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WIP: Efficacy of Connecting Engineering and Calculus through AI Problem Generation 

1. Introduction

Calculus courses have long served as gatekeepers to STEM fields, presenting significant 
challenges to students and contributing to high rates of attrition in engineering programs [1], [2]. 
Despite being foundational, these courses often fail to connect abstract mathematical concepts to 
their practical applications in engineering, leaving students disengaged and unprepared for real-
world problem-solving [3]. This disconnect has been identified as a barrier to retention, with 
many students citing calculus as a primary reason for abandoning STEM majors [4].  

To address this issue of disconnect between calculus courses and engineering applications, 
education researchers have turned to artificial intelligence in education (AIED) to bridge the gap 
between theoretical knowledge and its application. Tools like ProGenie, an AI-driven problem-
generation platform, aim to contextualize calculus problems within authentic engineering 
scenarios, thereby enhancing student engagement and comprehension. Preliminary findings from 
this study suggest that AI-generated problems can align with diverse cognitive processes and 
knowledge dimensions, though early implementations have tended to generate problems that 
generally require students to apply procedural knowledge. We address this outcome as a potential 
shortcoming to current AI tools and we discuss implications for improving AI tools for first year 
calculus education and next steps for evaluation. 

1.1. Investigating Why Calculus Causes Attrition 

Calculus related courses have long been regarded as gatekeeping to STEM degrees, including 
engineering technology. On average, 20% of students in calculus courses face an outcome of a 
‘D’, ‘F’, or withdrawal (DFW); DFW outcomes in calculus are as high as 40% at some 
institutions [5]. Students have come to describe calculus as a type of “weed out” course because 
these courses negatively impact persistence and challenge student’s confidence and interest in 
STEM, often revealing inadequacies in high school preparation or readiness for college transition 
[2]. Even when adequately prepared, students argue that “it’s better to bail than to fail” to avoid 
the risk of poor performance. As such, students who switch out of STEM majors frequently cite 
negative experiences in calculus classes as a leading reason [6]. 

Researchers have found that instructors who provide meaningful connections between calculus 
topics and applications are most valued by all students, including those who persist in STEM 
(36%) and those who do not (24%) [2]. These findings align with calls for more robust 
applications of calculus during the landmark 1987 National Consortium to Revise Calculus for 
the New Century [7]. One of the referenced reasons has been the lack of innovation and 
meaningful problems found in stagnant Calculus textbooks [7]. This literature suggests an 
opportunity to improve persistence through calculus by improving the connection between 
mathematics and their real-world applications. 



1.2. Revisiting Bloom :S- Taxonomy for Modern Learning 

Effective teaching and learning are guided through well-strnctured objectives. Leaming 
objectives outline the composition of lessons and practice problems by establishing the content 
of focus, specific student activities, and fo1ms of assessment [8]. Similarly, they have been 
discussed in best practices texts for how they contribute to learning [9], [10]. 

Bloom's Taxonomy has frequently been referenced in developing learning objectives [5], [11]. A 
revision to Bloom's Taxonomy includes two dimensions: Knowledge Typology and Cognitive 
Process [12]. These dimensions help organize learning objectives based on their subject (noun: 
knowledge typology) and the activity (verb: cognitive process). Moreover, the subject of 
knowledge can be categorized into four developmental subjects [12], where later types refer to 
deeper knowledge; we present these four types in Table 1. Cognitive Processes can be broken 
down into six developmental activities [12], where higher numbers refer to more complex 
processes; these six processes are given in Table 2. The combination of these knowledge types 
and cognitive processes can be modeled into a taxonomy table, illustrated through Figure 1. 

(A) Factual

(B) Conceptual

( C) Procedural

(D) Metacognitive

Te1minology and discrete facts that serve as the foundation of 
understandin 
How these elements of a subject relate to each other, which enables 
learners to meanin full constrnct understandin 
how to perfo1m specific tasks, including methods of inquiiy, 
al orithms and techni ues 
Understanding around one's own cognition, including learning 
strate ies and roblem-solvin stren ths and weaknesses 

Table 2. Description of the Six Co2nitive Processes. 

