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Integrating Research, Design, and Communication Learning 
Outcomes in the Materials Science and Engineering Curriculum 

 
Abstract 
 
Learning outcomes in undergraduate capstone, design, and laboratory courses are typically 
centered around hands-on experience, providing students with the technical skills necessary 
within their engineering discipline. However, leaders in engineering education suggest that these 
hands-on courses should encompass a broader set of learning outcomes in order to train students 
to “think like an engineer”. Problem development, experimental design, and technical 
communication skills have been increasingly prioritized in engineering programs, but 
implementing curriculum that both addresses these skills and integrates them with essential 
technical content has proved challenging. In this work, we present a framework for incorporating 
research, design, and communication learning outcomes into the materials science and 
engineering undergraduate curriculum. Through this framework, we explore how course design 
and the use of continuous self-assessment influence student metacognition and self-perception. 
 
Introduction 
 
Undergraduate engineering programs tout the importance of laboratory, design, and capstone 
courses as crucial to a student’s education and development. These courses are typically 
positioned in the later stages of the curriculum, offering students an opportunity to apply 
fundamental knowledge from previous courses, develop technical skills necessary within their 
discipline, and work collaboratively to accomplish complex tasks that increasingly explore 
broader societal impacts [1-3]. In total, many in engineering (and in several other STEM 
disciplines) describe the collection of these learning outcomes as “hands-on” learning, an 
essential component of the curriculum for students to learn by doing in both authentic and 
simulated environments [4-6]. 
 
Recently, leaders in science and engineering education have suggested that these laboratory, 
design, and capstone courses should encompass a broader set of learning outcomes in order to 
achieve all of the benefits of hands-on learning. They argue that students should be introduced to 
cognitive tasks associated with experts [7-11], often described colloquially as preparing students 
to “think like an engineer”. This includes cognitive activities related to problem development 
(e.g. What question am I asking? Is it feasible and worthwhile to answer it?), experimental 
design (e.g. How will I actually address my question? What kind of evidence do I need?), and 
technical communication (e.g. How do I present my methods and evidence in a way that can be 
broadly understood and appreciated?). 
 
However, implementing curriculum that incorporates these higher-order learning outcomes is 
inherently challenging [10-11]. Students need multiple opportunities to practice and apply 
concepts at an introductory and intermediate level before they can begin to think like an expert. 
In turn, instructors and departments must scaffold both their individual courses and their 
curriculum as a whole for students to achieve these higher-order learning outcomes. 
Implementing open-ended experiments and projects also requires extensive preparation and 



troubleshooting and may not always be scalable. Instructors and departments often have to 
balance authentic approaches with practical limitations. 
 
In this work, I present a framework for incorporating higher-order learning outcomes into the 
materials science and engineering undergraduate curriculum through a single, redesigned course 
positioned at the beginning of a laboratory or capstone sequence. These learning outcomes focus 
on expert-level cognitive tasks related to problem development, experimental design, and 
technical communication, which I will term research, design, and communication (RDC) 
learning outcomes moving forward. The course itself requires no laboratory or design equipment 
and should be scalable to other institutions and to other engineering disciplines with slight 
modifications to the learning outcomes and assessments based on the exact skills and cognitive 
tasks required in each discipline. Through this framework, I explore the use of continuous self-
assessment and its influence on student metacognition and self-perception of their skills and 
abilities. 
 
Background and Course Design 
 
Spurred by changes in instruction at the beginning COVID pandemic, I redesigned the 
Nanomaterials Laboratory course (MatSci 160) at Stanford University in 2020. The course was 
repositioned as the first of a series of laboratory courses for materials science and engineering 
undergraduates. The intended audience included sophomore- and junior-level students, although 
seniors and masters-level students also participated (Table 1). The course has now been offered 
four times since its initial development, both at Stanford University and at Northwestern 
University, with a total enrollment of 70 students. All but 3 were enrolled in materials science 
and engineering degree programs. 
 

