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WIP: Application of FLASH to Forecast Student Engagement in Online Engineering 

Courses 

Abstract 

Student engagement is a critical factor in online education, influencing both learning outcomes 

and retention rates. In online environments, students often face challenges such as lack of 

interactions, which can lead to disengagement and higher dropout rates. Engagement serves as a 

bridge between students and their learning materials, fostering active participation, deeper 

understanding, and sustained motivation. This is particularly crucial in engineering courses, 

where complex concepts require continuous interaction and application. 

This research presents the application of the Forecasting Learning Achievement with Survival 

History (FLASH) methodology to predict student engagement and success in online engineering 

education, specifically focusing on thermodynamics and fluid mechanics courses. By utilizing 

Survival Analysis (SA) techniques, the study aims to identify key engagement factors and 

forecast academic outcomes, providing a framework for enhancing student retention. Survival 

Analysis (SA) serves as the core methodology of this research, involving the definition of key 

parameters such as the survival variable, which in this case refers to the likelihood of student 

persistence or success throughout the course. The treatment is the specific learning intervention 

applied. The time interval is defined by the duration of student participation in the course, during 

which engagement is monitored at multiple milestones.  

In this research, the virtual environment (VE) is the selected treatment to enhance student 

engagement. While various treatments can be employed to boost engagement, such as interactive 

discussions, team-based projects, and traditional engineering assignments, this study specifically 

focuses on VEs. VEs offer immersive, interactive spaces that simulate real-world engineering 

challenges, providing students with opportunities to apply theoretical concepts in a dynamic and 

engaging context. The study aims to evaluate the effectiveness of this treatment compared to 

more traditional methods, with a particular focus on its impact on students' cognitive, psycho-

motor, and affective skills. 

The integration of Virtual Environments (VEs) serves as a comparative tool to traditional 

learning activities, aligning with the New Engineering Educators (NEE) division’s focus on 

innovative educational strategies and tools for faculty development, contributing to the long-term 

sustainability of engineering education. 
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1. Introduction 

Online education has transformed the landscape of engineering education, presenting both 

opportunities and challenges for engineering educators and students. Student engagement 

remains a pivotal factor influencing learning outcomes, retention rates, and overall student 

satisfaction. However, online environments pose unique challenges, such as limited interpersonal 

interactions and reduced opportunities for hands-on experiences, which can lead to 

disengagement and attrition. These challenges are particularly acute in engineering courses, 

where mastering complex concepts requires active participation and practical application. 

This work introduces the application of the FLASH methodology, a novel approach that equips 

new engineering educators with tools to predict and enhance student engagement in online 

courses. By leveraging SA techniques, this study offers actionable insights to help educators 

identify critical engagement factors, forecast academic outcomes, and implement targeted 

interventions. This research specifically focuses on thermodynamics and fluid mechanics 

courses, showcasing how VEs can be used as a transformative educational tool. VEs simulate 

real-world engineering scenarios, providing students with immersive, interactive learning 

experiences that go beyond traditional methods. 

The goal of this study is to share best practices and provide actionable recommendations for 

implementing VEs in online engineering education, thus contributing to the broader adoption of 

innovative teaching strategies within the field. It also provides a practical framework for faculty 

development, enabling new educators to foster student engagement, improve learning outcomes, 

and contribute to the long-term sustainability of engineering education. 

1.1. Background 

Virtual Environments (VEs) offer immersive, interactive learning spaces that simulate real-world 

engineering challenges. By enabling students to apply theoretical concepts dynamically, VEs can 

enhance cognitive, psycho-motor, and affective skills. Previous research has demonstrated the 

potential of VEs to improve engagement and learning outcomes, but their comparative 

effectiveness against traditional learning methods remains underexplored in online engineering 

education. This study addresses this gap by integrating VEs into the curriculum and assessing 

their impact on student engagement and retention [1,2]. 

In recent advancements, the concept of representation learning has gained significant attention 

for its ability to automatically learn useful features or representations from raw data, eliminating 

the need for extensive manual feature engineering [3]. This approach is particularly valuable in 

domains like machine learning, where the complexity of data can make traditional methods 

inefficient. In the context of education, representation learning can be applied to virtual labs to 

enhance student engagement and personalize learning experiences. By leveraging this approach, 



virtual lab systems can learn from student interactions, identify patterns in their behavior, and 

adapt the content or feedback to better suit individual learning needs. This enables a more 

dynamic and responsive learning environment, where the system can continuously refine its 

understanding of a student's grasp of the material and provide tailored support, much like an 

instructor guiding a student through difficult concepts. 