Coonitive Process ■ • tio■ EIAmDle 

(1) Remembering Retrieving of knowledge Defining a derivative 
(2) Understanding Constrncting meaning Summarizing the relationship 

between a function and its derivative 
(3) Applying Conducting a procedure Taking the derivative of a function 
( 4) Analyzing Organizing material into palis and Differentiating integrals from then· 

detennining their relationships approximation methods 
( 5) Evaluating Making judgments using criteria Perfo1ming a sanity check whether a 

or experience solution makes sense 
( 6) Creating Generating or planning something Creating a function that reflects an 

novel observed behavior 



 
Figure 1. Annotated Taxonomy Table [12]. 

 
Effective learning objectives for practice problems and activities should incorporate varied 
knowledge typologies and cognitive processes to reflect the challenges students will face in their 
careers. Engineering problems in the real world are often ill-structured and complex with 
multiple solution pathways, making it essential to design course problems that align with this 
complexity [13]. Practicing with problems that are diverse along these dimensions provides 
students with rigorous experiences that prepare them for addressing real-world challenges. 
Storytelling can also serve as a powerful framework for addressing these challenges, as it piques 
curiosity and engages students by contextualizing abstract problems within relatable, real-world 
narratives [14], [15]. By embedding discipline-specific problems into meaningful stories, 
students can connect more deeply with the material, enhancing their critical thinking and 
problem-solving skills [16], [17].  
 
1.3. Exploring the Role of AI in Education 
 
The integration of AIED has emerged as a critical field of study, broadly categorized into two 
major areas: how AI can enhance teaching and learning, and how individuals are taught about AI 
itself. Our review focuses on the former. While the potential of AI in education has been met 
with both caution and praise, the discourse remains divided, and the future of AIED is unknown 
and unpredictable. Gray and Kucirkova [18] highlight the transformative potential of AI, 
particularly in supporting personalized and adaptive learning environments. However, Selwyn 
[19] warns of how speculative education researchers may become about much AIED research. 
While AI tools have begun to demonstrate their abilities to function as digital assistants [20], 
personalized tutors [20], [21], and tailored educational content generators [22], [23], rigorous 
assessment and evaluation is needed [19]. As such, researchers have begun to publish 
frameworks [22] and practical strategies for integrating AI into education, emphasizing ethical 
considerations [24]. Challenges particularly persist in embedding AIED into broader policy 
discussions and ensuring that ethical implications are sufficiently addressed [25]. 
 
One area of research in AIED explores the use of AI and large language models (LLMs) to 
generate contextualized math problems. Although automatic problem generation has been 
studied since the mid-1960s [26], the accessibility and sophistication of modern AI models have 
significantly enhanced the personalization, generation speed, and robustness of these problems. 
Recent efforts, such as the use of OpenAI’s ChatGPT to generate problems in real-time within 
classroom settings, have demonstrated the potential of these tools to adapt dynamically to 
learners’ needs [27]. This approach is gaining traction, particularly in K–12 education, where 
personalized arithmetic problems are being used to establish meaningful context for students 



[28], [29]. While these tools have been emerging, a formal tool designed for engineering 
education and the challenges first-year students face in calculus has yet to be publicly released. 
 