Table 1: MatSci 160 Course Enrollment 

Instructor Kumar Yan Kumar Kumar Totals Term S24-NU F23-SU F22-SU F21-SU 
Sophomore 6 0 3 5 14 

Junior 10 3 5 7 25 
Senior 0 3 3 6 12 

Masters-level 0 12 2 5 19 
Total Enrollment 16 18 13 23 70 

 
Traditionally, students in MatSci 160 would perform a series of experimental labs focused on 
nanomaterials synthesis and characterization. Through these labs, students practice writing 
experimental protocols in addition to gaining technical skills related to materials synthesis and 
processing. During the COVID pandemic, in-person laboratory sessions for MatSci 160 could 
not be conducted; it was impossible to send lab kits for students to work with gold nanoparticles 
or silicon nanowires, for example. Given these restrictions, I shifted the focus of MatSci 160 to 
serve as the introductory course in our laboratory series at Stanford University (introductory 
course in the capstone series at Northwestern University). The broader goal was to train students 
to propose their own experimental investigations in materials science and engineering and build 
expert-level cognitive abilities before stepping foot in the laboratory. 
 



Four new RDC learning outcomes (LO-C to LO-F) were established to support this goal that 
mapped directly to our department-level learning outcomes for the undergraduate curriculum. 
The revised course learning outcomes prepared students to: 
 

LO-A. Describe various techniques used to synthesize nanomaterials and justify their use 
LO-B. Explain how to characterize important properties of nanomaterials 
LO-C. Summarize the important objectives, methods, findings, and conclusions of a 

scientific report 
LO-D. Perform a literature search on a nanomaterials topic that interests you 
LO-E. Identify an important research question or gap in scientific knowledge 
LO-F. Design a logical set of experiments aimed at answering a specific set of scientific 

questions 
 
Lectures in MatSci 160 focused on introducing students to real examples in nanomaterials 
synthesis and characterization (LO-A & LO-B). Laboratory sessions were replaced with weekly 
writing assessments and discussion sections, allowing students to individually and 
collaboratively work towards the four RDC learning outcomes (LO-C to LO-F). Each weekly 
writing assessment, termed “Prelabs” to inspire students to think of these assessments as 
preparation for laboratory-based activities, included various readings and 4-5 short answer 
questions that introduced concepts related to the RDC learning outcomes (examples provided in 
supporting information). In discussion, students reflected on their Prelab responses and worked 
collaboratively through additional case studies and example problems related to the topics 
introduced. In Week 7, students gave short presentations (5 min) to their peers to practice 
communicating important gaps in scientific and engineering knowledge and receive feedback. 
Table 2 shows the list of discussion topics and associated RDC learning outcomes. Principles of 
backwards course design were used to map the RDC learning outcomes to discussion topics and 
Prelabs [12]. 
 

Table 2: MatSci 160 discussion topics and associated RDC learning outcomes 
 

Week Discussion Topics Expected RDC 
Learning Outcomes 

Week 1 Scientific Method, 
Reading Scientific Articles C 

Week 2 Comparative Statistics F 

Week 3 Design of Experiment 
(Full Factorial Design) F 

Week 4 Design of Experiments 
(Fractional Factorial Design) F 

Week 5 Analyzing Data, 
Creating Figure Plans C 

Week 6 Identifying Research Gaps CDE 

Week 7 Communicating 
Research Gaps CDE 

Week 8 Scientific Writing, Broader 
Impacts and Intellectual Merit EF 

Week 9 Research Ethics C 



Laboratory reports were replaced with three formative assessments that prepared students to 
accomplish expert-level cognitive tasks that ultimately allow materials scientists and engineers to 
establish a research or design objective and create a plan to accomplish it. The goal of each 
assessment was to break down this expert-level process into smaller steps, asking students to (1) 
design an effective experiment, (2) construct a scientific argument, and (3) propose their own 
research or design project (supporting information). 
 