Survival analysis (SA) predicts the probability of survival based on a medical treatment, often 

used to study patient outcomes, such as survival time after a disease diagnosis, relapse, recovery, 

or other medical events. This methodology identifies risk factors, informs treatment decisions, 

and provides valuable insights into patient prognoses [4−6]. Beyond medical research, SA has 

been applied in fields like sociology, engineering, economics, and education. In education, it is 

used to analyze events like dropout rates, time to graduation, or achieving milestones, offering 

actionable insights to improve educational outcomes [7−10]. 

The proposed work, Forecasting Learning Achievement with Survival History (FLASH), uses 

survival analysis to model the probability of students achieving milestones over time. This 

approach assesses engagement and predicts outcomes in educational contexts. The Kaplan-Meier 

survival function calculates the probability of surviving to a given time interval. In an academic 

setting, the survival parameters can represent student progression within a course or program, 

their engagement in particular activity within a semester or overall graduation in oppose to drop-

out rate, all enabling the calculation of overall program completion probabilities. 

In this study, VEs are proposed as a treatment to increase student success. VEs provide hands-

on, scenario-based learning where students apply theoretical knowledge to simulated real-world 

projects. By bridging theoretical concepts with practical applications, VEs enhance learning, 

improve skill development, and offer an engaging educational experience [11, 12]. 

Integrated feedback mechanisms within VEs allow students to refine their strategies iteratively, 

creating a continuous improvement loop. Similar to varied treatments in medical SA, different 

VE approaches can be studied to determine their impact on student engagement and 

achievement. 

1.2.  Research Objectives 

The primary objectives of this study are to: 

a. Design and development of virtual environments for engineering core course as 

“treatment” to enhance engagement 

b. Apply FLASH to forecast student success based on engagement data in VEs within 

individual engineering courses, such as Fluid Mechanics and Thermodynamics. 



c. Identify critical factors contributing to engagement and disengagement in online 

engineering courses. 

d. Evaluate the impact of VEs on cognitive, psycho-motor, and affective skills through 

project-based learning. 

e. Develop strategies to improve teaching practices and retention rates in ERAU’s 

engineering programs. 

 

2. Approach 

The research follows a three-phase approach: 

Phase 1- Development and Implementation of VEs: In the first phase, VEs are developed and 

integrated into Fluid Mechanics courses to create immersive learning experiences. Preliminary 

engagement data were collected to establish baseline metrics and identify patterns in student 

interaction. This phase involved iterative refinement of the engagement measures, informed by 

direct student feedback and observational insights. The goal was to ensure the VEs were 

intuitive, engaging, and aligned with course objectives, enabling students to connect theoretical 

knowledge with practical applications effectively. This phase is now being followed up with 

developing new labs in Thermodynamics. 

Phase 2- Comparative Analysis: The second phase focused on conducting a comparative study to 

evaluate the effectiveness of VE-enhanced activities relative to traditional teaching methods. 

Statistical analysis is employed to analyze key engagement milestones, such as engagement 

threshold, participation in VE activities and completion of VE-based projects. By correlating 

these milestones with academic success indicators, the study identifies critical moments where 

intervention can have the most significant impact. This phase highlights how VEs can provide 

richer learning experiences and foster higher levels of engagement compared to traditional 

methods. 

Phase 3- Validation using FLASH: The final phase involves validating the findings from the 

earlier stages through comprehensive data analysis using FLASH model. This phase aims to 

share actionable insights and evidence-based conclusions regarding the effectiveness of virtual 

labs in enhancing student engagement and academic performance. By leveraging the FLASH 

model, we can analyze key variables, identify trends, and ensure the robustness of the results, 

ultimately providing a solid foundation for future applications and improvements in virtual lab 

implementations. Additionally, the findings will be instrumental in refining future virtual lab 

developments in Thermodynamics, ensuring that the labs are optimized to meet learning 

objectives and further enhance student outcomes. The three-phase approach is shown in Figure 

1. 



 

Figure 1: Three-Phase approach 

3. Analysis & Results  

This section outlines the systematic three-phase approach employed to develop, implement, and 

evaluate virtual lab activities, leveraging data-driven methodologies to assess their impact on 

student engagement and learning outcomes. 

3.1.  Phase 1: Development and Implementation of VEs 

The selection of appropriate instructional tools is a critical component of effective education. 

Recent research indicates that the pedagogical use of virtual environments (VEs) can 

significantly enhance learner outcomes by fostering a greater sense of achievement and 

improving learning performance [11, 12]. These findings suggest that VEs serve as valuable 

tools for promoting student success. 

As mentioned before, for engineering students in an online, asynchronous learning modality, 

VEs are particularly impactful. They provide a more immersive and interactive learning 

experience compared to traditional lecture-based courses. VEs enable students not only to 

observe experimental results and simulations but also to interact with the environment, 

simulating hands-on experiences.  