2. Project Approach 
 
Calculus courses often experience high attrition rates, partially because students struggle to see 
real‐world relevance—especially in engineering contexts. To address this challenge, we explore 
whether an AI tool called ProGenie can generate academically meaningful calculus problems that 
highlight authentic engineering applications, thereby potentially enhancing student engagement. 
We aim to evaluate the subject (knowledge typology) and activity (cognitive process) embedded 
in these AI‐generated problems, focusing on what we consider “latent objectives”—those 
learning goals that remain implicit in traditional problem statements. By identifying these latent 
objectives, we can determine if AI‐generated items truly align with calculus course 
requirements. Specifically, we pose the question: What are the latent objectives of personalized, 
engineering‐contextualized calculus problems generated by AI? Through this lens, we seek to 
ascertain how effectively ProGenie addresses long‐standing issues of relevance and rigor in 
calculus, with the aim of curbing attrition rates among first‐year engineering students. 
 
2.1. Generating Calculus Problems with ProGenie 
 
Our analysis focuses on problems generated by an AI Problem Generation tool, ProGenie. 
ProGenie is an in-house tool, developed at [institution blinded for review], which has not yet 
been officially released for public use.  ProGenie enables faculty to produce engineering story-
based problem sets aligned with specific engineering disciplines to provide student autonomy in 
problem selection. For example, an instructor can quickly generate exponential decay problems 
wrapped in interesting stories related to biomedical, electrical, civil, and manufacturing 
engineering. Students can engage with the engineering discipline of their choosing or the 
problem scenario that piques their interest.  
 
We share the general structure of ProGenie as a system in Figure 2. Users can request unique 
problems with very limited input, such as “Chain rule about chemical process safety.” ProGenie 
will produce a full student worksheet, instructor solution, and grading rubric within the “black 
box” of AI (Figure 2). ProGenie invites users to provide as little or as much detail about a 
particular problem scenario as they like in the problem generation process. We designed 
ProGenie to process commands through modular application programming interfaces (APIs) and 
can easily switch between large language models (LLMs) such as OpenAI’s GPT-4 to Google’s 
Gemini. In the background, we have configured ProGenie to interpret commands with the goal of 
producing structured, solvable calculus problems in the context of user-defined engineering 
scenarios using proprietary prompting. However, we have also configured ProGenie to format its 
responses using LaTex and created a backend to automatically generate the final output in PDF-
formatted documents for ease of use. 
 
For this study, we analyzed nine problems that we generated using OpenAI’s o1 model. We have 
included an example problem as Appendix 1 for reference. 
 



We share the work we generated with ProGenie as a case-study for other AI generation 
platforms. We recognize switching the LLM and altering the prompt configuration will 
significantly affect the output; hence, we share our findings as ‘lessons learned.’ In doing so we 
seek to contribute to the collective best practice for using AI as a tool in education. In our case, 
we seek to share the efficacy of how AI generated problems can connect calculus to engineering 
applications with a breadth and depth that would be difficult for most instructors to generate on 
their own. 
 
 

 
Figure 2. Flowchart of how ProGenie Functions. 

 
2.2. Implementing Provisional Coding for Problem Sets 
 
As we sought to understand the latent objectives of AI-generated engineering-calculus problems, 
we adapted the descriptions of knowledge typologies (Appendix 2) and cognitive processes 





 
Next, we coded Problem 2, regarding transoceanic fiber optic cables, as C-3: 

a) Using the attenuation coefficient for the selected cable, derive an expression for the rate 
at which the signal power loss (in decibels) increases with distance. Compute this rate. 

b) Determine the maximum allowable distance between amplifiers if the signal power 
cannot drop by more than 20 dB between amplifiers to maintain signal integrity. 

c) Based on your findings, calculate the number of amplifiers required for the 6,000 km 
cable. 

This problem gives students an equation and ask them to derive it with respect to distance. To 
perform this derivation, students need procedural knowledge (C) of how to apply the power rule. 
Enacting this knowledge reflects the apply (3) cognitive process. 
 
We coded Problem 4, regarding a drug delivery capsule, as C-4: 

Using the degradation rate constants you identified in your research, for each polymer: 
1. Model the rate at which the medication is released into the bloodstream over time. 
2. Determine the time duration during which the drug concentration remains within the 
therapeutic window (between Cmin = 5mg/L and Cmax = 20mg/L). 

