4%
2025 ASEE Annual Conference & Exposition #g

;iiiit Palais des congrés de Montréal, Montréal, QC - June 22-25, 2025 ‘5ASEE Paper ID #47992

Experiences Using Live Streaming as an Informal Learning Tool in the Formal
Classroom

Ella Kokinda, Clemson University

Ella Kokinda is a PhD candidate at Clemson University’s Zucker Family Graduate Center in Charleston,
South Carolina. Her research surrounds live streaming, software and game development, and developer
communities.

Dr. D. Matthew Boyer, Clemson University

Dr. Boyer is a Research Associate Professor in the Department of Engineering and Science Education and
an Educational Proposal Writer in the College of Engineering, Computing and Applied Sciences.

Paige Rodeghero, Clemson University

©American Society for Engineering Education, 2025

Experiences Using Live Streaming as an Informal Learning Tool
in the Formal Classroom

Abstract

Despite growing demands for software development skill in the professional job market,
companies are finding that students lack necessary programming and soft skills they deem
necessary directly out of college. Given this, we propose a novel educational approach using live
streaming as a means of giving students the opportunity to gain practical experience and
knowledge about subjects that interest them and their subsequent professional interests.

In this work, we describe our experiences creating an undergraduate computer science course
where students live stream software and game development projects of their choosing weekly
over the course of the semester. The course was conducted over two semesters: an initial pilot,
followed by a refined iteration incorporating lessons learned and student feedback.

In both iterations of this course, students live stream for a set amount of hours each week while
maintaining a diary of their accomplishments and how they felt their individual streams went. We
evaluate the students on their perceived self-efficacy and the evolving perceptions of their goals
and desired achievements during this course through three reflection assignments.

Our observations reveal that students initially took the course to set aside time to work on
personal projects and develop their programming skills, with motivations changing throughout the
semester and often scaling back from original larger scope projects and goals. Following the pilot
semester, we analyzed student recommendations and reflected on the course structure and
outcomes. This reflection informed targeted interventions and improvements implemented in the
subsequent semester. We present an analysis of both course iterations, and highlight the impacts
of these interventions on student experiences and learning outcomes. Additionally, we analyze
and discuss students’ perceived self-efficacy in programming and live streaming skills and find
that student self-efficacy decreases slightly. Additionally, we found that students may not
continue to stream after the course, the experience may provide valuable professional
development opportunities and help students bridge theoretical knowledge with practical
applications of software development.

We conclude by discussing lessons learned from this two-phase implementation and proposing
future research directions in educational live streaming for computer science students. Our
iterative approach also demonstrates the potential for continuous improvement in innovative
educational methodologies.

Introduction

In the post-pandemic era, we see many necessary changes in how we approach computer science
and, more specifically, software development education to ensure student retention and success.
Current research shows that undergraduate students lack soft skills like communication and other
necessary professional skills upon graduation [1, 2, 3]. In addition, students are experiencing
more anxiety and computer science culture-related challenges like personal obligations, lack of
sense of belonging, in-class confusion, and lack of confidence, even more so when from an
underrepresented group [4]. Given the challenges we see in student populations, the current
research on increasing student success, and the rapidly changing nature of computer science and
software development technologies, we believe it is time to take an informal approach to formal
education pedagogy. Computer science students benefit from informal learning environments that
allow them to apply theoretical concepts in practical contexts while building upon their previous
learning experiences [5]. Often, these opportunities are outside of the formal classroom in the
form of summer camps, hackathons, co-ops and internships, and other service learning activities
[6, 7, 8]. Another potential candidate for informal learning opportunities is live streaming [9].
Live streaming is an increasingly popular medium for a behind-the-screen look in software
development, where streamers and viewers share their knowledge and experiences as they happen
in real time. Popular platforms like Twitch and YouTube enable developers to stream live coding
sessions where people worldwide can engage in real-time collaboration and receive feedback,
knowledge sharing, and skill development.

While there may be no one-solution-fits-all approach to fix every problem, this work aims to use
live streaming as an informal learning opportunity within the formal classroom to aid in bridging
the gap for student self-efficacy in programming skills, confidence, and communication skills
while also providing a low-pressure environment to learn. We propose continued work in
software development live streaming research by providing an opportunity for students in
computer science curriculum to live stream software or game development. Our motivation
behind this project is to continue to justify the importance of and promote informal learning
opportunities for computer science students and software engineers. The potential benefits of
students streaming software and game development reiterate the importance of continued
education for developers and accessibility for individuals unable to participate in formal
education. Live streams are traditionally free, meaning anyone can access and participate in them
given access to stable internet connections; this can help improve STEM education and develop
skills from novices to experts. Additionally, we aim to encourage community participation as a
means of professional development for software and game developers at all levels to foster a more
well-rounded individual student and eventual professional developer.

Background and Related Work

Expanding Computer Science Education As we expand computer science education further, it
is important to consider the principle of Culturally Responsible Computing (CRC), which aims to
promote and establish computing practices that enable participation from diverse and
underrepresented learners [10, 11]. Structural barriers to computing education include access,
lack of engaging content, and shortage of role models and peer networking [11, 12, 13, 14, 15].

Outside of structural barriers, social and societal barriers like misconceptions and perceptions of
the field of computing, and stereotypes of the practitioners and working environments within
computing [11, 16, 17, 18].

Prior work has shown that formal engineering and science curricula alone cannot begin to close
the gaps and barriers seen in computing education [19]. In addition, learning outside of the formal
class has been shown to benefit those who are underrepresented in STEM [20]. Knowing this,
there have been many efforts to expand and commend computer science education outside of a
formal curriculum through hackathons, summer camps, service learning, co-ops and internships,
and live streaming [6, 9, 7, 8]. These informal learning opportunities enable educators and
practitioners to broaden students’ skill sets, interests, and experiences [21].

Informal learning opportunities play a crucial part in knowledge sharing and acquisition in ways
that are not motivated by the specific curriculum but rather in indeterminate and opportunistic
ways not defined by a set amount of time [22, 23]. Research suggests that informal learning can
be effective when individuals can contextualize and situate their learning experiences into
something meaningful and tailored to their expected experiences [5]. Within the workplace,
professionals use informal learning for continuing education, seeking help, gathering information,
finding support or feedback, collaborating, and gaining further experience in both their career and
private lives [24, 25]. However, despite research showing the benefits of informal learning
opportunities, many individuals and organizations push for formal education over informal or
mixed educational pathways [26].

