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Enhancing Code Quality and Design in Open-Source Projects  

Using Large Language Models (LLMs) 

Abstract 

Open-source software (OSS) projects often face challenges in maintainability and design, especially in 

educational contexts, where large numbers of programmers contribute for a very short period of time.  

Consequently, a large part of the code base is developed by coders who have little understanding of the 

rest of the code.  This paper explores the potential of Large Language Models (LLMs) to address these 

challenges by improving code quality, reducing coupling, and enhancing maintainability. Using metrics 

such as cyclomatic complexity and Halstead metrics, we evaluate LLM-driven refactoring and 

documentation efforts. Our findings highlight significant improvements in code structure, readability, and 

design adherence, while also identifying limitations in current LLM capabilities. 

1. Introduction 

Open-source software (OSS) projects play a pivotal role in software engineering education by offering 

students real-world coding experience. However, these projects often suffer from poor design and high 

maintenance costs due to students' limited engagement and adherence to software design principles. 

Students, constrained by time and struggling to understand the codebase, often structure code poorly and 

place functionality in the wrong classes, making the codebases harder to interpret and maintain. This 

study investigates the application of Large Language Models (LLMs), such as GPT-4, in enhancing OSS 

projects. We aim to evaluate their effectiveness in improving code quality through automated refactoring, 

identifying code smells, and generating high-quality documentation. This paper presents findings and 

insights from applying LLMs to the Expertiza [1, 2] codebase, which has incorporated student 

contributions for nearly 18 years. We hypothesize that LLMs can help students refactor codebases to be 

more succinct, generate quality code comments, reorganize methods, and move functionality between 

classes to improve code design. Concepts such as the Single Responsibility Principle (SRP) [9], Don’t 

Repeat Yourself (DRY) principle [10], and Object-Oriented Programming (OOP) standards are used as 

baselines for crafting prompts to enhance code quality. Additionally, to enable LLMs to handle complex 

codebases beyond token limits and circumvent data overload, we have utilized third-party software, open-

source tools, and custom-built code-processing LLMs. 

2. Background and Related Work 

Fang et al. [4] explored the effectiveness of various LLMs in analyzing code inconsistencies and smells. 

Their findings indicate that OpenAI's GPT-4 outperforms other models, including Meta’s LLaMA family 

and the open-source StarChat-Beta model, in understanding, refactoring, and modifying code. Notably, 

GPT-4 excels in recognizing code snippets from open-source software (OSS), which is crucial for our 

study focusing on improving code design in OSS projects like Expertiza. By recognizing code snippets 

effectively, GPT-4 can identify areas of inefficiency or poor design and provide actionable suggestions 

for improvement, directly contributing to better code maintainability and quality. Additionally, GPT-4 



demonstrated the highest accuracy and comprehension of both obfuscated and non-obfuscated code 

among all models tested, achieving 87% accuracy in generating code and summaries based on obfuscated 

code and 95% accuracy for non-obfuscated code. 

These findings are integral to our research, which aims to utilize the most effective publicly available 

LLM for code design refactoring and suggestions in OSS projects. We selected GPT-4 as the foundational 

model for evaluating LLM-generated suggestions for enhancing complex OSS code design due to its 

superior code-comprehension capabilities. 

3. Methodology 

Our methodology leverages OpenAI GPT-4, alongside tools like Codebuddy [11], the Custom RAG Tool, 

and Aider, to improve the Expertiza codebase by reducing class coupling and enhancing overall design 

and readability. Codebuddy provides AI-driven code reviews, pinpointing inefficiencies, redundancies, 

and potential bugs, which is critical for maintaining a clean and scalable codebase. The Custom RAG 

Tool (Retrieval-Augmented Generation) uses GPT-4 to retrieve relevant documentation and examples 

from the codebase, helping us make precise, context-aware improvements aligned with best practices. 

Aider assists in applying advanced design principles by streamlining implementation and suggesting 

structural improvements to enhance the project’s architecture and scalability. Also, halstead measures and 

code design standards (parent class relationships, DRY, SRP) are used to ensure code design changes are 

enhancing the quality of Expertiza. Together, these tools and measures streamline our workflow and 

ensure the Expertiza project is optimized for maintainability and long-term success. 

3.1. Halstead Measure code analysis 

This section outlines the metrics we use to quantify code quality and readability. The Halstead Measures, 

developed by Maurice Halstead in the 1970s, are well-known metrics in the field of computer science for 

assessing software and codebase complexity [3]. These metrics measure code complexity by counting the 

occurrences of unique operators (n1) and operands (n2), as well as the total number of tokens (operators 

and operands combined) [3]. In our study, we applied Halstead Measures within the Expertiza code to 

establish a baseline for software complexity. Additionally, we examined how code refactoring impacts 

overall complexity. 

n1 = number of distinct operators    

n2 = number of distinct operands    

N1 = total occurrences of operators 

N2 = total occurrences of operands 

Halstead Measures estimate programming difficulty D by 

 
and programming effort E by 

      



Programming time is an estimate of the time it takes to implement or understand fully the given software 

[3]. This metric is calculated by 

 

where f = 60 (seconds per minute) and S = 18 (moments per second).  S is Stroud’s number, which is 

supposed to represent elementary discriminations performed by the human brain per second, generally set 

to 18 [3]. 