The first two assessments (A1 and A2) focused on specific examples in nanomaterials synthesis 
and characterization introduced previously in lecture. A1 and A2 required students to create their 
own experimental plan and protocol for an identified objective, where A2 was designed to be 
more open-ended than A1. A2 also incorporated tasks related to providing scientific evidence 
covered in Weeks 4-6 in discussion. The teaching team provided significant written feedback 
after each assessment and I met individually with each student to review their feedback. 
Admittedly, this is likely not scalable to institutions or programs with large class sizes, but other 
feedback mechanisms including peer-to-peer review could be easily implemented to ensure 
students are able to review and reflect on their work. 
 
The final assessment (A3) was designed as a mock NSF-style proposal, intended for students to 
showcase their RDC skills and practice their ability to think like an expert-level materials 
scientist and materials engineer. A3 is similar to the research proposal students submit for the 
NSF Graduate Research Fellowships Program, with a few key differences related to scope 
(intellectual merit was more broadly defined to include both scientific and engineering problems) 
and broader impacts (less emphasis on student impact, more emphasis on societal impact). 
Unlike A1 and A2, A3 required students to come up with their own objective as well as their plan 
to accomplish it. Additionally, A3 introduced students to the goals of technical writing, the NSF 
evaluation criteria (intellectual merit and broader impacts), and strategies for effective 
communication. These topics were covered in a few lectures and in Weeks 7-9 in discussion. A3 
was also specifically scaffolded through Prelabs 6-8. 
 
Methods 
 
After designing and implementing MatSci 160, I sought to measure the impact of the course 
design on student ability, metacognition, and self-perception. Since MatSci 160 was developed 
as the introductory laboratory course at Stanford University, I decided to focus on student 
metacognition and self-perception for this study. The goal was to determine if students perceive 
growth in RDC learning outcomes during MatSci 160 and an improved ability to accomplish 
expert-level cognitive tasks, even though it is not considered a “hands-on” course. Directly 
measuring student ability in achieving these RDC learning outcomes requires a longitudinal 
study through the entire course series, which is currently ongoing. 
 
To measure student metacognition, students completed weekly self-assessments that were 
included in each Prelab assessment. The benefits of using self-assessment as a learning tool were 
explained to students at the beginning of the course. All self-assessments were optional, but 
strongly encouraged. Students were asked to identify which RDC learning outcomes they 
worked on in that particular Prelab. Students were also asked to self-identify any new skills 



developed and any fascinating or challenging concepts through free-response questions 
(supporting information). 
 
To measure student self-perception, students completed diagnostic surveys before, during, and 
after the course to collect broader information at key checkpoints. Pre-course surveys were 
administered before the first day of the course, mid-course surveys were administered after 
students submitted A1, and post-course surveys were administered in the last lecture (just before 
students submitted A3). Each survey asked students to rate their ability to achieve the RDC 
learning outcomes using 5-point Likert-scale questions (supporting information). All self-
assessments and surveys were incorporated into formal course assessment (although not 
required) and qualified for exempt status through the Institutional Review Boards at Stanford 
University and Northwestern University. 
 
Results and Discussion 
 
In total, 70 students enrolled in MatSci 160 across the four iterations of the course. Students 
completed self-assessments, pre-course surveys, and post-course surveys in all four iterations 
(Table 3). Students completed mid-course surveys in all iterations except F23-SU. 
 

Table 3: Survey responses in MatSci 160 
 

Instructor Kumar Yan Kumar Kumar Totals Term S24-NU F23-SU F22-SU F21-SU 
Enrollment 16 18 13 23 70 

Pre-Course Survey Responses 16 17 13 23 69 
Mid-Course Survey Responses 16 0 11 22 49 
Post-Course Survey Responses 14 16 12 21 63 

 
Student Self-Assessment 
 
Table 4 shows the compiled self-assessment responses from all MatSci 160 students, with the 
total response rate for each self-assessment shown on the right. Students were able to select any 
of the learning outcomes they felt they had practiced during that week’s Prelab. Learning 
outcomes that were selected by at least 66% of respondents are highlighted to help visualize the 
outcomes that were selected by a supermajority of students. G indicates students responding, “I 
didn’t work on any of these learning outcomes”. 
 