Informal Learning Informal education and opportunities in STEM help bridge the gap between
formal education and real-world experiences and foster continuing education throughout a career
and beyond [27, 28]. Specifically within computer science education (CSEd), active learning
techniques like “rubber ducking!” problems aloud and group problem solving can be effective
methods in CSEd [29, 30].

Informal learning can also prove to be a useful tool in knowledge transfer. Knowledge transfer in
software development is paramount for developers to stay ahead and keep their skills valuable and
marketable. Knowledge transfer takes many forms, from interpersonal communication, static text
documentation like wikis, how-to guides, question and answer forums, prerecorded video lessons
and lectures to in-person classes [31, 32, 33]. Prior research shows alternatives to online text
documents and documentation like prerecorded software videos are a helpful way to share
knowledge and build a reputation in the developer community [34].

Live Streaming Software and Game Development Platforms like Twitch and YouTube are
primarily known for gaming and entertainment content, but they also host a growing and diverse
array of creative and educational streams. These streams include artists, makers, musicians, and
STEM-related broadcasts — including a category specifically for software and game development.
Recent research indicates that developers who stream their work find it beneficial for
self-education, accountability, and perceived skill enhancement [35]. The community aspects of
these streams are also significant, with viewers contributing both socially and technically to
content creators they engage with, as well as providing an alternative platform for developer

' A method of debugging and problem-solving technique where the developer thinks aloud to an inanimate or abstracted object
and explains line by line what they are doing with code; http://lists.ethernal.org/oldarchives/cantlug-0211/msg00174.html

advocacy and STEM careers [35, 36].

Early educational live streaming research indicates that software and game development live
streams have the possibility to integrate with more mainstream online learning modalities [37].
Some have taken to these platforms specifically to teach computer science courses and found that
this might be a beneficial way for learners to explore new content and engage with education
professionals in their courses [38]. Live learning has shown to be beneficial for “over the
shoulder” learners and those wanting to personalize their learning goals and interests [9, 39].
Compared to prerecorded video content, live streaming offers a lower barrier for entry and a
real-time learning experience that allows viewers to follow along with experts and knowledgeable
individuals as they work [9, 40]. Despite the growing popularity and research around educational
live streaming, there is a notable gap in research regarding its use as a learning tool within formal
education settings. This study starts to address this gap by exploring the potential use of live
streaming as an educational tool in an undergraduate course.

Methodology

In this section, we describe our research questions, course structure and design, and methods we
use for evaluating self-efficacy and tracking student progress in the course.

Research Questions One goal of this work is to identify usage patterns of students who are given
the opportunity to learn at their own pace with a project of their choosing. Additionally, this study
aims to demonstrate that informal learning opportunities, such as live streaming, can be integrated
into a formal education program. Therefore, we ask the following research questions (RQs):

R@):: How does live streaming impact students’ perceived self-efficacy in software development?

RQ>: What usage patterns do students gravitate toward when given the opportunity to live stream
software development?

R(@Q3: What are the perceived benefits of live streaming as an informal learning opportunity for
computer science students?

RQ4: What are the perceived challenges of live streaming as an informal learning opportunity for
computer science students?

Through this work, we aim to understand and evaluate whether or not live streaming impacts an
undergraduate student’s perceived self-efficacy in software or game development, R();. To
quantitatively measure self-efficacy, we have adapted questions from Ramalingam and
Wiedenbeck’s Computer Programming Self-Efficacy Scale and Hiranrat ef al.’s survey
measurements for software development career [41, 42]. As we allow the students to choose their
own projects and set their own goals, we expect there to be some division among the participants
on how quickly they believe themselves to be improved based on the gravity of the goals they set
for themselves. Given this, we also expect to see if students changed their goals over time and
why or why not these goals changed. While we speculate that perceived self-efficacy will
increase, we understand that outside factors to the class may impact this, as we have already seen
several students drop the course or need modifications to the course to complete their work. Next,
we aim to understand better what students will choose to stream, R(),. By understanding what

students will use their allocated live streaming time for we can potentially see deficiencies in
formal curriculum where the university does not offer a course a student deems necessary to their
education. Through the students’ usage patterns, we can also understand what students are most
interested in, regardless if it is tied to professional or educational development.

Focusing on informal learning, we expect to understand the benefits and challenges that arise
from this learning style, R()3 and R()4. When we understand the benefits and challenges of live
streaming as an informal learning platform, we can provide recommendations and expectations
for those interested in streaming and how the platform is useful for educational purposes. For
students, live streaming benefits could include access to real-time interactions with those who
may be experts or knowledgeable in what the student is streaming. These interactions may also
lead to community building which could prove useful for students preparing for the workforce.
We anticipate some challenges related to course load and time management for students.
Understating these better will help inform our recommendations in the course syllabus for overall
course planning and optimizing streaming requirements and inform those who may be interested
in streaming in general.

Ultimately, understanding students’ use of live streaming for informal learning and the associated
benefits and challenges allows us to advocate for informal learning in formal software
development education. Recognizing this enables us to justify the significance of informal
learning as a viable avenue for both novices’ and experts’ education in the software and
technology fields.

Course Design To address our research questions, we conducted an in-situ study with
undergraduate computer science and computer engineering students. This course was offered by
our University’s School of Computing Department in Spring 2024 and Fall 2024 as a 3000-level
variable credit hour elective course for the duration of a semester, approximately 15 weeks. These
3000-level elective courses typically are special topics courses for interest areas or undergraduate
research opportunities and often a place to pilot a course prior to a full 3-credit hour course
offering. In addition, courses in this designation count toward a student’s graduation requirements
for elective courses. As this course was listed as an upper-undergraduate level course, we
expected students to have some experience in coding and have taken an introductory 2000-level
software development course, preferably taken the 3000-level software development course to
ensure that students have an understanding of basic development practices and have had exposure
to larger projects. For either semester, we did not gate-keep enrollment in the course from anyone
who has not taken either of these “prerequisite” courses and because this was an instructor
preference and not a steadfast requirement, the course was open to students from other computing
and engineering disciplines.

