
Paper ID #47990

Iterative Driven Competency-Based Assessment in a First-Year Engineering
Computation Module

Dr. James Bittner, Michigan Technological University

James Bittner is an Assistant Teaching Professor in the Engineering Fundamentals Department at Michigan
Technological University. His recent courses focus on foundational engineering subjects, including statics,
design practices, and computational problem-solving, emphasizing active learning methodologies in his
classroom. He has research experience in explorative active learning practices, nondestructive testing
of civil infrastructure materials and nonlinear wave theory. Prior to his academic career, he worked
as an engineer in the maritime construction industry, specializing in hydraulic sediment transport and
geotechnical analysis.

Dr. Matt Barron, Michigan Technological University

Dr. Barron’s teaching interests include solid mechanics, engineering fundamentals, and transitional
mathematics. His research interests include educational methods, non-cognitive factors, and bone tissue
engineering. Prior to MTU, Dr. Barron worked for Bay de Noc Community College for eleven years
and he also has several years of experience working for Kimberly-Clark Corporation in Research and
Development.

Dr. AJ Hamlin, Michigan Technological University

AJ Hamlin is a Principle Lecturer in the Department of Engineering Fundamentals at Michigan Technological
University, where she teaches first-year engineering courses. Her research interests include engineering
ethics, spatial visualization, and educatio

©American Society for Engineering Education, 2025

Complete Evidence-Based Practice: Iterative Driven Competency-Based

Assessment in a First-Year Engineering Computation Module

Introduction

In our connected world, engineers must possess a strong foundation in applied computation.

Daily engineering decisions rely on data analysis, which necessitates the use of computational

tools. This work investigates the transition from manual grading to a competency-based

automated grading system for introductory computation engineering problems.

Introductory knowledge of programming and problem solving is often core components to a

broad first-year engineering curriculum. While traditional computer science curriculum often

emphasizes scientific theories, practicing engineers focus on the societal impact and practical

applications of their work. As a result, teaching introductory programming concepts to young

future engineers can be a challenging task.

One common tool to aid in teaching beginning programming theory is to program an automated

assessment. Automated assessment tools have long been deployed successfully in teaching

computer science curriculum [1]. The benefits of an automated assessment tool are documented

to include more timely feedback, and building up the student’s confidence [2].

Despite adoption within computer science curriculum, automated graders have had limited

deployment within engineering programming curriculums [3]. Several common limitations to

deployment are the upfront costs of developing and running a system, creating sample problems

that are engaging for engineers and assessment checks that are relevant. Recent available

commercial software, MATLAB Grader, has provided an accessible and unified framework for

automated assessment of engineering programing assignment [4].

The Grader software package allows the instructor to build personalized a problem statement of

their choosing. Then the instructor creates a reference solution of an answer in MATLAB code

and designs a series of tests to check the students’ submissions against the reference solution.

Points can be awarded based upon the number of tests passed or only when all tests successfully

pass. In the original design the comparison against the reference solution was a static behavior

comparing numerical equivalency. Learners have unlimited attempts to submit and test their

problem solutions, emphasizing application and utility, a key focus for engineers.

In addition to the software documentation, Bartolini initiated efforts to share a series of

engineering focused introductory programming tasks [5]. Other efforts towards more robust

testing of code submissions have created two independent external libraries GraderPlus [6], and

Malab-Grader-Utils [7]. Each of these libraries provides a series of capabilities that can be

leveraged by an instructor to create dynamic and enriching problem sets. GraderPlus was created

with a focus on engineering evaluation and Matlab-Grader-Utils focused primarily on the

mathematical processes behind a solution.

In the automated grading system concept there is a notable loss of the numerous ‘human-in-the-

loop’ checks that a trained human grader would provide [8]. In submission of assignments

validating integrity of the solution is critical to maintaining rigor within the learning

environment.