In designing the virtual labs for Fluid Mechanics, we primarily focused on some complex 

concepts, aiming to provide students with interactive, visual, and dynamic tools that help 



improve student comprehension. The selection of topics such as viscosity, pressure distribution, 

and conservation laws (including mass, energy), and linear momentum for virtual lab design is 

rooted in their foundational importance in fluid mechanics and thermodynamics, as well as the 

challenges students often face in understanding these concepts. These topics are critical for 

building a comprehensive understanding of fluid behavior and the principles governing 

thermodynamic systems, making them essential in engineering education [13]. Here's a deeper 

look into why these topics were chosen: 

3.1.1. Viscosity Lab 

Viscosity is a measure of a fluid's resistance to flow and deformation. Understanding viscosity is 

crucial because it influences the design and performance of various engineering systems, such as 

pumps, pipes, and automotive engines. Students often struggle to visualize and quantify the 

effects of viscosity, as it involves both macroscopic and microscopic properties of fluids. A 

virtual lab can help simulate these effects under various conditions, making the concept more 

tangible and intuitive. The relationship between the shear stress and the velocity gradient in a 

fluid flow is given by Newton's Law of Viscosity, Eq. (1): 

𝜏 = 𝜇 (
𝑑𝑢

𝑑𝑦
)   

Where 𝜏 is the shear stress, μ is the dynamic viscosity (a fluid property), and 
𝑑𝑢

𝑑𝑦
 is the velocity 

gradient perpendicular to the flow direction [13]. 

3.1.2. Pressure Distribution Lab 

Pressure distribution within a fluid plays a key role in understanding fluid behavior in various 

systems, such as pipes, ducts, and open-channel flows. Students frequently find pressure 

distribution concepts challenging because it involves understanding the spatial variation of 

pressure in static and dynamic fluid systems. Virtual labs enable students to explore how 

pressure changes with depth, velocity, and boundary conditions, providing an immersive 

experience to reinforce these abstract concepts. 

In a static fluid, pressure variation with depth is governed by Pascal's Law and can be expressed 

as Eq (2): 

𝑑P

𝑑𝑧
= −𝜌g 

 

(1) 

(2) 



Where is P the pressure, 𝜌 is the fluid density, 𝑔 is the gravitational acceleration, and 𝑧 is the 

depth (height in the vertical direction). This is the first step to understand the basics of fluids 

dynamics where the pressure distribution can be influenced by fluid velocity and Bernoulli's 

equation, Eq. (3): 

P +
1

2
𝜌V2 + 𝜌g𝑧 = 𝐶 

Where V is the fluid velocity and C is a constant [13]. 

3.1.3. Control Volume Analysis Lab 

The conservation laws, which include the conservation of mass and energy, as well as linear 

momentum, are fundamental to fluid dynamics and thermodynamics. Students often struggle 

with the conceptual and mathematical formulations of these laws, especially when applied to 

complex systems like flow through pipes or engines. Virtual labs offer opportunities to visualize 

and experiment with these principles, facilitating a deeper understanding of the governing 

equations including Continuity and Linear Momentum Equations, respectively Eqs.4 and 5: 

𝑑

𝑑𝑡
∫ 𝜌𝑑𝒱 = 0 

𝑑

𝑑𝑡
∫ 𝜌𝐕𝑑𝒱  + ∮ ρ𝐕(𝐕. �̂�)𝑑𝐴 = ∑ 𝐅𝑒𝑥𝑡 

Where the first term on left-hand side of the Eq (5) is the rate of change of momentum within the 

control volume and the second term is the net flux of linear momentum through the control 

surface. The right-hand side represents the sum of external forces (such as pressure forces, 

viscous forces, and body forces like gravity) acting on the control volume [13]. The governing 

equations presented in these topics are essential for providing a mathematical framework that 

supports student learning, allowing for more meaningful exploration of how real-world systems 

behave under different conditions. 

To support these goals, three virtual environments have been developed and implemented in 

Fluid Mechanics course offered in ERAU-Worldwide. Virtual Rotary Viscometer Lab: This VE 

allows students to measure the viscosity of fluids using a virtual rotary viscometer. Atmospheric 

Pressure Lab: Students can explore the relationship between pressure and altitude across 

different atmospheric layers. Water Jetpack Simulation Lab: This lab demonstrates the 

application of conservation of mass, linear momentum, and Bernoulli’s equation to analyze the 

steady-state operation of a water jetpack device [14]. Each virtual lab includes features that 

enable students to control experimental parameters, collect data, and interpret results. By 

offering these capabilities, the labs not only replicate key aspects of physical experiments but 

(3) 

(4) 

(5) 



also enhance the depth of student engagement and learning. The viscosity and momentum virtual 

environments are shown in Figure 2. 

 

Figure 2- Designed VEs in Fluid mechanics: left: Viscosity Laboratory Image; right: 

Momentum Laboratory Image [14] 

 

We also started developing virtual environments for Thermodynamics. This new VE focuses on 

the analysis of the components of the First Law of Thermodynamics. The lab is designed to 

provide students with an interactive platform to explore and apply core thermodynamic 

principles in a controlled, simulated environment.  