Course activities focused on live streaming software or game development. Students were free to
pick whatever project(s) they desired in software or game development, in any language, with the
only requirement from the course being that projects they worked on could not be from another
course offered at the university or part of proprietary work for a company. Students could choose
to work in languages they know or pick something completely new to them, and they were not
required to stick with the same project week after week but may choose to.

During the Spring 2024 semester and depending on the variable credit hours for the course, the

student would stream three times their course credit hours for this course each week, meaning
taking the course for one credit hour meant three hours of streaming, two credits for six hours of
streaming, and three credits for 9 hours of streaming per week. Students could break up streaming
however they liked as long as their weekly totals matched their credit hour multiplier. After each
stream, students would fill out a post-stream diary entry through Google Forms to track what they
did and how they felt about it. Students were also required to upload recordings of their streams
so that the instructor could verify stream content and duration reported in diary entries.

In addition to streaming and diary entries, students completed several non-streaming assignments
throughout the semester about their goals with a pre-, mid-, and end-of-semester goal evaluation,
watching another software and game development streamer assignment, and a self-efficacy
assessment. Watching a stream assignment consisted of approximately one hour of viewership of
another software and game development streamer not in the course and writing a summary of the
stream and any notable features of the stream that stood out to them.

The class met once a week for approximately one hour. The instructor used this time for class
management and resolving any issues with stream setup or questions about running streams at the
beginning of the semester. Once students began streaming, the course was run in a stand-up style
meeting where students summarize what they worked on and what they plan on working on to the
instructor and other students, with time at the end for comments and questions. Grades for the
class were based on meeting objectives and attendance and not the content of the streams or diary
entries, i.e. students streamed the minimum number of hours a week, attended weekly meetings,
and submitted diary entries on time.

Based on student feedback, detailed in the Discussion, we updated our second iteration of the
course to a multiple of two hours of streaming per credit hour - meaning one credit hour would
stream for two hours a week, two credits for four, and three credits for six. Additionally, we
moved non-streaming assignments around to place the watch a stream assignment as the first
assignment and added a pre-survey to the course to complement the end-of-semester post-survey
on self-efficacy. All other assignments and course requirements remained the same. The weekly
course flow and assignments for the Spring 2024 semester and updated course can be found in
Table 1.

Course Methods We elected for a participant-driven diary study due to the duration of the course
and students’ ability to stream whenever they choose, as the class does not have a prescriptive
time slot where students are required to stream [43]. The diary collects participant data on what
they did during a stream and asks reflection questions on how they felt the stream went [44].
Students are asked to complete the diary after each streaming session, which is given through a
reusable Google Forms link. The diary prompts the students for the date of the stream, what time
they streamed, duration, the number of viewers, what they worked on during the stream, what did
or did not go well during the stream, interactions with viewers, and then Likert evaluations of how
they thought the stream went.

During the course, students completed a pre-, mid-, and post-class evaluation that will serve as a
baseline for understanding their goals and objectives for the semester. Additionally, during class,
students are expected to summarize and confer with their classmates about how their streams are
proceeding and to discuss strategies that are working or not working for them in a stand-up style

Week | Spring 2024 Semester Topic/Assignment New Semester Topic/Assignment

Syllabus and class expectations,

Syllabus and class expectations, research consent, self-efficacy survey,

research consent, initial goal assignment introduction to Twitch Content Dashboard

watch a stream assignment

Stream preparation, hardware and software testing, | Watch a stream discussion, initial goal assignment,

2 students preparing work to stream hardware and software testing

3-6 Streaming Streaming

7 Streaming, mid-semester goal reflection assignment | Streaming

8 Spring Break, no assignments or stream Fall Break, mid-semester goal reflection

9 Streaming Streaming, Mid-semester reflection discussion
10-13 | Streaming Streaming

14 Watching a stream assignment Streaming

15 Final Reflection on goals, self-efficacy assessment Final Reflection on goals, self-efficacy assessment

overall course feedback and open discussion

Table 1: Course schedule and assignments by semester with new and updated content schedule.

process during once-a-week class time.

At the end of the Spring 2024 course, we administered a programming and streaming self-efficacy
survey. In the subsequent semester, we administered the same survey at the beginning and end of
the course. To measure self-efficacy, we have adapted questions from Ramalingam and
Wiedenbeck’s Computer Programming Self-Efficacy Scale and Hiranrat ef al.’s survey
measurements for software development career [41, 42]. Within our survey, we break down
self-efficacy into five sub-scales - independence and persistence, complex programming tasks,
self-regulation, communication, and self-views on live streaming software and game
development. We administered our survey once as a retrospective of the whole course, asking
students to consider the last 4 months of class and the work they completed as a part of this
course.

The University’s Institutional Review Board (IRB) reviewed and has granted permission to
conduct this human subjects research with students. Incentives are not offered for participation,
and participation in the research is not required to receive a grade for the course.

Data Analysis This work utilizes both qualitative and quantitative data analysis methods.
Qualitative data includes diary entries and stand-up meeting transcripts. Each of these were
iterated through to identify main themes related to our RQs — benefits, challenges, usage patterns
and perceived self-efficacy. For quantitative data from the pre- and post-surveys for self-efficacy,
we will analyze the data using paired sample t-tests and the Benjamini-Hochburg adjustment for
p-values to account for any false discovery rates due to our smaller sample size [45].

Participants In Spring 2024, using the unofficial computer science Discord community for our
university and word of mouth, we registered and recruited a total of 8 students as part of an
undergraduate elective class with the incentive of completing the course granting course credits.
Participation in the research component was not necessary to take the course, and no other
incentives were offered for students. Through the first few weeks of the Spring 2024 semester,
two students dropped from the course completely, leaving us with six total participants. In Fall of
2024, using the same recruitment methods, we registered and recruited nine total students, but

two dropped out, and one did not consent to research, leaving us with six total participants for the
Fall. One student returned for the Fall semester and is repeating the course for additional credit
hours. In total, we recruited 11 students across two semesters to participate in the research.