In this paper we document our process of taking a rubric graded summative assessment and

converting each rubric item into an automatically assessed MATLAB Grader test. Additionally,

we will explore results of a small formative programming assignment that was assigned as a

manual graded assignment and as an automatically assessed assignment in two sequential

offering of our course.

Experimental Methods/Project Approach

Part 1 Automatic Assessment Tests

The first-year engineering program under study commences with a Fall semester focusing on

problem solving and data analysis. This semester is divided into three modules: Mechanics and

Energy, Computation and Sensing, Simulation and Integration. The first summative assessment

in the Computation and Sensing module of our course focuses on variable assignment,

conditional statements, plotting and basic loops.

The complete detailed example assessment problem statement and configuration are detailed in

Appendix A. One constant challenge in designing problem sets is to keep the learning

environment dynamic and having no single answer valid for all students. To reduce the chance or

effectiveness of plagiarism and diversify the pool of problems a dynamic question and solution

are needed. In most learning management systems, a common form of quiz is to form a quiz

bank of possible permutations of any given question.

One way to implement a dynamic question behavior is to generate permutations of the input data

provided to the student. In this example problem the student enters their student identification

number (M-Number) into a variable to seed the generation of their specific problem data. This

technique allows students to use a set of various predetermined inputs that remain constant

during their individual testing. In our example a function, get_temperature in Appendix B,

was created to generate permutations of input vectors for different sets of students.

The final challenge of creating a dynamic question behavior is to sync the input data between the

reference solution and the student solution. The external library Matlab-Grader-Utils provides a

function get_str_value_from_learner in the RandomParameters.m file. This

function will open the student submission and extract the values of a specific variable. In our

example problem, we extract the student ID variable MNumber and use that identical seed to

populate the input vectors of the reference solution. The code to perform this synchronization

can be summarized at the start of the reference solution as:
%% Reference Solution

MNumber = 'M12345678';

MNumber = RandomParameters.get_str_value_from_learner('MNumber').char()

[minutes, temp] = get_temperatures(MNumber);

The combination of the created get_temperatures function and the sync of the MNumber

variable allow the problem inputs to become dynamic between students. Nevertheless, the

problem values remain constant within each student’s execution of the code, enabling efficient

troubleshooting.

During previous years the evaluation of student submissions was carried out with an instructional

team running each code sample and scoring the submission manually. The process of loading a

student file, running the file and debugging which of the competencies were demonstrated took

approximately 4 minutes per submission. The manual rubric used is provided in Table 1. In this

sub-section we will demonstrate the assessment test code used to evaluate competency for each

of the rubric items.

Table 1: Manual Grading Rubric for Summative Assessment of Computational Skills

Rubric Item Description
Runs without errors Submission executes completely without errors
Comments are present Useful header comments and comments throughout code are present
Create or Access Vectors Vectors are created and referenced to clearly show
Correct Data Plotted on Each
Axis

Data plotted correctly (used correct x & y variables) and plotted with
markers/symbols only

Threshold Plotted Data plotted correctly (used correct x & y variables) and plotted as a
line only (no markers)

Output Generated Present and correct equation
Axis Labels x- and y-axis labels contain category, symbol/variable name, and

units

Rubric Item #1 Runs without Errors

The first rubric item is to provide assessment that the submitted solution runs without errors.

This feature is built into the basic functionality of the Grader tool, once an error is reached the

assessment stops. The assessment tests used to evaluate this is to check for a value of the

provided input variable. The MATLAB code to accomplish this test in the provided example

problem is:
 assert(~strcmp(MNumber, ‘M12345678’))

This line uses the assert function to test if the variable MNumber is set to the template student

ID. If the student code successfully completes execution and the first variable defined remains

present, then we can reasonably assume no error crashed the execution. Additionally, this forces

the student to update the ID number with their own unique identifier.