 
 
 
 
 
 
 
 
 
 



Table 4: Summary of Prelab self-assessment responses on RDC learning outcomes 
 

Week Discussion Topics 

Expected 
RDC 

Learning 
Outcomes 

A B C D E F G Responses 
(Rate) 

Week 1 Scientific Method, 
Reading Scientific Articles C 67% 39% 92% 15% 27% 5% 2% 66 (94%) 

Week 2 Comparative Statistics F 16% 12% 28% 26% 2% 86% 5% 43 (61%) 

Week 3 Design of Experiment 
(Full Factorial Design) F 5% 2% 23% 26% 5% 86% 2% 57 (81%) 

Week 4 Design of Experiments 
(Fractional Factorial Design) F 4% 5% 7% 25% 5% 89% 4% 55 (79%) 

Week 5 Analyzing Data, Creating 
Figure Plans C 37% 30% 89% 21% 9% 19% 4% 57 (81%) 

Week 6 Identifying Research Gaps CDE 32% 57% 70% 68% 70% 11% 0% 47 (67%) 

Week 7 Communicating 
Research Gaps CDE 55% 45% 70% 52% 85% 6% 0% 33 (47%) 

Week 8 Scientific Writing, Broader 
Impacts and Intellectual Merit EF 20% 26% 40% 60% 70% 54% 6% 50 (71%) 

Week 9 Research Ethics C 2% 2% 40% 9% 13% 2% 47% 45 (64%) 

 
Overall, student responses closely match the intended learning outcomes and exactly match the 
RDC learning outcomes in all but two discussions (Week 7 and Week 9). This suggests that 
students recognize the structure of the designed course and its intended outcomes. In Week 7, 
students strongly indicate practicing how to summarize scientific reports (LO-C) and identify 
important research questions (LO-E), which was necessary for their short presentations given in 
that week’s discussion. Students were also expected to perform a literature search to identify 
research gaps, but this was also incorporated in Week 6, which saw a higher student response for 
LO-D. In Week 9, students reviewed and discussed ethical case studies in nanomaterials design, 
focusing on data manipulation and designing reproducible experiments. This was an important 
culminating topic to consider in conjunction with the other expert-level cognitive tasks. 
However, students did not map this Prelab to any of the RDC learning outcomes, suggesting 
revisions might be needed to express ethical considerations in LO-C. 
 
Additionally, students self-reported many skills developed each week which mapped closely to 
the RDC learning outcomes. These self-identified skills predominantly included reading 
strategies for technical reports, experimental strategies and guidelines, identifying technical 
problems that are relevant and unanswered, and effectively explaining ideas and objectives via 
technical writing. Students also occasionally identified being able to recall concepts covered in 
previous Prelabs and discussions and an ability to connect ideas from week to week. Students 
also consistently identified difficulty in acquiring and synthesizing new information, especially 
in weeks connected to LO-C (Weeks 1, 5, 6, and 7). This is likely expected among students with 
limited practice or exposure to scientific and technical reports and emphasizes the importance of 
teaching technical reading strategies rather than assuming students can acquire new information. 
 



Pre-, Mid-, and Post-Course Surveys 
 
As shown in Table 3, student participation varied in our diagnostic surveys. Out of 70 students, 
45 completed all three of the pre-, mid-, and post-course surveys. Figure 1 shows the change in 
self-perception of the 45 students who completed all three surveys. Comparing pre-course and 
post-course surveys, students reported a 20%, 13%, 42%, and 35% increase in their comfort-
level with LO-C, LO-D, LO-E, and LO-F, respectively. Using paired, two-tailed t-tests, student 
responses between all three checkpoints were analyzed statistically (Tables 5-7). Students 
reported a statistically significant difference in all comparisons except for LO-D between the pre-
course and mid-course survey, although the p-value (0.0779) is close to the conventional 
significance level of α = 0.05. Survey responses were also compared across sophomores, juniors, 
seniors, and masters-level students (supporting information, Table S1-S3). For all learning 
outcomes, there were no significant differences in self-perception between student levels, 
indicating that the perceived growth was similar across students with varying backgrounds and 
preparedness levels. 
 