Of the students who participated in the research, eleven were males and one non-binary, with five
students identifying as being in their third or junior year of undergraduate work and seven in their
final year of coursework as a senior. All but two students were computer science majors, with one
from computer engineering and one from computer information systems major taking the course.
Ten students streamed on Twitch, and two on YouTube Live. All but one student did not indicate
any prior experience with live streaming through gaming or other means, but all were aware of
streaming platforms and the concept of live streaming.

Positionality and Limitations Several limitations and threats to validity may exist in this study.
First, due to the nature of diary studies, feedback burden may be an issue [43]. However, we only
expect students to stream once or twice a week and that completing one or two diary entries a
week will not impact their overall load in the course or concurrent coursework load. Next, an
internal validity threat might be a history threat, where the students might be doing something
additional outside of this course that is helping them to perceive improved self-efficacy in their
programming skills. To mitigate this, we have asked students to consider only the work conducted
in this specific course throughout the semester. An additional history threat might be last-minute
completion of assignments and procrastination. However, all participating students were junior
and senior level, and thus have knowledge of and some expectation for time management related
to streaming. Another threat to validity is attrition, and while every teacher hopes that students
stay in the course, there is always the chance that a student may drop the course or cease work
related to the course. Another limitation is that students may have a reaction due to their
awareness of participating in research and may alter behaviors to better participate in the research
or to achieve a grade within the course. By conducting the study over the course of the semester,
we expect this effect will fade over time, in addition to ensuring that we are not overloading the
students with surveys, as they will be completed on an as-needed basis after streaming. To
mitigate this better, students not taking this course could be administered the self-efficacy pre-
and post-surveys to establish external validity of our potential findings. Finally, another limitation
that could arise from this research is that our sample size could be homogeneous in terms of
gender and ethnicity, with our first iteration of the course being predominately male.

With respect to self-reflexivity, the authors would like to acknowledge that they bring
backgrounds and experiences that shape this work. The first author is a millennial who views live
streaming as an educational tool with significant potential for computer science education and has
experience live streaming gaming and educational creative content. However, we acknowledge
that a positive view of live streaming technology may bias us toward seeing benefits over potential
drawbacks. Additionally, the first author’s dual role as course instructor and researcher might
create a power dynamic with students. To help mitigate the effects of this power dynamic, we
strived to create an open environment where students could share openly and honestly without
pressure to report only positive experiences and encouraged students to reach out if they faced
issues with streaming.

Self-efficacy Subscale Items n Min Max Mean SD

Independence and Persistence 8 6 1 5 26.17 0.98
Complex Programming Tasks 5 6 2 5 1650 3.94
Self-regulation 4 6 1 5 1333 4.37
Communication 5 6 1 5 17.33 5.82
Self-views on Live Streaming 2 6 | 5 92733 7.00

Software and Game Development

Table 2: Students’ scores on self-efficacy sub-scales in Spring 2024

Results

First Course Iteration - Spring 2024

Perceived Self-Efficacy An important aspect of this course is understanding student self-efficacy
when they are given the autonomy to work on projects outside of another course’s curriculum. We
asked students to consider these questions with how they feel and relate to our course, particularly
over the entire semester. Table 2 summarizes the overall descriptive data measured by our five
sub-scales of self-efficacy. The students’ highest mean sub-scale was Communication (3.40),
followed by Self-views on Live Streaming Software and Game Development (3.36),
Independence and Persistence (3.32), Self-regulation (3.29), and finally, Complex Programming
Tasks (3.26). Based on a 5-point Likert scale, where a 3 represented a neutral response neither
agree nor disagree, all sub-scales scored above the neutral, indicating that the students had
middle to high self-efficacy regarding the content streamed and related programming skills they
used during this course.

Students reported the highest self-efficacy in the Independence and Persistence sub-scale related
to debugging. Within complex programming tasks, students felt the most efficacy in organizing
and modularizing a program, writing a program someone else could understand and use, and
rewriting confusing code. Then in self-regulation, students found the most efficacy in their ability
to plan for a project in a short amount of time. Next, in communication, students felt they could
best be able to listen to others and consider their thoughts about a programming concept or idea.
They found the most inefficacy in being able to present technical information for feedback.
Finally, within self-views, students reported that, overall, live streaming software and game
development were an important part of their learning experience and that through live streaming,
they were able to learn and find ways to engage in continuous learning.

Something interesting about the self-efficacy assessment was that the students felt the most
inefficacy was presenting technical information for ideas and feedback. Still, they felt they could
explain what they were working on well. There could be several reasons for this, but it may result
from a lack of exposure to peer feedback opportunities or exposure to code review activities seen
in a professional environment. Another discrepancy we observed was student reporting of positive
experiences with live streaming and the benefits they see for this modality to benefit them for
continuous learning, but many would choose not to continue to live stream after this course.

Student Goals Three times throughout the course, at the beginning, middle, and end of the
semester, we asked students their goals for taking the course and stream content. We recorded

initial goals at the beginning of the semester before students started to stream. Students’ initial
goals centered around skill practice, diversifying programming abilities, setting aside time to work
on personal projects, and using this course as motivation and practice learning to stream.

® “/ wanted an opportunity to work on the personal projects that I've been meaning to get
around to, but haven’t had the time or motivation to get started on. I saw this course as a way to
iron out time in my schedule to work on the projects I've been wanting to make for years.” - S6

® “[expect that working on some of these projects while streaming (which is something I enjoy,
and have experience doing) will be both fun and helpful for my future career.” - S2

Students had a variety of projects and ideas they wished to work on from APIs, Python, game
development, web development, and mobile application projects.

In the middle of the semester, after about 5 weeks of streaming, we checked in with students again
and asked them to reflect on their initial goals and content objectives from the beginning of the
semester. About four of our six students had a change in their personal goals and outcomes from
streaming and the course. These changes include narrowing the scope down from many small
projects to one project, choosing to work in only one language due to projects in other courses,
and stepping back from a full-scale project to work on general skill improvement and practicing
LeetCode? problems. We also saw one student, S2, who needed additional accommodations to
complete the course, citing that they were not motivated to complete the necessary streaming per
week (73 hours a week for this student). At this point in the semester, the student was unable to
drop, so the instructor and student met to discuss fulfilling course requirements. We agreed on the
student streaming when they can, but any week where they are unable to stream they must submit
a watching a stream assignment where they provide a summary of watching another software and
game development streamer and anything notable they took away from the stream. At this time,
we also offered other students this same opportunity if they needed to substitute one week of
streaming. No other students chose the stream summary assignment over a weekly stream.