In this lab, students will analyze the relationship between energy input and output in a 

thermodynamic system, specifically through the work done by a rotating paddle wheel. The VE 

allows students to adjust parameters and observe how changes affect the energy transformation 

process. Below are the key components of the lab: 

• Power Source: The virtual system simulates a power source that generates energy by 

rotating a paddle wheel at a set RPM (revolutions per minute) under a given torque. This 

allows students to see how mechanical energy is converted into work over time. 

• Thermocouple: Temperature measurement is facilitated by a thermocouple that records 

temperature at both the initial and final states, providing real-time data on thermal 

changes during the energy transformation process. 

• Simulink Sequence: As shown in Figure 3, the entire virtual lab sequence is visually 

represented in Simulink, a prototype of exploring the basic functionality and interaction 

schemes of the lab. With that, we make sure to provide students with a step-by-step guide 

to understanding the progression of energy transfer and helping them calculate work, 

heat, and internal energy changes in accordance with the First Law of Thermodynamics. 



 

Figure 3: Thermodynamics virtual lab sequence, visually represented in Simulink 

 

3.2.  Phase 2: Comparative Analysis 

To quantitatively measure student engagement in virtual labs, we propose a weighted scoring 

system that integrates multiple key indicators of student activity. The goal of this system is to 

provide a comprehensive and normalized engagement score by evaluating distinct aspects of 

student interaction with the virtual lab environment. 

3.2.1. Indicators of Engagement 

The following indicators are used to assess engagement: 

1. Number of logins (L): The total number of times a student accesses the lab environment. 

2. Time spent on instructions and learning materials (I): The duration students spend 

reading or watching the instructional material associated with the lab. 

3. Time in lab activities (T): The total time spent completing various levels and activities 

within the lab. 

4. Pre-lab quiz data: 

o Number of attempts (PNA): The total attempts made on the pre-lab quiz. 



o Quiz score (PNS): The score achieved on the pre-lab quiz. 

o Time spent (PNT): The total time spent on the pre-lab quiz. 

5. Post-lab quiz data: 

o Number of attempts (PSA): The total attempts made on the post-lab quiz. 

o Quiz score (PSS): The score achieved on the post-lab quiz. 

o Time spent (PST): The total time spent on the post-lab quiz. 

6. Total grade (G): The final grade received for the lab. 

3.2.2. Weight Assignment and Calculation 

To balance the influence of these indicators, we assign weights based on their relative 

importance in determining engagement. Table 1 summarizes the weights assigned to each 

engagement indicator in the proposed scoring system. The relative importance of each 

engagement indicator was assigned based on a combination of prior research findings on student 

engagement, expert judgment, and preliminary analysis of student interaction data from previous 

course offerings. Specifically, preliminary engagement data were collected from prior 

implementations of virtual labs in Fluid Mechanics courses, allowing us to observe trends in 

student behavior. This data helped refine the weight distribution by identifying which indicators 

had stronger correlations with student participation and success.  

Table 1: Scoring system: the weights assigned to each engagement indicator 

Engagement Indicator Symbol Weight Description 

Number of logins L 0.1 
The total number of times a student accessed the 

virtual lab environment. 

Time spent on 

instructions 
I 0.1 

The total time spent reading or watching the lab 

instructions. 

Time in lab activities T 0.3 
The total time spent completing various levels and 

activities in the lab. 

Pre-lab quiz attempts PNA 0.05 
The number of attempts made on the pre-lab 

quiz. 

Pre-lab quiz score PNS 0.1 The score achieved on the pre-lab quiz. 

Pre-lab quiz time spent PNT 0.1 The time spent completing the pre-lab quiz. 

Post-lab quiz attempts PSA 0.05 
The number of attempts made on the post-lab 

quiz. 

Post-lab quiz score PSS 0.1 The score achieved on the post-lab quiz. 

Post-lab quiz time spent PST 0.1 The time spent completing the post-lab quiz. 

Engagement Score E 1 The total engagement score received for the lab. 



The weights sum up to 1.00, ensuring a balanced and comprehensive scoring system for 

measuring student engagement. This distribution reflects the relative importance of each 

indicator in contributing to the overall engagement score. While time spent in lab activities (T) 

was given the highest weight (0.3) due to its direct relationship with active engagement, other 

indicators such as pre- and post-lab quiz scores and time spent on instructions were weighted 

based on their observed contribution to overall engagement. 