 
Figure 1: Average self-perception of RDC learning outcome achievement at pre-, mid-, and post-

course checkpoints 
 
Interestingly, this change in LO-D was the only observed decrease in self-perception. Students 
rated LO-D, their ability to perform a literature search on a scientific topic, the highest among 
the four learning outcomes in the pre-course survey, yet saw a nearly statistically significant 
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decrease midway through the course. As shown in the supporting information (Table S3) students 
across all undergraduate levels reported a decrease in their self-perception of their achievement 
in LO-D from their pre- to mid-course survey, while masters-level students reported no change. 
 
This appears to be consistent with the illusion of explanatory depth, a cognitive bias that 
describes a person’s belief that they understand a topic with far greater precision and detail than 
in reality, which is not remedied until that person is asked to explain that topic [13]. Students 
believe that they are able to perform a successful literature search until they are actually asked to 
do so. This indicates the importance of LO-D and its connection to LO-C, expert-level cognitive 
tasks that are often considered assumed knowledge by instructors, but in reality are difficult tasks 
for undergraduate students. By the end of the course, students rated LO-D much higher, which 
suggests that students can be trained to acquire new information when given practice in 
performing these tasks. In contrast to LO-D, students rated LO-E and LO-F much lower in the 
pre-course survey, which is expected given the position of MatSci 160 in the curriculum. 
Increases in self-perception were significant in both learning outcomes at both checkpoints, 
indicating that students experience continued growth in these areas throughout the course. 
 
Table 5: Changes in self-perception of RDC learning outcome achievement between pre-course 

and mid-course checkpoints 
 

RDC 
Learning 
Outcome 

Mean (SD) 
Pre-Course 

Mean (SD) 
Mid-Course df T-Score P-Value Effect 

Size (d) 

LO-C 3.73 (1.05) 4.09 (0.79) 44 2.276 0.0278 0.39 
LO-D 3.84 (1.04) 3.60 (0.91) 44 1.805 0.0779 0.25 
LO-E 2.69 (0.90) 3.27 (0.89) 44 3.922 0.0003 0.65 
LO-F 2.84 (0.95) 3.29 (0.94) 44 3.246 0.0022 0.48 

 
Table 6: Changes in self-perception of RDC learning outcome achievement between pre-course 

and post-course checkpoints 
 

RDC 
Learning 
Outcome 

Mean (SD) 
Pre-Course 

Mean (SD) 
Post-Course df T-Score P-Value Effect 

Size (d) 

LO-C 3.73 (1.05) 4.49 (0.59) 44 4.480 5.25E-05 0.89 
LO-D 3.84 (1.04) 4.33 (0.88) 44 2.981 0.0047 0.51 
LO-E 2.69 (0.90) 3.82 (0.89) 44 6.788 2.34E-08 1.26 
LO-F 2.84 (0.95) 3.84 (0.98) 44 7.416 2.82E-09 1.04 

 
 
 
 
 
 
 
 



Table 7: Changes in self-perception of RDC learning outcome achievement between mid-course 
and post-course checkpoints 

 
RDC 

Learning 
Outcome 

Mean (SD) 
Mid-Course 

Mean (SD) 
Post-Course df T-Score P-Value Effect 

Size (d) 