® “[originally wanted to do a full-scale project, but I realized I just did not have enough time as
I have 2 project-based classes.” - S3

® “[changed this goal from many projects that were simple to larger more complex ones to help
myself digest how all of the parts interact better.” - S1

Finally, student reflections were mixed. Many students stuck with their mid-semester goal pivot,
while others changed directions still, like S3, who also chose to practice LeetCode problems for
skill and professional development, and S2, who did not submit a final reflection. Overall, most

students appeared content with their progress over the semester, but through written assignments
wanted to accomplish more.

® “Python was easy but I really wanted to progress C as it is more relevant to my field of
Computer Engineering and aids my current and future classes.” - S1

Additionally, we asked students about their perceptions of live streaming as a whole, what
impacts they think it had on them, and if they would continue to stream after this course. Several

2 LeetCode is an online platform for programming and coding problems that are often used in technical interviews.
https://leetcode.com/

of our students had prior streaming experience or wanted to use this course as an introduction to
streaming. Two students reported that they would not like to continue streaming, while another
would like to but believes their schedule would not permit them to commit the time to it. One
student, S10, felt that streaming was “invasive” to their development processes and that prevented
them from doing work quickly. Three students reported that they would consider or will live
stream after this course and noted it was a helpful way to set aside time to work, and they enjoyed
the progress they made while live.

® “It was too stressful the feeling that someone was watching and judging my creative process
and it is hard to entirely focus.” - S4

Course Observations and Lessons Learned Throughout the course, students generally
completed tasks on time without much intervention and were positive and receptive to the course.
However, we struggled with attrition rates. Two students in the research study, not included in this
report, dropped the course without contacting the instructor, with both taking a W in the course,
meaning they dropped after the semester drop date, and it would show on their transcript. The
instructors reached out to these students as they were not attending the weekly meeting to
understand if anything in the course was unmanageable or unreasonable, but did not receive a
response before or after the decision to drop the course entirely.

We observed additional challenges with student retention and gathered midterm feedback on
desired course improvements. Our first observed challenge was overall motivation. Students
taking more than one credit hour tended to complete all their required streaming hours in a single
session, despite being told they could divide their time, and resulted in lack of motivation to sit
and work for several hours at a time. Students also struggled with the technical aspects of setting
up streams, while others faced connectivity issues due to inadequate internet access. When this
came up, the instructors offered personal research lab space on campus, with hardwired internet
and connections to students who needed it, and directed them to on-campus rooms that could be
booked in advance with the same access if they did not want to use the lab space. Next,
unfamiliarly with streaming platforms did not afford a good first-time experience when coupled
with fulfilling course assignments on time if left to the last moment.

We received mid-term feedback from students that an introductory overview to a streaming
platform would be beneficial, along with walking them through an example diary entry. Finally,
students also recommended changing the due date of assignments to be more streamlined by the
end of the week.

Second Iteration - Fall 2024

Perceived Self-efficacy

Independence and persistence questions focused on perceived ability in completing programming
tasks with or without aid from other sources and averaged pre-semester to 33.50 out of 40 points
and decreased post-semester to 30.0 out of 40 points. Paired sample t-test group results indicate a
significant mean decrease in students perceived independence and persistence, #(5) =4.13, p <
0.01, BH corrected p < 0.04. The largest change in perception by specific question surrounded a
decrease in belief that students could complete a project if they could ask someone for help if they

Pre-Class Post-Class

Section Mean SD SE Mean SD SE Cohen’sd Hedges’g p-value BHp
Independence and Persistance 33.50 4.76 195 300 529 216 1.69 1.42 0.01 0.03
%’i‘f]ex Programming 19.17 446 182 2083 3.06 125 -0.85 -0.72 005 0.2
Self-Regulation 1400 3.16 129 1483 279 1.14 -0.24 -0.20 0.29 0.37
Communication 19.67 3.39 1.38 20.00 346 141 -0.11 -0.09 0.40 0.40
Self-Views on Live Streaming 31.17 6.18 2.52 33.00 4.34 1.77 -0.40 -0.33 0.19 0.31

Table 3: Descriptive statistics for six (6) students in the second iteration of the course with Standard
Deviation (SD), Standard Error (SE), Hedges’ correction to Cohen’s d, Benjamini-Hochberg (BH)
adjusted p-values for Fall 2024

are stuck and completing a project if someone showed them how to solve the problem first.

Complex programming task questions focused on students’ ability to organize large programs,
write code that others could comprehend, and general comprehension of large programming files
or projects. Perceived ability in complex programming tasks pre-semester averaged 19.17 out of
25 total points, and post-semester averaged 20.83 out of 25. Paired sample t-test group results
indicate a potential significant mean increase in students perceived ability to navigate complex
programming tasks, #(5) =-2.08, p < 0.05, BH corrected p = 0.12. The largest change in
perceived abilities around complex programming tasks was an increase in scores surrounding
organizing and designing programs modularly and the ability to rewrite confusing programs to be
clearer.

Self-regulation questions focused on motivation, time management, and concentration on tasks
with scores pre-semester averaging 14 out of 20 points and post-semester to 14.83 out of 20 total
points. Paired sample t-test group results indicate no significant mean increase, #(5) =-0.56, p =
0.29, BH corrected p = 0.37. The largest change in specific questions in the perceived ability to
self-regulate while programming was an increase in finding motivation to program.

Communication questions focused on the perceived ability to explain what a student is currently
working on, listening to others, and asking programming questions. Perceived communication
abilities pre-semester averaged 19.67 out of 25 points, and post-semester averaged 20.00 points
out of 25 total. Paired sample t-test group results indicate no significant mean increase, #(5) =
-0.27, p = 0.40, BH corrected p = 0.40. The largest change in perceived communication abilities
was an increase in ability to explain what a student was currently working on.