The engagement score (E) is calculated as a weighted sum of the normalized values of these 

indicators, Eq. (6): 

𝐸 = 0.1𝐿 + 0.1𝐼 + 0.3𝑇 + 0.05𝑃𝑁𝐴 + 0.1𝑃𝑁𝑆 + 0.1𝑃𝑁𝑇 + 0.05𝑃𝑆𝐴 + 0.1𝑃𝑆𝑆

+ 0.1𝑃𝑆𝑇 

3.2.3. Normalization of Data 

Since the raw values for each indicator can vary significantly, normalization is essential to 

ensure fair comparisons and proper weight distribution. Each indicator is normalized using the 

maximum observed value in the dataset, Eq. (7): 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑅𝑎𝑤 𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑉𝑎𝑙𝑢𝑒
 

Indicators such as quiz scores and grades, typically expressed as percentages, do not require 

additional normalization.  

The proposed weighted scoring system offers a framework for evaluating student engagement in 

virtual labs. By integrating multiple indicators and normalizing the data, this system ensures a 

balanced and holistic assessment that can inform both instructional design and educational 

research. 

3.3. Validate the Data Using the FLASH Model 

In this phase, we utilize comprehensive data analysis techniques, including the application of the 

FLASH model and survival analysis, to validate the efficacy of the VEs. To assess participation 

patterns and to understand the overall student engagement, we started by visualizing the 

distribution of engagement scores for students in three virtual labs offered in Fluid Mechanics. 

We used histograms, which is an effective tool for this purpose, as it allows for clear 

representation of the frequency of different engagement score ranges across students. In this 

section, we will also discuss how we apply survival analysis using FLASH model and how to 

interpret the results for instructional improvements. 

The primary objective of visualizing engagement scores through histograms is to: 

(6) 

(7) 



• Understand the distribution of engagement across all students in each virtual lab. 

• Identify patterns or trends, such as whether a majority of students are highly engaged or if 

there is a significant portion of students with low engagement. 

• Compare engagement across the three virtual labs to detect any differences in student 

participation, which may inform future course design decisions. 

To define an engagement score that serves as the threshold between disengaged and engaged 

students, a data-driven approach is utilized. The process begins with calculating the mean and 

standard deviation of the engagement scores across the dataset to understand the central tendency 

and variability. A histogram is then plotted to visualize the distribution of engagement scores, 

helping identify natural groupings or cutoffs within the data. A common approach is to consider 

students with engagement scores below one standard deviation from the mean as disengaged, 

while those above this threshold are classified as engaged. This method ensures that the 

threshold reflects the overall behavior of the cohort, taking into account both the average level of 

engagement and its spread. Alternatively, subject matter expertise and qualitative insights, such 

as expectations for participation and performance in virtual labs, can also refine the cutoff to 

align with educational goals and practical observations. 

The histograms reflecting engagement scores across the three virtual labs—Viscosity Lab, 

Pressure Lab, and Momentum Lab is shown in Figure 4. The histograms highlight critical 

patterns and provide insights into the factors influencing student engagement. The clustering of 

scores within specific ranges suggests variability in how students interact with and benefit from 

each lab. To determine a threshold between disengaged and engaged students, the histogram can 

be analyzed to identify a natural cutoff where engagement scores begin to cluster into higher 

ranges. 

 

Table 2 summarizes key statistical metrics—mean, standard deviation, and lower quartile—for 

the engagement scores of the three VLs. The mean represents the average engagement score, 

providing a central measure of student participation. The standard deviation indicates the 

variability of engagement scores, with higher values reflecting greater dispersion among 

students. The lower quartile represents the score below which 25% of the students fall, offering 

insights into the least-engaged segment of the class. The Viscosity Lab shows the highest mean 

engagement score (0.26) and the largest variability (standard deviation of 0.1403). The Pressure 

Lab has a slightly lower mean engagement score (0.23) and a smaller standard deviation 

(0.1005), indicating more consistent engagement. The Momentum Lab, conducted later in the 

semester, exhibits the lowest variability (standard deviation of 0.0643) and a lower quartile 

similar to the others (0.181). These metrics provide valuable insights into student engagement 

trends and highlight differences in participation across the labs. 



 

Table 2: Statistical Summary of Engagement Scores Across Three Virtual Labs: Mean, 

Standard Deviation, and Lower Quartile 

Lab Mean Standard Deviation Lower Quartile 

Viscosity Lab 0.26 0.1403 0.183 

Pressure Lab 0.23 0.1005 0.163 

Momentum Lab 0.23 0.0643 0.181 

 

 

Figure 4: The histograms reflecting engagement scores across the three virtual labs—

Viscosity Lab, Pressure Lab, and Momentum Lab 

 

3.3.1. Engagement Score Comparison 

The engagement score comparison reveals distinct patterns across the three virtual labs: 

