ranged from 20% to 100%, incrementally segmented, with 
specific data frames corresponding to each percentage range. The dataset 
was divided into a training set comprising 20% of the overall data, with the 
remaining data used for testing (X_test and y_test). A linear regression 
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model was utilized to predict the load flow data by modeling sequences of 
data frames, with proportions incrementally increasing from 10% to 100%. 
The results are shown in Fig. C.

Final Stage: In the final phase, the simulation intercepted load flow data 
frames based on varying percentages, from 10% to 80%, incrementally. 
Each interception was repeated three times, and the data were processed 
and transmitted to the blockchain model for further validation (see Fig. C).

Fig. C. Mitigation re-tracking by percentage

Load flow simulations were performed with parameters ranging from 0 to 
3500 kV/kVAR and time percentages varying from 0 to 400 
(Ohm_per_Km_%). These simulations generated load flow data percentages 
by combining training datasets with predictive modeling techniques, 
ensuring alignment with actual operational conditions. Load Flow Model 
Data (LOAD) integrates training data with predictive modeling to enhance 
the simulation of intrusion detection. Additionally, the predicted dataset 
(LOAD1) was specifically developed for mitigation model simulations, 
trained under both normal operating conditions and false data injection 
scenarios. This dual training methodology provides a robust foundation for 
implementing effective mitigation strategies, as illustrated in Fig. 6.

The simulation framework verified the integrity and transparency of the 
load flow data at each stage. Verification began with GEN 1 and BUS 1, 
simulating the initial load flow data injection, and integrating results into 
corresponding blockchain blocks to maintain an immutable and secure 
record. Subsequently, BUS 2 data were incorporated into the simulation 
framework for validation. A pre-developed template for LOAD1 was used to 
ensure consistency and operational efficiency during load flow model 
simulations. Finally, GEN 2 and LOAD 2 data were integrated to simulate 
and validate the load flow behavior of the smart grid. This comprehensive 
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approach enables testing under both real and predicted load flow data 
injection conditions, providing a thorough assessment of system 
performance, as shown in Fig. 6.

Fig. 6. Mitigation load-flow percentages

The results are represented by trends in the aggregated values of 
load_q.sum, sgen_p.sum, bus_p.sum, and line_q.sum. These results reflect 
the dynamic machine learning mitigation model for load flow data using 
time series analysis and validate the reliability of the predictive model for 
detecting load flow false-data injections (refer to Eq. 3).

Eq.3.

5.2. Virtual Simulation Lab

The proposed research implemented a mitigation strategy against load flow 
data injection attacks in a virtual simulation lab, structured across three 
stages: initial, middle, and final. Each phase of the load flow data injection 
model was transmitted to Ethereum or Ganache platforms via Web3 and 
Infura integration. The simulation was conducted in three successive steps, 



each designed to address a different attack scenario, as illustrated in 
Figures 3, 4, and 5, and further detailed in Figures A, B, and C.

The simulations were performed on a virtual platform testbed incorporating 
machine learning techniques for data generation and acquisition to 
effectively mitigate false data injection attacks within smart grid 
infrastructure. Overall, the proposed framework models and predicts load 
flow data by integrating the virtual testbed environment for FDIA (False 
Data Injection Attack) with machine learning algorithms. Linear regression 
was applied, generating highly accurate power flow predictions across 
various scenarios. The approach demonstrated scalability and efficiency, 
making its integration into advanced smart grid networks noteworthy.

6. Conclusion

This study presented mitigation strategies against load-flow false data 
attacks by analyzing major load-flow equations and implementing a virtual 
testbed platform. A conceptual framework was developed to analyze the 
impact of virtual simulation and false data injection within load-flow 
systems. This framework was constructed through a step-by-step 
integration of mitigation strategies, employing machine learning models for 
data prediction, training, and forecasting.

Moreover, the integration of blockchain technology ensures data integrity 
and enhances security, reducing vulnerability to attacks. This research 
captured data from the virtual testbed platform and applied it within a 
machine learning context using Pandapower Simbench, processing and 
manipulating time-series data with libraries such as pandas, sktime, and 
sklearn.

Consequently, the study proposes an advanced, secure smart grid network 
capable of neutralizing risks based on threat vectors from an attacker's 
perspective, leveraging the FDIA framework. The virtual testbed BUS-GEN 
model and advanced programming methods proposed here offer enhanced 
network resilience for smart grid protection.

A. Educational Engineering Benefits

This research serves as a testbed for various fields of study, adopting an 
interdisciplinary approach that supports engineering education in STEM 
disciplines. By integrating diverse knowledge areas, it establishes a 
comprehensive foundation for scholars to develop mitigation strategies in 
science, technology, engineering, and mathematics.



The research methodology followed an architectural approach, 
incorporating elements of machine learning, blockchain data science, 
mitigation strategies, and resilience analysis. Specifically, it focuses on 
identifying and addressing load-flow smart grid attacks and false data 
injections while contributing to advancements in laboratory research and 
engineering education.

B. ASEE-ECE Education Connection

This research aligns well with the ASEE-ECE curriculum through its 
relevance to courses and syllabi in machine learning, cybersecurity, and 
STEM-focused electives, as well as through laboratory studies and student 
project discussions. It serves both as a template project and a research 
resource consistent with ASEE's goals for advancing education.

As a standard methodology component within core Electrical and Computer 
Engineering programs, it is particularly suitable for capstone projects. 
Incorporating this research into coursework, laboratory exercises, group 
discussions, and team-based initiatives provides students with hands-on 
experience, supporting the development of advanced data engineering skills 
and enhancing both technical competencies and real-world problem-solving 
abilities.
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