Finally, self-views on live streaming questions focused on students’ perceived enjoyment of live
streaming and the impacts that live streaming could have on their abilities and potential career
goals. Perceived views of live streaming pre-semester averaged 31.17 points out of 40 and 33.0
out of 40 total points post-semester. Paired sample t-test group results indicate no significant
mean increase, #(5) =-0.97, p = 0.19, BH corrected p = 0.31. The largest change in score by
question surrounded an increase in overall enjoyment of live streaming and live streaming being a
positive experience.

Student Goals and Usage Patterns Like the previous semester, we collected student goals and
reflections three times throughout the semester - once before they started streaming, again after 5
weeks of streaming, and a goals reflection at the end of the semester after all streams were

completed. Students’ initial goals overwhelmingly focus on personal and portfolio work and
motivations to complete this work, next one student wanted to work on Leetcode problems for
interviews, and one student wanted to use the class as a way to resolve doubt about software
development as a career choice. By the middle of the semester, most student goals have not
changed, with one student, S7, notability shifting focus to Leetcode for a few weeks while they
prepare for coding interviews. A few weeks after mid-semester evaluations, S7 reported in class
that he received a job offer and credited “[the] coding challenges helped him with his interviews
and converting his internship to a job.” Most students reported they are still working on personal
projects from their backlog, but changing which project they are working on — Discord bots,
learning a APIs, and game mods. Finally, student reflections were mostly positive, with most
students believing they achieved their goals or enough of their original or updated goals to be
satisfied with their progress throughout the course. Two students were not satisfied with their
progress toward meeting the goals they set for themselves.

This semester, students’ challenges related mostly to difficulties and roadblocks in the work they
streamed and not motivations to stream.

® “During several of my streams I struggled with choosing between some options for the
foundation of my projects.” - S6

Some students expressed some hesitation and challenges about how they perceived themselves as
streamers and felt some pressure to perform while they were live. These sentiments were
expressed especially in class stand-ups if a student said someone visited their stream that they did
not know.

® “I think my most challenging thing was overcoming the idea of many people watching me and
expecting a lot from me.” - S8

Student benefits of taking the class include the ability to obtain skills and projects they could put
on a resume and overall benefit their professional development.

Course Observations Overall, students completed tasks on time and without intervention. One
student believed that they could use the “replace a stream” assignment every week, and after
submitting this assignment two weeks in a row, the instructor emphasized that that replacement
was one used for when students may have had a midterm or needed a break from streaming. No
other challenges were observed relating to keeping up with assignments or motivation to
complete the necessary hours of streaming based on their credit hours.

Discussion

In this section, we discuss our lessons learned and proposed interventions based on the
experiences and observations from the Spring 2024 semester and then discuss the implemented
interventions and overall experiences based on our subsequent semester.

Lessons Learned From First Course Iteration and Procedural Course Changes Several
adjustments based on our observations and student feedback will be necessary to rerun the course.
First, we believe we will need to change the formula for how many hours streamed for credit
hours taken. We followed the general rule of 3 hours of work per credit hour taken, but both

students and instructor felt that this was too much work relative to other courses for an elective
course. In subsequent semesters, we plan to adjust to two hours of streaming per credit taken for
two, four, and six hours of streaming for one, two, and three credits, respectively. We believe this
change will alleviate stress for students, and help improve motivation to complete streams.
Additionally, we will continue to encourage students who take the course for more than one credit
hour that they can split up their stream times. We had emphasized distributing streaming hours
throughout the spring semester throughout the week; however, most students chose to complete
their work in one sitting, no matter how many credits they took. We will also adjust what defines
a “week” for streaming assignments. Previously, we followed a Sunday to Saturday approach for
a “week”’; however, student feedback suggested making a “week” Monday to Sunday to give
students the entire weekend to complete stream assignments for that week.

Next, we will adjust assignments and the order of the assignments for the course. Initially, we
wanted students to take their own approach to streaming and how they chose to set up and
conduct their streams. While one student was familiar with streaming, and others were familiar
with the structure and expectations of streaming as viewers, we felt that many still had hesitations
and apprehension about jumping into live streaming themselves. We propose adding two more
watching a stream assignments to the beginning of the course in Weeks 1 and 2 to help students
familiarize themselves with software and game development streaming. Watching other streamers
might help students pick up on good streaming habits or other ideas they can implement in their
own streams throughout the semester and alleviate hesitation in starting to stream. In addition, we
would remove the final watch-a-stream assignment from the end of the semester in Week 14 and
make it a floating assignment for students to use instead of a week when they might not have the
time or mental energy to stream.

Next, we will add to the start of the course an introduction to a basic streaming setup on Twitch
and YouTube using the free and open source video recording software Open Broadcaster
Software® (OBS). In this introduction, we will cover the basic features of OBS and content
creator options on the video platforms. The variety and options of new software may overload the
students, and providing them with what they need to get started, we believe, will help with some
of the issues we faced at the beginning of the semester.

Finally, we need to administer the self-efficacy assessment pre- and post-course for better insights
into programming self-efficacy changes. Administering both a pre- and post-test will enable us to
see statistically measurable quantitative data that coincides with our qualitative data from student
reflections and teacher observations.

Lessons Learned From Second Course Iteration Compared to the Spring 2024 semester, Fall
2024 students did not apparently have as many struggles getting started with streaming. Several
provided feedback that introducing one of the platforms and going through the user interface was
helpful prior to starting to stream, as well as the assignment to observe a streamer before their
own streaming started. Within the mid-term course feedback, one student mentioned they would
like to see additional information about streaming in a “Tips and Tricks” format to reference for
students throughout the semester. Providing this type of reference document could be useful in
several ways, especially with motivation, time management, and potential engagement strategies
that have worked based on the author’s own streaming and observed strategies from others in the

3 https://obsproject.com/

software and game development category.

Additionally, two students gave their feedback about wanting to incorporate more community into
the class, as seen with other streamers on the Twitch and YouTube platforms. As the course is
right now, we do not require students to participate in other streams, but facilitating sharing when
live could lead to better overall satisfaction with streaming and having a viewer presence in chat
for students and create a sense of community within the class at a minimum. To do this, we
propose using a tool such as Discord with a bot that would notify when classmates are live and
provide a space to ask questions about stream setups and have a space to communicate and
collaborate more synchronously outside of the classroom.