This problem gives students an equation of a capsule mass as a function of time. While the first 
task of this problem reflects C-3, the second step reflects C-4. Students must organize the 
multiple steps required to answer this question, which reflects the analyze (4) cognitive process. 
To perform these steps, students must have requisite procedural knowledge (C) as well. 
 
3.1. Examining C-3: A Potential Shortcoming of AI Generated Problems 
 
A potential shortcoming of AI-generated problems is the excess of problems with objectives 
related to applying procedural knowledge (C-3). As discussed, students should see problems with 
a diversity of objectives to help prepare them for the complexity of real-world problems [32]. 
The over-representation of C-3 type problems may hinder students from getting this diversity. 
Problems that require factual knowledge (A) may not be best suited for engineering-
contextualized problems. For example, students may not need a personalized word-problem to 
practice their factual knowledge of mathematical limits. However, there is a poignant lack of 
problems that have students practice evaluating (5) and creating (6) or exercising their 
metacognitive knowledge (D). Of the nine problems we generated, we only coded Problem 6 as 
D-6: 

In designing a power transmission from a power plant to a city across a river, you aim to 
minimize the length of the transmission line while considering the rivers constraints. The 
task is to calculate the angle θ, relative to the riverbank, at which the line should be 
initiated to minimize material costs and ensure a consistent power supply… To solve this 
problem, calculate the theoretical optimal path using trigonometry, and justify your 
choice based on practical material research. The key steps involve optimizing the path 
length using trigonometric identities and constraints. 

In Problem 6, students are asked to create (6) an equation from the context of the problem, which 
requires metacognitive knowledge on how to set up and solve this type of problem. 
 
The abundance of C-3 type problems may also be an artifact of calculus learning. Calculus 
teaching has long been recognized for its procedural manner. Recognizing the relationship 



between conceptual and procedural knowledge (Hetcher et al., 2022), education researchers have 
sought alternative approaches to gaining robust conceptual and procedural knowledge of calculus 
[33], [34], [35].  
This reliance on procedure is parallel to a critique on Bloom’s taxonomy. Bloom's Taxonomy 
assumes that lower-order knowledge typologies (i.e., facts and concepts) must precede higher-
order typologies (i.e., procedures and metacognition) [5]. However, as Case and Marshall [36] 
point out, this developmental progression often fails to capture the reality of procedural tasks, 
such as in calculus problem-solving, where students may memorize and apply problem-solving 
algorithms without truly understanding the underlying concepts. For example, students can know 
how to take a derivative without really having the conceptual knowledge needed to understand 
what that means.  
 
We recognize the abundance of C-3 type AI-generated problems as a flag for concern that 
ProGenie may be perpetuating the gap in calculus learning that does not balance conceptual and 
procedural knowledge. Our future steps, and our recommendations for others seeking to integrate 
engineering and technology into calculus learning, are to continue to stay cognizant of and 
mitigate potential biases being built into AI tools. Our learning from analyzing the problems 
generated by ProGenie have led us to realize that out future work should include taxonomy 
references within the prompt configuration to facilitate problem generation alignment with 
specific learning objectives, beyond ‘applying procedural knowledge’ (C-3). Additionally, we 
believe, based on what we have learned in creating ProGenie and our broader work with LLMs, 
is that we can improve our internal prompting strategy to explicitly address these shortcomings. 
 
3.2. Limitations 
 
When answering our research question regarding the latent objectives to AI-generated calculus 
problems, we only analyzed nine problems. It is possible that through additional analysis 
additional objective types and processes may emerge. We also only used OpenAI’s ChatGPT 
models for problem generation. While the LLM used may impact the generated problems, 
analysis comparing models is out of scope for this work. Others who use AI-generated problems 
should expect some differences if using different LLMs or GPT models. 
 