Viscosity Lab, Pressure Lab, and Momentum Lab. The Viscosity Lab shows the highest 

concentration of participants with engagement scores in the range of 0.2–0.3, peaking at 

approximately 70 participants, but engagement drops sharply beyond 0.4, with minimal 

participation above 0.7. Similarly, the Pressure Lab also demonstrates a clustering of participants 

in the 0.2–0.3 range, though with a lower peak around 40 participants, and an even more 

constrained distribution with negligible representation beyond 0.5. In contrast, the Momentum 

Lab displays a broader and more evenly distributed range of engagement scores. A significant 

number of participants scored between 0.4–0.5, and engagement extended up to 0.7, suggesting 
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higher overall participation and sustained interest compared to the other two labs. These 

observations indicate that while the Viscosity and Pressure Labs effectively promoted moderate 

engagement, the Momentum Lab outperformed them in fostering deeper and more sustained 

student engagement. In summary: 

• Lower Engagement Clusters: Most students fall into the engagement score range of 

0.2–0.4 for the Viscosity and Pressure Labs, with a peak around 0.3. 

• Momentum Lab: The Momentum Lab shows a shift towards higher engagement 

scores, with a notable number of students in the 0.4–0.7 range. 

• Score Concentration: Few students have engagement scores above 0.7, and scores 

beyond 0.8 are rare across all labs. 

A reasonable threshold for defining disengaged versus engaged students could be set at 0.25. 

This value marks the upper boundary of the most common engagement ranges for the Viscosity 

and Pressure Labs, while also serving as a point where the Momentum Lab transitions to higher 

engagement levels. Students with scores below 0.25 are considered disengaged, while those at or 

above 0.25 demonstrate acceptable engagement levels. This threshold reflects the patterns 

observed in the histogram and aligns with the shift toward higher engagement in later labs, 

potentially indicating improved student proficiency and participation as the semester progresses. 

3.3.2. Possible Influencing Factors 

Several factors may have contributed to the observed engagement trends. Notably, the timing of 

the labs within the semester plays a significant role. The Viscosity and Pressure Labs, conducted 

during the first four weeks of the semester, coincide with the early learning phase when students 

may still be acclimating to the virtual lab environment and mastering fundamental concepts. This 

timing might partially explain the concentration of scores in the 0.2–0.3 range, as students are 

still developing their proficiency and confidence in navigating the lab activities. Conversely, the 

Momentum Lab, conducted later in the semester, reflects higher engagement scores, with a 

significant cluster around 0.5. By this point, students are likely more proficient in the virtual lab 

environment, better equipped to handle complex tasks, and more comfortable applying their 

knowledge, which enhances their overall engagement. 

Other factors, such as the complexity of the lab content, the level of interactivity, or the 

availability of support resources, may also have contributed. The Viscosity and Pressure Labs 

may lack sufficient interactive elements or scaffolding to sustain engagement, while the 

Momentum Lab’s broader distribution of scores suggests its content and design may have been 

more effective at fostering sustained and meaningful participation. 



3.3.3. FLASH Model Analysis 

To assess student engagement and disengagement over the course of the semester, we employed 

Flash model which is based on survival analysis. Survival analysis is a statistical method used to 

analyze time-to-event data, where the event of interest, in this case, disengagement, is treated as 

a failure or "death." The FLASH model was used to model engagement and disengagement 

patterns, providing a framework for understanding student behaviors in an online learning 

environment. The first step in FLASH is to define the survival parameters. In this study: 

• Survival (Engagement): Survival was defined as a student's continued engagement, 

determined by their interaction metrics and adherence to course activities. 

• Event (Disengagement): Disengagement was defined as the point where a student's 

engagement score fell below a predefined threshold of 0.25, signaling a significant drop 

in participation. 

The engagement threshold was set at 0.25 based on the analysis in the previous section and 

observed behavioral patterns in online learning environments. Students scoring below this 

threshold were considered disengaged, as their activity levels were insufficient to meet course 

requirements or learning outcomes. 

The study cohort included 197 students enrolled in the course over a 9-week duration. Data were 

collected on weekly engagement scores, calculated as a composite of participation in virtual labs, 

time spent on different levels, prelab and post lab quizzes scores, etc. For reviewing the full list, 

refer to Table 1. Other metrics associated with engagement, such as interactions with discussion 

boards, course materials, and assignment grades, were also available. However, this study aimed 

to isolate the specific impact of virtual labs. Therefore, we focused exclusively on parameters 

directly influenced by virtual lab activities. Disengagement events were recorded at Weeks 2, 

and 8. 

Survival analysis was conducted using the Kaplan-Meier estimator to calculate survival 

probabilities at each event time. The Kaplan-Meier method is well-suited for handling censored 

data, allowing for students who remained engaged throughout the semester or who withdrew 

from the course for reasons unrelated to disengagement to be accounted for in the analysis. 