Decreasing the credit hour to streaming multiplier appears to have aided students’ ability to keep
up with the coursework. Additionally, updating the definition of a streaming week reduced
confusion about due dates for both the instructor and the students. The due dates were more
apparent. Additionally, we modified and updated the schedule due to unforeseen circumstances in
the semester, such as university closure due to weather and lack of access to electricity and the
Internet.

While students may not indicate that they will continue to stream after the course, general
satisfaction with what they achieved during streams and how streaming went, we believe that
streaming time positively impacts students’ attitudes to learning. Practicing and participating in
informal learning with projects that were self-selected may contribute to the decrease in mean
scores for independence and persistence. This exposure to more complex problem-solving and
open-ended development work may have given students a more realistic understanding of where
their skills and abilities reside, and this awareness may have led them to assess their abilities more
critically compared to the beginning of the semester.

Over the two iterations of this course, we have seen students begin to bridge their skills between
academics and their future professional lives. Giving students autonomy to work on self-directed
projects while using streaming as an accountability tool helps foster professional skills like time
management, technical communication, and project planning. Students have used this course to
build their portfolios, practice interview preparation, and gain programming experience while
working on personally meaningful projects that may not be covered in a traditional curriculum.
We believe that the informal learning environment, combined with the structure of the course,
provides an effective scaffold for independent student work. This format allows students to
explore potential career directions, build confidence in their abilities, and develop self-directed
learning skills crucial to professional success, making it an especially beneficial addition to
final-year computer science education.

Future Work

Future work surrounding live streaming software development as part of formal education should
address the limitations of the present study by expanding the sample size and implementing a
comparative approach for self-efficacy. A larger sample size would enhance statistical power and
potentially reveal stronger patterns in self-efficacy changes and learning outcomes. Incorporating
a control group of students engaged in a traditional capstone course could also provide
comparative data to evaluate the efficacy of live streaming as a pedagogical tool. A controlled

comparison with a capstone course would allow us to determine whether the observed
improvements in complex programming tasks and self-regulation skills are directly attributable to
the live streaming format or are common to other project-based learning environments. Finally, a
more diverse student population would also strengthen the generalizability of our findings across
different demographic groups in computer science education.

Conclusion

Through two iterations of an undergraduate live streaming course, we have demonstrated the
potential for informal learning opportunities that would compliment traditional computer science
education. Our findings suggest that while students may not continue to stream after the course,
the experience provides a valuable professional development opportunity and helps students to
bridge theoretical and practical applications of software development. Future work should
explore ways to better facilitate a community aspect of the course that would serve as a peer
support and collaboration tool. Finally, investigating the long-term impacts on students’
professional development and collecting data from a more diverse student population would
provide deeper insights into the effectiveness of live streaming as an educational tool.

References

[1] S. Haji Amin Shirazi, M. Salloum, A. Speer, and N. Watkinson, “An experience report:
Integrating oral communication and public speaking training in a cs capstone course,” in
Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1,
pp- 450455, 2024.

[2] K. Anewalt and J. Polack, “A curriculum model featuring oral communication instruction
and practice,” in Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education, pp. 33-37, 2017.

[3] E. Tuzun, H. Erdogmus, and I. G. Ozbilgin, “Are computer science and engineering
graduates ready for the software industry? experiences from an industrial student training
program,” in Proceedings of the 40th International Conference on Software Engineering:
Software Engineering Education and Training, pp. 68-77, 2018.

[4] A. Salguero, W. G. Griswold, C. Alvarado, and L. Porter, “Understanding sources of student
struggle in early computer science courses,” in Proceedings of the 17th ACM Conference on
International Computing Education Research, pp. 319-333, 2021.

[5S] A. Coelho and L. M. Costa, “The integration of augmented reality and the concept of sticker
album collection for informal learning in museums,” in Immersive Learning Research
Network: Third International Conference, iLRN 2017, Coimbra, Portugal, June 2629,
2017. Proceedings 3, pp. 107-115, Springer, 2017.

[6] J. Dean, L. Barker, and A. Voida, “Bite-sized experiential education for computer and
information science,”’ 2024.

[7] A.Nandi and M. Mandernach, “Hackathons as an informal learning platform,” in

Proceedings of the 47th ACM Technical Symposium on Computing Science Education,
pp- 346-351, 2016.

[8] J. Miller, S. Raghavachary, and A. Goodney, “Benefits of exposing k-12 students to
computer science through summer camp programs,” in 2018 IEEE Frontiers in Education
Conference (FIE), pp. 1-5, IEEE, 2018.

[9] Y. Chen, W. S. Lasecki, and T. Dong, “Towards supporting programming education at scale
via live streaming,” Proceedings of the ACM on Human-Computer Interaction, vol. 4,
no. CSCW3, pp. 1-19, 2021.

[10] R. Eglash, J. E. Gilbert, and E. Foster, “Toward culturally responsive computing education,”
Communications of the ACM, vol. 56, no. 7, pp. 33-36, 2013.

[11] A. Scott, A. Martin, F. McAlear, and T. C. Madkins, “Broadening participation in computer
science: Existing out-of-school initiatives and a case study,” ACM Inroads, vol. 7, no. 4,
pp- 84-90, 2016.

[12] G. Ladson-Billings and W. F. Tate, “Toward a critical race theory of education,” Teachers
college record, vol. 97, no. 1, pp. 47-68, 1995.

[13] J.J. Ryoo, J. Margolis, C. H. Lee, C. D. Sandoval, and J. Goode, “Democratizing computer
science knowledge: Transforming the face of computer science through public high school
education,” Learning, Media and Technology, vol. 38, no. 2, pp. 161-181, 2013.

[14] S. Gonzalez-Pérez, R. Mateos de Cabo, and M. Sainz, “Girls in stem: Is it a female
role-model thing?,” Frontiers in psychology, vol. 11, p. 564148, 2020.

[15] C. Hill, C. Corbett, and A. St Rose, Why so few? Women in science, technology,
engineering, and mathematics. ERIC, 2010.