Rubric Item #2 Comments are Present

The second rubric item is to assess if the student submission contains comments. For this check

we will use a brief two lines of code to open and inspect the raw student solution file for any ‘%’

characters. The MATLAB code to accomplish this test is:
linesWcomments = sum(contains(readlines('solution.m'),'%'))

assert(linesWcomments>7)

This test code opens the standard script solution file and counts the number of lines that contain

the target character. The number of lines is then tested to be above a threshold of 7 lines. The

student learner template in the example already includes 7 comments, so this would require the

student adds additional comments to their added lines of code. This method can be easily

modified if a specific number of comments are required to be in the submission.

Rubric Item #3 Create or Access Vectors

The third rubric item is to assess if the student submission creates or accesses vectors in the

solution. This test code will use the mg_SolutionContainsExplicit function from the

GraderPlus library. The code to accomplish this test is:
assert(mg_solutionContainsExplicit(…

 “.*temp(.*”, ‘Random’, ‘get’))

This code will search for any direct referencing an element within the temp array using a regular

expression as the search parameter. The final two arguments of the

mg_solutionContainsExplicit function specify partial filenames to be excluded during

the search for all available “.m” files. This functionality is crucial because our example

incorporates files from external libraries (two in this case) and our custom get_temperature

function. By excluding these files, we ensure accurate and meaningful comparisons with just the

learner solution code.

Rubric Item #4 Correct Data Plotted on Each Axis

The fourth rubric item evaluates if the correct data is plotted on the correct axis. Depending on

the design of the question multiple data vectors need to be checked, and each check should be a

separate unit test with specific points. Following standard textbook conventions, temperature

should be plotted on the vertical axis as discrete points (without a connecting line) in the

example problem [9]. This test code will use the mg_isCurveInPlot function from the

GraderPlus library to evaluate all plot series. The code to accomplish this test is:
assert(mg_isCurveInPlot('YData', …

 referenceVariables.temp', 'LineStyle', 'none'));

The function mg_isCurveInPlot will cycle through all the plot series present in the current

figure and look for a match to the parameters supplied as arguments. In the case of experimental

temperature measurements, we need to identify that the correct vector values are plotted and that

the style is only markers with no line. The correct vector values based upon the student’s input

ID are be obtained from the reference solution by the structure

referenceVariables.temp.

Rubric Item #5 Threshold Plotted

The fifth rubric item is to evaluate if a threshold line is plotted. One challenge in creating test is

that there are several ways to create a threshold line on a plot in MATLAB. The first is to create

a data series of multiple points with only a line and no markers. The second is to use the built-in

function yline.

To check for both cases we will combine our use of mg_CurveInPlot and the

mg_solutionContainsExplicit functions as follows:

assert(or(mg_isCurveInPlot('Marker', 'none'), …

 mg_solutionContainsExplicit(…

 ".*yline(.*",'Random', 'get')…

));

In this test we are searching for the just the creation of a solid line in the plot, and we are not

explicitly checking the contents of the data series. An additional check can be constructed to

identify the value of the data series; however, the creation of the line is the basic competency we

are aiming to assess in this test.

Rubric Item #6 Output Generated

The sixth item in the rubric is to evaluate the created program output statement. The most direct

way of evaluating this is to require students to populate a formatted OutputStatus string

variable with the results. The MATLAB code to test for successful completion is:
assert(…

 all(…

 [1,…

 contains(lower(UserStatus), 'quenching occurred for'),…

 contains(lower(UserStatus), compose("%2.0f", …

 referenceVariables.QuenchCount)),…

 contains(lower(UserStatus), 'minimum')…

])…

)

In this test code we assert that all the string comparisons are valid. The first comparison is that

the desired format of the program output is used. The second comparison checks the required

value and requested precision of the primary numeric answer. The third check verifies that the

secondary answer is addressed in the output. This test requires that students use sprintf function

rather than the more widely introduced fprintf function, since the output needs to be captured

into a variable. Capturing output within a Grader test is not a simply supported feature.