1. Kaplan-Meier Estimation: The Kaplan-Meier estimator, Eq. (8), was used to calculate 

survival probabilities S(t) at each time point [15−18]: 

𝑆(𝑡) = ∏ (1 −
𝑑𝑖

𝑛𝑖
)

𝑡𝑖<𝑡

 
(8) 



Where 𝑑𝑖 is the number of disengagements at time 𝑡𝑖, and 𝑛𝑖 is the number of students at risk at 

time 𝑡𝑖. 

 

Figure 5: Survival analysis for the students’ engagement using Flash model 

 

The survival curve was plotted as demonstrated in Figure 5, showing the probability of students 

remaining engaged over time. Horizontal plateaus represented periods of stability, while drops 

corresponded to disengagement events. The hazard function shows the points of disengagement. 

Students are grouped based on their engagement trajectories, identifying clusters of high, 

moderate, and low-engagement learners. The model provides hazard ratios for disengagement 

events, quantifying the risk associated with specific factors such as lack of virtual lab 

participation, low initial engagement, and delayed assignment submissions. 

The FLASH model's flexibility allowed for a nuanced understanding of engagement dynamics, 

highlighting key intervention points to improve retention. 

To evaluate the impact of virtual labs on engagement, we compared students' submission grades 

for a specific momentum-focused virtual lab activity. This activity had previously been delivered 

as a discussion-based assignment in earlier iterations of the course. By transitioning the 

discussion to a hands-on virtual lab, we aimed to assess whether the interactive and experiential 

nature of the virtual lab enhanced student engagement and performance. The comparison as 

shown in Figure 6, focused on grade distributions, providing a comprehensive evaluation of the 

effectiveness of the virtual lab in fostering deeper understanding and participation. 
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Figure 6: comprehensive evaluation of the effectiveness of the virtual lab 

 

The grade comparison between students who participated in the VL and those who did not (No 

VL) highlights the significant impact of virtual labs on student performance. Most students in the 

VL group achieved grades in the 91–100 range, with nearly 50 students performing at this level, 

compared to a smaller number in the No VL group. This indicates that the hands-on, interactive 

nature of virtual labs may enhance students' understanding and their ability to achieve high 

performance. While the number of students scoring in the 81–90 range is comparable between 

the two groups, the VL group consistently shows stronger performance overall, particularly at 

the highest-grade range. 

At the lower grade levels (<60 to 71–80), the No VL group has slightly more students, 

suggesting that virtual labs may provide additional support for struggling learners, helping them 

avoid low scores. Overall, the results demonstrate that the integration of virtual labs fosters 

deeper engagement and better academic outcomes, especially for students aiming for top grades. 

These findings support the hypothesis that virtual labs offer a more effective and engaging 

learning experience compared to traditional discussion-based assignments. Further investigation, 

including qualitative feedback and engagement metrics, could provide additional insights into the 

benefits of virtual labs. 

The use of survival analysis, augmented by the FLASH model, provided actionable insights into 

student engagement patterns in an online learning environment. The analysis underscored the 

importance of early intervention, particularly for students at risk of disengagement. Moreover, 

the significant treatment effect of virtual labs suggests that interactive, hands-on learning 

experiences are critical for sustaining engagement. 
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Future work will explore integrating predictive analytics into the learning management system to 

proactively identify and support at-risk students, leveraging the FLASH model to enhance 

educational outcomes. 

To enhance engagement beyond visual stimulation, we propose integrating real-time adaptive 

feedback mechanisms within the VEs. By leveraging FLASH’s predictive capabilities, 

engagement patterns can be continuously analyzed to identify students at risk of disengagement. 

Based on this data, automated and personalized feedback can be deployed at critical learning 

milestones, ensuring students receive timely support. Future work will focus on designing and 

testing these mechanisms to ensure that feedback is not only timely but also contextually 

meaningful for students. 

3.3.4. Adjustments Based on Findings 

The visual patterns suggest targeted recommendations for improving engagement in future 

virtual lab iterations including thermodynamics labs. For conceptual labs such as Pressure Lab, 

introducing more interactive and gamified elements could encourage students to spend more time 

and remain engaged. Given their early-semester placement, these labs should include additional 

scaffolding to support students who are still building their foundational skills. Clear instructions, 

timely support, and feedback mechanisms can further address early barriers to engagement. 

For the Momentum Lab, which demonstrated higher engagement, these findings reinforce the 

importance of maintaining an interactive and well-structured approach. Enhancing adaptive 

content delivery and offering challenging tasks that align with student proficiency at this stage in 

the semester can further optimize engagement. 

By considering both the timing within the semester and the nature of the labs, future virtual labs 

can be strategically designed to maximize learning outcomes and foster meaningful participation 

throughout the course. Adjustments are made to the thermodynamics VEs based on the insights 

gained, ensuring their effectiveness and scalability. 