3.3. Projecting Implications for First-year Programs 
 
Regarding first-year programs, we still hold the belief that engineering-contextualized, AI-
generated calculus problems can help improve calculus learning and STEM program retention 
during the first year. Tools like ProGenie provide an opportunity to enhance student curiosity and 
interest and readily connect calculus concepts to applications, which has been a major 
shortcoming in traditional calculus learning materials [37]. The findings from our study revealed 
that while the applications were largely feasible, ProGenie continued to reinforce the challenges 
associated with integrating calculus into engineering curricula. After correcting this potential 
shortcoming, our next step will be to evaluate first-year students’ perceptions of these 
application-based problems and whether these problems can improve their calculus experience.  
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Appendix 1. Professor Page

Professor Page: Designing an Optimal Drug Delivery Capsule

Title

Designing an Optimal Drug Delivery Capsule

Problem Statement

As a biomedical engineer at MedTech Innovations, you are part of a team developing a new drug delivery
capsule designed to release a medication at a controlled rate over time. The goal is to maintain the drug
concentration within the therapeutic window (between Cmin and Cmax) in the patient’s bloodstream for as
long as possible to improve efficacy and patient compliance.

The capsule releases the medication as it dissolves inside the body, and the rate at which the capsule
dissolves follows an exponential decay model. The mass m(t) of the capsule remaining at time t is given by:

m(t) = m0e
−kt

where:

• m0 is the initial mass of the capsule (in milligrams, mg),

• k is the degradation rate constant (in h−1),

• t is the time (in hours, h).

Research Task

Research three different biodegradable polymers commonly used in drug delivery systems:

1. Polylactic acid (PLA)

2. Polyglycolic acid (PGA)

3. Poly(lactic-co-glycolic acid) (PLGA)

For each polymer, find the typical degradation rate constant k (in SI units). Consider how the degradation
rate affects the release rate of the medication.

Primary Task

Using the degradation rate constants you identified, for each polymer:

1. Model the rate at which the medication is released into the bloodstream over time.

2. Determine the time duration during which the drug concentration remains within the therapeutic
window (between Cmin = 5 mg/L and Cmax = 20 mg/L).

Assume the following:

• The patient’s blood volume is V = 5 L.

• The medication is uniformly distributed in the bloodstream.

• The initial mass of the capsule m0 = 100 mg.

1



Appendix 1. (cont) Professor Page

Solution Steps for Professors

To solve this problem, follow these steps for each polymer:

1. Find the degradation rate constant k (use typical values for educational purposes):

• PLA: kPLA = 0.02 h−1

• PGA: kPGA = 0.05 h−1

• PLGA: kPLGA = 0.03 h−1

2. Model the mass over time:
m(t) = m0e

−kt

3. Calculate the cumulative amount of medication released:

M(t) = m0 −m(t) = m0

(
1− e−kt

)
4. Determine the drug concentration in the bloodstream:

C(t) =
M(t)

V
=

m0

(
1− e−kt

)
V

5. Solve for time when C(t) = Cmin:

Cmin =
m0

(
1− e−ktmin

)
V

=⇒ e−ktmin = 1− CminV

m0

tmin = −1

k
ln

(
1− CminV

m0

)
6. Solve for time when C(t) = Cmax:

Cmax =
m0

(
1− e−ktmax

)
V

=⇒ e−ktmax = 1− CmaxV

m0

tmax = −1

k
ln

(
1− CmaxV

m0

)
7. Calculate numerical values:

• Compute
CminV

m0
=

5 mg/L× 5 L

100 mg
= 0.25

• Compute
CmaxV

m0
=

20 mg/L× 5 L

100 mg
= 1

Note: Since
CmaxV

m0
= 1, tmax →∞.