Fortunately, the arguments and formatting are identical between the two functions.

Rubric Item #7 Axis Labels

The seventh item in the rubric is to evaluate the contents of the axis labels on the plot. The

evaluation compares the actual labels to the expected units or labels. This test can be done using

the mg_getPlotInfo function from the GraderPlus library. The MATLAB code to test for

the content of an axis label is:
a = mg_getPlotInfo()

assert(contains(lower(a.yLabel), 'temp'))

In this code the function mg_getPlotInfo returns a structured array of common plot

properties, including the y-axis label. The code then compares the lowercased yLabel property to

the target value that needs to be present in the axis label. Alternatively instead of the library

function, this code could address the axis label string directly through the code:

gcf().CurrentAxes.XLabel.String. The library allows ease of use and access to other

elements of the plot information. The test for each axis label needs to be flexible enough to

accommodate all reasonable correct answers. Good practice has been found to check for just the

units in the independent variable and the name in the dependent variable.

Additional tests and checks that can be tested through built-in functionality within the Grader

product have been omitted from this example methods. These items include validating that a

specific function call is present within the student code or comparing a student variable value

against a reference solution value [10].

Part 2 Comparing Automatic vs Manual Assessment

The Grader tool was first implemented in the first-year engineering courses in the Fall Semester

of 2019. The positive effects of quick feedback and multiple quick retakes attempts were

observed in students’ interactions with the tool. One concern that emerged through use was the

introduction of an additional interface in the learning process. As a result of these concerns the

design of curriculum has adjusted the amount of guided versus unguided programming time on

task. To explore the isolated impact of the assessment environment we chose one formative

assignment to study the implementation as an automatically graded assignment in the Grader

environment. Then following year, we transitioned the assignment back to a manually grading

instead to try and maximize unguided time on task. While this specific assignment was switched

between automated and manual grading, the Grader tool continued to be used for other short,

formative assignments in both years. Critically, all problem-solving assignments beyond plotting

and looping were consistently graded manually.

The problem selected focused on using a for loop to calculate the temperature change of an

object subjected to a vector of applied heat values. Identical problem statements were used, and a

starting template was provided for both the automated and manual assignments. Since the

automated version of the assignment provided a method to check answers, the manual version

similarly included an answer for the 2nd element of the output vector. The assignment was

provided as an in-class activity on the same day in the semester after the students have been

introduced to looping methods.

The submissions were evaluated regarding submission performance, time to complete the

assignment, and uniqueness. Submission performance was documented as an average recorded

marks and the count of number of missing submissions.

Completion of the assignment and time to return graded feedback was calculated by using the

data logging features of the Canvas Learning Management System. The time from when the

assignment page was initially accessed to the time that the assignment was submitted was used

as the duration of the student’s work. This was filtered to exclude assignments durations longer

than 2 hours (the duration of the course period) after initially accessing the assignment.

The uniqueness of submission was calculated by comparing each submission against the pool of

other submissions. Files are first stripped of capitalization, white spaces, and lines that start with

a comment. Then each line is compared against all other lines in the pool, the number of

matching lines for every submission pairing is recorded as a similarity score. This method of

comparison was preferred by the authors over more rigorous algorithmic systems due to the

introductory nature of this course and the simplicity of the assigned algorithmic problem.

Results and Discussion

Comparing an Automatic vs Manual Assessment

The tabulated results of the automated versus manual assessment groups of a formative for loop

assignment are presented in Table 2. While the two assignment types had approximately the

same number of total enrollments, the manually graded assignment type had a higher number of

missing assignments. The automated assignment allowed for resubmissions; therefore it has been

expanded into a first submission and a multiple submission scoring summary. The average

submission score of the submitted work was logically observed to be higher for the multiple

submission automated group than the single submission manual group. The lowest average score

and largest standard deviation was recorded for the first submission of the automated group. The

average automated multiple submission score enabled students to reengage with the assignment

and to resubmit before the due date. One of the limitations of the manual grading is that the

grading only occurs after the assignment is due.