4. Conclusion 

This study highlights the transformative potential of Virtual Environments (VEs) in addressing 

the challenges of student engagement in online engineering education. By integrating immersive 

VEs into courses such as fluid mechanics and thermodynamics, we observed significant 

improvements in student participation, conceptual understanding, and overall academic 

performance. Employing FLASH model, coupled with SA techniques, allowed for a robust 

evaluation of engagement trends, providing actionable insights for designing effective 

educational interventions. 



The results from this study underscore several key findings: 

1. Engagement Thresholds and Patterns: The Kaplan-Meier survival curves 

demonstrated a critical engagement threshold of 0.25, with students scoring below this 

value significantly more likely to disengage. For example, the early-semester Viscosity 

and Pressure Labs had most students clustered within engagement scores of 0.2–0.3, 

whereas the later Momentum Lab showed broader and higher engagement scores, with a 

peak range of 0.4–0.7. This progression highlights the importance of timing and the 

growing familiarity students develop with VE tools over the semester. 

2. Impact of Virtual Labs on Performance: The grade distribution comparison revealed 

that students engaging in VE-based labs outperformed those in traditional discussion-

based assignments. For instance, nearly 50 students in the VE group achieved grades in 

the 91–100 range, compared to fewer in the non-VE group. This indicates that the hands-

on, interactive nature of VEs fosters a deeper comprehension of core engineering 

principles. 

3. Variability in Lab Effectiveness: Among the fluid mechanics VEs, the Momentum Lab 

demonstrated the highest engagement and performance, likely due to its interactive and 

conceptually rich design. In contrast, the early Viscosity and Pressure Labs, while 

effective in introducing basic principles, showed limited sustained engagement. This 

suggests that early labs might benefit from additional interactive elements, clearer 

scaffolding, and gamified features to bridge the initial learning curve. 

The thermodynamics VE under development shows great promise, particularly in its ability to 

dynamically visualize the relationships defined by the First Law of Thermodynamics. By 

allowing students to manipulate variables such as power input, temperature, and system torque, 

this lab engages students in active learning and critical thinking. The inclusion of real-time 

feedback and data visualization further enhances the learning experience, enabling iterative 

exploration and reinforcing theoretical knowledge through practical application. 

Building on these findings, several avenues for future exploration are proposed: 

1. Scalable Lab Designs: Develop a suite of thermodynamics VEs, including labs on 

entropy analysis, heat transfer, and phase change phenomena. These labs should 

incorporate varying levels of complexity to accommodate both foundational learning and 

advanced applications. 

2. Enhanced Interactivity: Introduce gamification, adaptive difficulty levels, and scenario-

based problem-solving to make early labs more engaging. For example, incorporating 

virtual troubleshooting tasks or competitive elements could motivate students to deepen 

their participation. 

3. Real-time Intervention Systems: Use the FLASH model to create predictive analytics 

tools within the LMS. By identifying at-risk students early, instructors can implement 



tailored interventions, such as targeted feedback, personalized study plans, or 

collaborative learning opportunities. To fully realize the potential of FLASH and VEs in 

online engineering education, future work will focus on enhancing feedback mechanisms. 

Specifically, we will investigate the integration of automated feedback systems within 

VEs, leveraging AI-powered tools and intelligent tutoring systems to provide real-time, 

personalized feedback based on student performance. 

4. Cross-Course Integration: Evaluate the effectiveness of VEs in other engineering 

courses, such as materials science or aerodynamics, to determine their scalability and 

interdisciplinary potential. 

5. Comprehensive Evaluation Metrics: Expand assessment criteria to include cognitive, 

psychomotor, and affective domains, ensuring a holistic understanding of VE impacts on 

student learning. Collecting qualitative feedback alongside quantitative data can offer 

deeper insights into student experiences. 

6. Representational Learning Enhancements: Research has shown that representational 

learning, which leverages visual and interactive models, is critical for understanding 

abstract and complex engineering concepts [19,20]. By incorporating advanced 

visualizations and dynamic simulations into VEs, students can better grasp ideas like 

energy transformations and fluid dynamics, which are otherwise challenging to visualize 

in traditional learning environments. Enhancing representational learning in VEs not only 

improves knowledge retention but also equips students with the skills to apply theoretical 

principles to real-world scenarios, a key objective in engineering education. Future work 

should explore the most effective types of visual and interactive representations for 

improving cognitive engagement and performance. 

7. Longitudinal Studies: Conduct extended research to assess the long-term impact of VEs 

on retention rates, professional preparedness, and career outcomes. These studies could 

guide continuous improvement in VE design and pedagogical strategies. 

This study establishes a compelling case for the integration of VEs as an indispensable tool in 

online engineering education. By fostering active learning and bridging the gap between 

theoretical concepts and practical applications, VEs have the potential to redefine the online 

engineering learning experience. Future studies should continue to refine these tools, ensuring 

they are accessible, effective, and scalable for diverse educational contexts. 
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