8. Compute tmin for each polymer:

tmin = −1

k
ln (1− 0.25) = −1

k
ln(0.75)

tmin =
0.2877

k

• PLA: tmin =
0.2877

0.02
= 14.38 h

• PGA: tmin =
0.2877

0.05
= 5.75 h

• PLGA: tmin =
0.2877

0.03
= 9.59 h

9. Determine the optimal polymer:

• PLA provides the longest duration above Cmin (14.38 h).

• PLGA is intermediate (9.59 h).

• PGA provides the shortest duration (5.75 h).
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Appendix 1. (cont) Professor Page

Numerical Solution

• PLA: tmin ≈ 14.38 h

• PLGA: tmin ≈ 9.59 h

• PGA: tmin ≈ 5.75 h

Recommendation: Choose PLA as it maintains the drug concentration within the therapeutic window
for the longest duration.
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Appendix 1. (cont) Student Page

Student Page: Designing an Optimal Drug Delivery Capsule

Title

Designing an Optimal Drug Delivery Capsule

Problem Statement

As a biomedical engineer at MedTech Innovations, you are part of a team developing a new drug delivery
capsule designed to release a medication at a controlled rate over time. The goal is to maintain the drug
concentration within the therapeutic window (between Cmin and Cmax) in the patient’s bloodstream for as
long as possible to improve efficacy and patient compliance.

The capsule releases the medication as it dissolves inside the body, and the rate at which the capsule
dissolves follows an exponential decay model. The mass m(t) of the capsule remaining at time t is given by:

m(t) = m0e
−kt

where:

• m0 is the initial mass of the capsule (in milligrams, mg),

• k is the degradation rate constant (in h−1),

• t is the time (in hours, h).

Research Task

Research three different biodegradable polymers commonly used in drug delivery systems:

1. Polylactic acid (PLA)

2. Polyglycolic acid (PGA)

3. Poly(lactic-co-glycolic acid) (PLGA)

For each polymer, find the typical degradation rate constant k (in SI units). Consider how the degradation
rate affects the release rate of the medication.

Primary Task

Using the degradation rate constants you identified, for each polymer:

1. Model the rate at which the medication is released into the bloodstream over time.

2. Determine the time duration during which the drug concentration remains within the therapeutic
window (between Cmin = 5 mg/L and Cmax = 20 mg/L).

Assume the following:

• The patient’s blood volume is V = 5 L.

• The medication is uniformly distributed in the bloodstream.

• The initial mass of the capsule m0 = 100 mg.
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Appendix 1. (cont) Student Page

Student Work Section

Provide detailed solutions to the tasks above, showing all your work and calculations. Clearly state which
polymer you recommend and justify your choice based on your findings.

5



Appendix 1. (cont) Rubric Page

Rubric Page: Designing an Optimal Drug Delivery Capsule

Criteria Exemplary (4) Proficient (3) Developing (2) Needs Improve-
ment (1)

Mathematical Ac-
curacy

Solutions are correct
and calculations are
accurate for all poly-
mers.

Solutions are mostly
correct with minor
errors in calculations.

Solutions have signif-
icant errors affecting
results.

Solutions are incor-
rect or incomplete.

Clarity of Expla-
nation

Explanations are
clear, logical, and
detailed.

Explanations are
mostly clear but may
lack some detail.

Explanations are un-
clear or insufficient.

Explanations are
missing or very un-
clear.

Engagement with
Research Task

Thorough research
with accurate k
values, properly
referenced.

Adequate research
with mostly accurate
k values.

Limited research
with some inaccura-
cies.

Minimal or no re-
search conducted.

Justification and
Analysis

Decision is well-
justified with strong
reasoning and evi-
dence.

Decision is justified
but may lack depth.

Decision is weakly
justified with mini-
mal reasoning.

Decision is unjusti-
fied or missing.

Organization and
Presentation

Work is well-
organized, neat,
and professional.

Work is organized
but could be neater.

Work is somewhat
disorganized or hard
to follow.

Work is disorganized
and difficult to read.

Table 1: Rubric for Designing an Optimal Drug Delivery Capsule
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