LO-A 3.80 (0.76) 4.16 (0.56) 44 3.917 0.0003 0.54 
LO-B 3.69 (0.82) 4.24 (0.77) 44 5.380 2.72E-06 0.69 
LO-C 4.09 (0.79) 4.49 (0.59) 44 3.903 0.0003 0.57 
LO-D 3.60 (0.91) 4.33 (0.88) 44 5.880 5.07E-07 0.82 
LO-E 3.27 (0.89) 3.82 (0.89) 44 3.953 0.0003 0.62 
LO-F 3.29 (0.94) 3.84 (0.98) 44 4.432 6.13E-05 0.57 

 
Conclusion 
 
Overall, this work demonstrates that expert-level cognitive tasks related to problem 
development, experimental design, and technical communication can be practiced outside of a 
traditional “hands-on” engineering course. Using a scalable framework, four research, design, 
and communication (RDC) learning outcomes are implemented into a single materials science 
and engineering course that can be positioned at the beginning of a laboratory or capstone course 
sequence. These RDC learning outcomes engage students to “think like an engineer” and have a 
positive impact on student metacognition and self-perception. Further work is needed to perform 
longitudinal studies to see if this approach leads to improvements in student ability in further 
laboratory or capstone coursework. Additionally, studies should be implemented to determine if 
this approach prepares students with transferable skills more equitably than in traditional 
laboratory and capstone courses. 
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Supporting Information 
 
A. Prelab question examples (portions of Prelabs) 
 
Week 1: 

 
Online Article: Pain, E. (2016) How to (seriously) read a scientific paper. Science, DOI: 
10.1126/science.caredit.a1600047. 
Link here: https://www.science.org/careers/2016/03/how-seriously-read-scientific-paper 

 
1. What are some useful strategies for reading a scientific paper? Include at least three strategies 

mentioned in the article that you already use or would like to implement. 
2. What resonated with you in the “What do you do when there is something you don’t 

understand?” or “Do you ever feel overwhelmed reading papers, and how do you deal with 
that?” sections? Write about a topic that stood out to you as being important. 

 
Week 2: 
 
1. Suppose you were in charge of running a self-assembled monolayer deposition process. You 

noticed that some of your films have visible defects, so you want to investigate how to improve 
the uniformity of the deposited SAMs. 
 
a. Come up with 2-3 design factors that you would like to study. Explain your choices. 
b. Can you think of any nuisance factors that may arise? Would these factors be controllable 

or uncontrollable? 
 
Week 5: 
 

Primary Article 1: Sau, T. K. and Murphy, C. J. (2004) Seeded high yield synthesis of short 
Au nanorods in aqueous solution. Langmuir, 20 (15), 6414-6420. 

 
1. We will first be looking at how the message depicted by figures in Primary Article 1 match 

with the authors’ intended objective. 
 

a. First, before reading through the paper, look at all the figures and tables. Summarize the 
main findings of each figure in a short bullet point list with one bullet point for each figure. 
Hint: You may find that reading the text that references each figure provides useful context 

b. Now, read through the abstract and conclusion. Does the explanation of your analysis of 
the figures/tables match with the author’s written message? What discrepancies exist 
between the figures and the explanation in text?  

 
 
 
 
 
 

https://www.science.org/careers/2016/03/how-seriously-read-scientific-paper


B. Formative assessment examples (portions of assignments) 
 
A1: 
 
For this assignment, our goal is to develop a mixed-monolayer alkanethiol SAM on gold via micro-
contact printing (µCP) with tunable surface properties. Your objectives are: 
 
1) Identify at least ten experimental factors that could influence the two responses below. Include 

a brief explanation for why each factor might affect one or both responses. 
 

Response 1: SAM surface coverage (we want to maximize this) 
Response 2: SAM surface free energy (we want to be able to tune this) 

 
2) From your list of factors, choose three that you want to test. Explain why you think these are 

important. (ie. Why will these have an impact on surface coverage and surface free energy? 
Why are they the most important factors to consider?) 
 

Hint: one factor should be related to the composition of the mixed-monolayer SAM! 
 