Table 2: Summary of student performance in different assessment types

Assignment
Type

Students

Missing
Submissions

Average
Score

Std. Dev.
Score

Manual 103 13 94% 1.4
Automated –

First
Submission 116 5 48% 38.7
Automated –

Multiple
Submissions 116 5 100%

0

The comparison of time spent to complete the formative for loop assignment is presented in

Figure 1. The average for each category was 0.56 hours for the manual assignment and 0.25

hours for the automated assignment. The submissions in the automated environment were

submitted faster on average. One theory among instructors is that the quick feedback leads to

students making quicker connections to correct methodology. A competing theory is that

students are perplexed when faced with an empty text-editor in a development environment

outside of the browser-based Grader. Slower submission outliers exist in both groups up through

approximately four times the average submission time. The remaining slower submission outliers

suggest that the struggling students do not see a reduction in assignment duration.

Figure 1: Comparison of time to complete the identical assignment performed as a manual

assignment and as an automated Grader assignment. Dark blue areas represent overlapping

data between the two groupings.

Figure 2: Comparison of similarity of file submissions an identical assignment performed as a

manual assignment and as an automated Grader assignment. Dark blue areas represent

overlapping data between the two groupings.

The uniqueness summary of all submission is presented in Figure 2. The similarity score

represents the ratio of the number of matching lines out of the total number of lines present in a

submission. The average similarity score for the manual assignment was 0.35 with a standard

deviation of 0.11 and for the automated assignment the similarity score was 0.59 with a standard

deviation of 0.08. In general, the submissions in the automated grader environment demonstrated

increased similarity. The reduction in uniqueness between submissions aligns with the previous

qualitative concerns voiced about decreased integrity in automated assignments [8]. In these

short formative tasks may force students to quickly align to a uniform method of accomplishing

a task, further investigation is needed to confirm.

One of the features of an automated assessment is that students can correct misunderstandings

and resubmit an assignment without manually interfacing with instructional staff. Figure 3

presents the distribution of submissions for each learner. The ability to iterate through a problem

testing a solution for competency multiple times was utilized by 66% of the learners in the

automated assessment. As the number of resubmissions increases the number of learners taking

advantage of the ability decreases. These results suggest that the internal drive of students to

correct their own mistakes is present within the moment. Additionally, qualitatively the

instructors have witnessed the power of red and green automated checks driving student’s

emotions to better their own understanding.

Figure 3: Number of submissions and resubmissions on a formative automated grader

submission pool

The previous results demonstrated an increase in completion and a decrease in time spent on the

assignment. Another critical aspect of the learning experience is the self-perception of how

helpful a material or resource is to the learner. To explore this question at the end of the semester

we request that students provide feedback on the components of our course. The completed

responses to the survey question “I found the following course materials were helpful to my

learning, select all that apply” are presented in Figure 4 as a histogram. The question was asked

when the looping assignment was manually graded (96 responses) and when it was automatically

graded (98 responses). The automated grader option, MATLAB Grader, ranked as the top 5th

most helpful material towards student learning in both years. In the flipped classroom

environment, the core learning materials are delivered through pre-class assignments and videos.

Of note and interest in these results the helpfulness of the automated assignments was ranked

higher than the classical pre-class content.

Figure 4: Summary of responses from an end-of-course survey for a first-year engineering

course detailing the most helpful learning materials. Dark blue regions identify regions of

overlap between the two datasets.

This analysis has several limitations. Firstly, the sample size of 103 and 116 first-year students is

relatively small, limiting the generalizability of our findings. Secondly, the current test codes

may not be sufficiently robust, potentially enabling students to find workarounds that satisfy the

tests without demonstrating true competency of the underlying concepts. In most observed cases,

this limitation was tested by learners with exceptional computational competency. Finally, the

integration of multiple online learning platforms can lead to inconsistencies in terminology and

potential confusion for students.