[16] J. Kim, Buffers and Barriers to Female First-Generation Students’ Career Development.
PhD thesis, The University of lowa, 2021.

[17] R. E. Wilson and J. Kittleson, “Science as a classed and gendered endeavor: Persistence of
two white female first-generation college students within an undergraduate science context,”
Journal of Research in Science Teaching, vol. 50, no. 7, pp. 802-825, 2013.

[18] A. L. Wright, V. J. Roscigno, and N. Quadlin, “First-generation students, college majors,
and gendered pathways,” The Sociological Quarterly, vol. 64, no. 1, pp. 67-90, 2023.

[19] N. A. of Sciences, D. of Behavioral, C. on National Statistics, P. to Evaluate the National
Center for Science, E. S. A. to Measuring the Science, and E. Workforce, Measuring the

21st century science and engineering workforce population: Evolving needs. National
Academies Press, 2018.

[20] L. Espinosa, “Pipelines and pathways: Women of color in undergraduate stem majors and
the college experiences that contribute to persistence,” Harvard Educational Review, vol. 81,
no. 2, pp. 209-241, 2011.

[21] M. Polmear, S. Chance, R. G. Hadgraft, and C. Shaw, “Informal learning as opportunity for

competency development and broadened engagement in engineering,” in International
Handbook of Engineering Education Research, pp. 312-335, Routledge, 2023.

[22] P. Hager and J. Halliday, Recovering informal learning: Wisdom, judgement and community,
vol. 7. Springer Science & Business Media, 2007.

[23] M. A. Kelly and P. Hager, “Informal learning: relevance and application to health care
simulation,” Clinical Simulation in Nursing, vol. 11, no. 8, pp. 376-382, 2015.

[24] T. J. Conlon, “A review of informal learning literature, theory and implications for practice
in developing global professional competence,” Journal of European industrial training,
vol. 28, no. 2/3/4, pp. 283-295, 2004.

[25] E. Schiirmann and S. Beausaert, “What are drivers for informal learning?,” European
Journal of Training and Development, vol. 40, no. 3, pp. 130-154, 2016.

[26] A. Manuti, S. Pastore, A. F. Scardigno, M. L. Giancaspro, and D. Morciano, “Formal and
informal learning in the workplace: A research review,” International journal of training
and development, vol. 19, no. 1, pp. 1-17, 2015.

[27] K. Sacco, J. H. Falk, and J. Bell, “Informal science education: Lifelong, life-wide,
life-deep,” PLoS Biology, vol. 12, no. 11, p. e1001986, 2014.

[28] K. A. Benjamin and S. McLean, “Change the medium, change the message: creativity is key
to battle misinformation,” 2022.

[29] W. Zuill and K. Meadows, “Mob programming: A whole team approach,” in Agile 2014
Conference, Orlando, Florida, vol. 3, 2016.

[30] D. Schweitzer and W. Brown, “Interactive visualization for the active learning classroom,”

in Proceedings of the 38th SIGCSE technical symposium on Computer science education,
pp- 208-212, 2007.

[31] C. Treude and M.-A. Storey, “Effective communication of software development knowledge
through community portals,” in Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering, pp. 91-101, 2011.

[32] M. Meng, S. Steinhardt, and A. Schubert, “Application programming interface
documentation: What do software developers want?,” Journal of Technical Writing and
Communication, vol. 48, no. 3, pp. 295-330, 2018.

[33] E. Aghajani, C. Nagy, M. Linares-Vasquez, L. Moreno, G. Bavota, M. Lanza, and D. C.
Shepherd, “Software documentation: the practitioners’ perspective,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, pp. 590-601, 2020.

[34] L. MacLeod, M.-A. D. Storey, and A. Bergen, “Code, camera, action: How software
developers document and share program knowledge using youtube,” 2015 IEEE 23rd
International Conference on Program Comprehension, pp. 104—114, 2015.

[35] E. Kokinda and P. Rodeghero, “Streaming software development: Accountability,
community, and learning,” Journal of Systems and Software, vol. 199, p. 111630, 2023.

[36] S. Chattopadhyay, D. Ford, and T. Zimmermann, “Developers who vlog: Dismantling
stereotypes through community and identity,” Proceedings of the ACM on Human-Computer
Interaction, vol. 5, no. CSCW2, pp. 1-33, 2021.

[37] T. Faas, L. Dombrowski, A. Young, and A. D. Miller, “Watch me code: Programming
mentorship communities on twitch. tv,” Proceedings of the ACM on Human-Computer
Interaction, vol. 2, no. CSCW, pp. 1-18, 2018.

[38] J. Pirker, A. Steinmaurer, and A. Karakas, “Beyond gaming: The potential of twitch for
online learning and teaching,” in Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1, pp. 74-80, 2021.

[39] N. Selwyn, “Web 2.0 applications as alternative environments for informal learning - a
critical review,” 01 2007.

[40] A. Gandsas, T. Dorey, and A. Park, “Immersive live streaming of surgery using 360-degree
video to head-mounted virtual reality devices: A new paradigm in surgical education,”
Surgical Innovation, p. 15533506231165828, 2023.

[41] V. Ramalingam and S. Wiedenbeck, “Development and validation of scores on a computer
programming self-efficacy scale and group analyses of novice programmer self-efficacy,”
Journal of Educational Computing Research, vol. 19, no. 4, pp. 367-381, 1998.

[42] C. Hiranrat, A. Harncharnchai, and C. Duangjan, “Theory of planned behavior and the
influence of communication self-efficacy on intention to pursue a software development
career,” Journal of Information Systems Education, vol. 32, no. 1, p. 40, 2021.

[43] S. Carter and J. Mankoff, “When participants do the capturing: the role of media in diary
studies,” in Proceedings of the SIGCHI conference on Human factors in computing systems,
pp- 899-908, 2005.

[44] K. Baxter, C. Courage, and K. Caine, Understanding your users: a practical guide to user
research methods. Morgan Kaufmann, 2015.

[45] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a practical and
powerful approach to multiple testing,” Journal of the Royal statistical society: series B
(Methodological), vol. 57, no. 1, pp. 289-300, 1995.