A2: 
 
1) Design an initial screening experiment. Create a table showing your factors, levels, responses, 

replicates, and number of experiments and answer the following questions below your table: 
 

a. How did you select your factorial design (full vs. fractional, number of levels)? Provide a 
rationale for your choice based on the time and resources needed for your experiment. 

b. How did you select your levels for each factor? 
c. Do you expect any interactions between your chosen factors? 
d. How do you plan on minimizing effects due to confounding? 
 

2) Create a detailed protocol for nanowire growth and device fabrication. Include the following 
details: 
 

a. Materials selection – briefly describe (5-7 sentences) the final architecture of the solar cell 
and list the materials used for the substrate, current collectors, semiconductor (absorber), 
dopants, and any electron or hole transport layers. 

b. Substrate patterning – describe in detail (2-3 paragraphs) the methods to clean and pattern 
the substrate via nanoimprint lithography (NIL). 

c. Nanowire growth – describe in detail (2-3 paragraphs) the methods to grow the NWs via 
chemical vapor deposition (CVD). 

d. Device fabrication – briefly describe (5-7 sentences) how the final NWSC will be 
assembled. 

e. Characterization methods – briefly describe (5-7 sentences) how you will measure your 
responses. 

 

Identify all experimental factors you will hold constant. Identify any nuisance variables (either 
controlled or uncontrolled) that you expect could influence either of the chosen responses. How 
will you address these potential nuisance variables? 

 



C. Self-assessment questions 
 
1. For this week’s Prelab, how would you rate your level of conceptual understanding of the 

assigned readings? [Likert scale 1 (did not understand at all) to 5 (fully understand)] 
2. What new skill(s) did you gain or improve upon in this week’s Prelab? [free response] 
3. What learning outcomes do you feel like you worked on in this week’s Prelab? Select all that 

apply. [Describe various techniques used to synthesize nanomaterials and justify their use; 
Explain how to characterize important properties of nanomaterials; Summarize the important 
objectives, methods, findings, and conclusions of a scientific report; Perform a literature 
search on a topic that interests you; Identify an important research question or gap in 
scientific knowledge; Design a logical set of experiments aimed at answering a specific set of 
scientific questions; I didn’t work on any of these learning outcomes] 

4. What was one topic you found fascinating from the reading? [free response] 
5. What was one topic you found challenging from the reading/Prelab? [free response] 
6. Do you have any other questions for the instruction team? [free response] 
 
 
D. Pre-course, mid-course, and post-course survey questions 
 
All on Likert scale 1 (not comfortable at all) to 5 (extremely comfortable) 
1. Do you feel comfortable describing various techniques used to synthesize nanomaterials? 
2. Do you feel comfortable explaining how to characterize important properties of 

nanomaterials? 
3. Do you feel comfortable reading a scientific paper and summarizing the important objectives, 

methods, findings, and conclusions? 
4. Do you feel comfortable performing a literature search on a topic that interests you? 
5. Do you feel comfortable identifying an important research question or gap in scientific 

knowledge? 
6. Do you feel comfortable designing your own set of experiments to answer a particular 

scientific question? 
  



E. Pre-course, mid-course, and post-course survey analysis across student levels 
 
Table S1: Comparison in self-perception of averaged RDC learning outcome achievement across 

student levels. Comparisons are performed via an unpaired t-test with p-values                 
(degrees of freedom) reported in each cell. 