Summary

Automated assessment of coding problems has been a constant area of exploration and

improvement for decades. In this work we discussed how we implemented a series of automated

tests to evaluate MATLAB code from an introductory engineering competency perspective.

Application of automated assessment reduced the time it takes for students to complete a task

and engages students interactively. However, the uniqueness of the solution decreases as to align

with the expected automated answer or reference concepts. In an introductory course this may be

desirable to reward best coding practices. The iterative multiple attempts approach to solving an

introductory problem was utilized by first-year engineers most of the time. The learner

perception of automated assessment’s helpfulness to their learning was observed to be positive

over other materials, such as videos and textbooks.

These observations of an iterative competency-based automatic grading demonstrate improved

performance for the first-year engineering learning environment. Future research should

investigate whether these positive outcomes, such as improved student completion rates and

learning performance, are consistent across different levels of problem complexity. Automated

assessment tools have the potential to significantly increase the number and diversity of coding

assignments, thereby enabling instructors to offer more personalized learning pathways for each

student within a broad First-year introductory engineering course.

References

[1] C. Douce, D. Livingstone, and J. Orwell, "Automatic test-based assessment of

programming: A review," J. Educ. Resour. Comput., vol. 5, no. 3, pp. 4–es, 2005, doi:

10.1145/1163405.1163409.

[2] C. Daly, "RoboProf and an introductory computer programming course," SIGCSE Bull.,

vol. 31, no. 3, pp. 155–158, 1999, doi: 10.1145/384267.305904.

[3] R. S. Pettit, J. D. Homer, K. M. McMurry, N. Simone, and S. A. Mengel, "Are

Automated Assessment Tools Helpful in Programming Courses?," presented at the 2015

ASEE Annual Conference & Exposition, Seattle, Washington, 2015/06/14, 2015.

[Online]. Available: https://peer.asee.org/23569.

[4] MATLAB Grader. (2024). [Online]. Available:

https://www.mathworks.com/products/matlab-grader.html

[5] A. Bartolini, "GIFTS - Integrating MATLAB Grader into an Engineering Computing

Course," presented at the 15th Annual First-Year Engineering Experience Conference

(FYEE), Boston, Massachusetts, 2024/07/28, 2024. [Online]. Available:

https://peer.asee.org/48609.

[6] D. Kosfelder, "GraderPlus - A library for writing test code in MATLAB®-Grader," 2021.

[Online]. Available: https://github.com/DavidKosf/GraderPlus

[7] A. D. Silva, "Matlab Grader Utils," 2023. [Online]. Available:

https://github.com/alfonsovng/matlab-grader-utils

[8] H. Suleman, "Automatic marking with Sakai," presented at the Proceedings of the 2008

annual research conference of the South African Institute of Computer Scientists and

Information Technologists on IT research in developing countries: riding the wave of

technology, Wilderness, South Africa, 2008. [Online]. Available:

https://dl.acm.org/doi/10.1145/1456659.1456686.

[9] E. A. Stephan, D. R. Bowman, W. J. Park, W. D. Martin, and M. W. Ohland, Thinking

like an engineer : an active learning approach, Fifth edition. ed. New York, NY:

Pearson, 2022.

[10] Mathworks, MATLAB Documentation: Test Learner Solutions, 2025. [Online]. Available:

https://www.mathworks.com/help/matlabgrader/ug/testing-learner-solutions.html.

https://peer.asee.org/23569
https://www.mathworks.com/products/matlab-grader.html
https://peer.asee.org/48609
https://github.com/DavidKosf/GraderPlus
https://github.com/alfonsovng/matlab-grader-utils
https://dl.acm.org/doi/10.1145/1456659.1456686
https://www.mathworks.com/help/matlabgrader/ug/testing-learner-solutions.html

Appendix A - Detailed Example First-Year Engineering Grader Problem

An example detailed summative assessment problem.

Steel is often quenched before it can be used for construction. Quenching hardens the steel but

also makes it more brittle. Quenching is carried out by rapidly cooling the steel in a chilled water

solution to a specific temperature (In our case we will use 222 Deg. F.), the time it takes for the

temperature to drop is critical to the successful quenching process. The collected vectors

minutes and temp contain data recorded from a steel sample exposed to a water chiller used in

the quenching process.

How long does it take for this sample to drop in temperature to below the specific temperature?

Temperature was measured in Fahrenheit occurred every 1 minute.

Write a MATLAB script below that:

• Has a proper file header with your name, date and email.

• Has useful comments for each line of code created

• Plots the recorded data of chiller temperature versus time.

• Plots on the same graph a horizontal line representing the final quenching threshold of

222 degrees F.

• Plot includes proper axis labels, titles, legends, and data style types (points vs. line).

• Write a for loop to iterate through the data and determine how long, in minutes, the steel

is held at a temperature above 222 degrees F. Save the duration in a variable called

QuenchCount

• Using either a function or loop, determine and save the minimum temperature reached in

a variable called MinTemp

• Create an output string called UserStatus to update the user on the duration of quenching

that occurred. Use the format "Quenching occurred for 23 minutes until 222 Deg. F. was

reached with a minimum temperature of 131 Deg. F.". (These numbers are examples

only)

External Library Files:

mg_SolutionContainsExplicit.m [6]

mg_plotExists.m

mg_getPlotInfo.m

mg_isCurveInPlot

RandomParameters.m [7]

get_temperatures.m [Appendix B]

Reference Solution:

% Reference Solution

% Name: Instructor, instructor@mtu.edu

% Date: 01/01/1971

% Program: Steel Quench Time

MNumber = 'M12345678'; % A Default Unique Student Identifier

% Try to use a learner solution MNumber value

MNumber = RandomParameters.get_str_value_from_learner('MNumber').char()

[minutes, temp] = get_temperatures(MNumber); % Update Input Vectors

% Create Plot

figure;

plot(minutes, temp, '*');

hold on;

plot([0 500], [222 222], '-');

xlabel('Time (minutes) [Minutes]');

ylabel('Temperature (temp) [Deg. F]');

title('Quenching Chiller Recorded Temperatures');

legend('Measurements', 'Quenching Limit');

% Analysis

QuenchCount = 0 ;

for i = 1:length(minutes)

 if(temp(i)>222)

 QuenchCount = QuenchCount +1;

 end

end

MinTemp = min(temp);

% Output

UserStatus = sprintf('Quenching occurred for %.f minutes until 222 Deg. F.

was reached with a minimum temperature of %.f Deg. F.', QuenchCount,

MinTemp);

disp(UserStatus)

mailto:instructor@mtu.edu

Learner Template

Appendix B - Supplemental Script: get_temperature.m file

function [myTime, myTemp] = get_temperatures(id)

%get_temperatures.m returns rotating input vectors based upon a input ID

% This file is meant to be called by a student to populate data vectors

%within the Grader Environment. The function will return consistent vectors

%with a consistent input ID.

% Inputs:

% id : a character vector of numeric ID values

% Outputs:

% myTime : a numeric vector of incrementing time

% myTemp : a numeric vector of selected problem input data

% Build a matrix (m) of possible input vectors

m = [603.9 593.9 583.9 573.9 563.9 553.9 543.9 533.98 523.98 513.98

599.7 589.7 579.7 569.7 559.7 549.7 539.7 529.7 519.7 509.7

.. [data lines omitted] ..

595.1 585.1 575.1 565.1 555.1 545.1 535.1 525.1 515.1 505.1];

mynum = min(str2num(id(end))+1, 9); % Use last digit of ID String

myTime = [1:400]'; % Create a Time Vector

myTemp = m(:,mynum); % Subset the matrix to a single input vector

end