 

Student Level Mean (SD) 
Pre-Course vs Sophomores vs Juniors vs Seniors vs Masters 

Sophomore 3.37 (1.09) N/A 0.5849 (30) 0.9843 (18) 0.9247 (17) 
Junior 3.14 (1.20) 0.5849 (30) N/A 0.6717 (24) 0.6093 (23) 
Senior 3.36 (1.03) 0.9843 (18) 0.6717 (24) N/A 0.9163 (11) 

Masters 3.42 (0.97) 0.9247 (17) 0.6093 (23) 0.9163 (11) N/A 
 

Student Level Mean (SD) 
Mid-Course vs Sophomores vs Juniors vs Seniors vs Masters 

Sophomore 3.68 (0.81) N/A 0.5713 (30) 0.9798 (18) 0.7052 (17) 
Junior 3.49 (0.99) 0.5713 (30) N/A 0.6422 (24) 0.4484 (23) 
Senior 3.69 (0.87) 0.9798 (18) 0.6422 (24) N/A 0.7628 (11) 

Masters 3.83 (0.74) 0.7052 (17) 0.4484 (23) 0.7628 (11) N/A 
 

Student Level Mean (SD) 
Post-Course vs Sophomores vs Juniors vs Seniors vs Masters 

Sophomore 4.44 (0.57) N/A 0.1260 (30) 0.3898 (18) 0.2465 (17) 
Junior 3.96 (0.99) 0.1260 (30) N/A 0.5772 (24) 0.7860 (23) 
Senior 4.19 (0.67) 0.3898 (18) 0.5772 (24) N/A 0.7764 (11) 

Masters 4.08 (0.69) 0.2465 (17) 0.7860 (23) 0.7764 (11) N/A 
 
 

Table S2: Comparison in self-perception change of LO-C achievement across student levels. 
Comparisons are performed via an unpaired t-test with p-values (degrees of freedom)                   

reported in each cell. 
 

Student Level Δmean (ΔSD) 
Pre to Mid vs Sophomores vs Juniors vs Seniors vs Masters 

Sophomore 0.15 (1.28) N/A 0.4595 (30) 0.7858 (18) 0.5518 (17) 
Junior 0.47 (1.12) 0.4595 (30) N/A 0.6877 (24) 0.9526 (23) 
Senior 0.29 (0.49) 0.7858 (18) 0.6877 (24) N/A 0.5856 (11) 

Masters 0.50 (0.84) 0.5518 (17) 0.9526 (23) 0.5856 (11) N/A 

      

Student Level Δmean (ΔSD) 
Pre to Post vs Sophomores vs Juniors vs Seniors vs Masters 

Sophomore 0.85 (1.21) N/A 0.9274 (30) 0.7855 (18) 0.2253 (17) 
Junior 0.89 (1.29) 0.9274 (30) N/A 0.7331 (24) 0.2105 (23) 
Senior 0.71 (0.76) 0.7855 (18) 0.7331 (24) N/A 0.2253 (11) 

Masters 0.17 (0.75) 0.2253 (17) 0.2105 (23) 0.2253 (11) N/A 



Table S3: Comparison in self-perception change of LO-D achievement across student levels. 
Comparisons are performed via an unpaired t-test with p-values (degrees of freedom)                   

reported in each cell. 
 

Student Level Δmean (ΔSD) 
Pre to Mid vs Sophomores vs Juniors vs Seniors vs Masters 

Sophomore -0.15 (0.99) N/A 0.4297 (30) 0.9825 (18) 0.7558 (17) 
Junior -0.42 (0.90) 0.4297 (30) N/A 0.4884 (24) 0.3282 (23) 
Senior -0.14 (0.90) 0.9825 (18) 0.4884 (24) N/A 0.7839 (11) 

Masters 0 (0.89) 0.7558 (17) 0.3282 (23) 0.7839 (11) N/A 

      

Student Level Δmean (ΔSD) 
Pre to Post vs Sophomores vs Juniors vs Seniors vs Masters 

Sophomore 0.85 (1.28) N/A 0.1915 (30) 0.5901 (18) 0.3779 (17) 
Junior 0.26 (1.19) 0.1915 (30) N/A 0.5162 (24) 0.8950 (23) 
Senior 0.57 (0.53) 0.5901 (18) 0.5162 (24) N/A 0.5373 (11) 

Masters 0.33 (0.82) 0.3779 (17) 0.8950 (23) 0.5373 (11) N/A 
 