We used these equations and metrics to evaluate whether the LLMs help reduce code complexity by the 

suggestions they give for refactoring. The results of our experiment will rely on these metrics to validate 

our hypothesis that LLMs can help improve code quality. To track Halstead measures, an outside OSS 

tool was used to calculate the measures for the Halstead time, effort, and difficulty. The Mozilla Rust 

Code Analysis library can calculate these Halstead measure metrics within the codebase for many differ-

ent languages, but does not have one specifically for the Ruby code in which Expertiza is written [5]. To 

circumvent this, we developed a Python script that integrates with the rust-code-analysis tool, originally 

designed for Ruby, enabling us to utilize it effectively within a Python workflow. This allowed us to parse 

Ruby language tokens and generate the Halstead measure metrics. Additionally, this Python script 

generated a report of the Halstead measures for each Ruby class or file within Expertiza. As a baseline, 

we first ran this script on the original Expertiza project to gain complexity data. Figure 1 shows the values 

we gained from running the tool against the Ruby class User in the Expertiza project as an example. 

  

Figure 1. Example of extracted Halstead measure metrics from created Python Script 



3.2 OpenAI GPT-4 LLM with additional context tools 

OpenAI GPT-4 was selected as the base model for providing suggestions on the Expertiza code, as it 

excels in understanding code and offering design improvements [4]. A key challenge in our research, 

however, was GPT-4's token limit, which hinders its ability to process extensive codebases. To address 

this, we explored tools like Codebuddy, which vectorizes the entire Expertiza codebase as a secondary 

knowledge base. This approach enables GPT-4 to handle the complex Expertiza codebase more 

effectively. Similarly, we used OSS Aider, which scans the codebase into a repository map, giving GPT-4 

contextual knowledge of Ruby classes, fields, methods, and inputs [6]. For larger repositories, Aider 

employs a graph-ranking algorithm to minimize token usage, with source files as nodes and dependency 

links as edges [6]. Aider also selects relevant files to provide focused context for the LLM. Finally, we 

developed a custom RAG tool that vectorizes each Expertiza code file into embeddings with 

GraphCodeBERT, paired with FAISS [12] for vector search, to retrieve relevant files based on user 

prompts. While Codebuddy and Aider were our primary tools due to their proven reliability, our custom 

tool helped us research how to improve LLM context for code-design suggestions. 

3.3   LLM prompting 

We utilized a simple prompt shown in Example 1 to improve code quality and design. This general 

prompt was provided to the context-enhanced LLM and focused on code design principles including the 

Single Responsibility Principle (SRP) and Don’t Repeat Yourself (DRY). For the SRP and DRY 

principles, a specific prompt is shown in Example 2. We fed selected classes and files from Expertiza into 

Codebuddy and Aider, specifically targeting those known for being complex and hard to understand, as 

indicated by high Halstead complexity measures. 

Prompt: how to improve complexity and understandability of the file or files given, please give code 

snippets and suggestions on how to change and what to improve. This includes removing methods that are 

unused, refactoring method names, moving methods between classes, and following design principles etc. 

Example 1. General prompt given to LLM to provide related suggestions about code design of codebase 

Prompt: how to improve complexity and understandability of the file or files given, please give code 

snippets and suggestions on how to change and what to improve. This includes removing methods that are 

unused, refactoring method names, moving methods between classes, and following [DRY or SRP] 

design principles etc. 

Example 2. Prompt given to LLM to provide DRY and SRP suggestions about code design of codebase 

For Object-Oriented Programming standards, we mainly focused on the correct application of subclass 

relationships (i.e., that they obeyed the Liskov Substitution Principle [8]). To accomplish this we fed 

parent-child classes in Expertiza into the LLM for context using Codebuddy and Aider and asked the 

question shown in Example 3. 

Prompt: Given these parent-child files and classes, how can we improve code design? Please give 

suggestions and code snippets on what to change. This includes removing methods that are unused, 

refactoring method names, moving methods between classes. 

Example 3. Prompt given to LLM to provide parent-child related suggestions about code design of codebase 



The above prompts aimed at refactoring methods to more appropriate classes and removing duplicate 

code. Additionally, we addressed complexity reduction by prompting the LLM to suggest improved 

method names, simplify code, and generate documentation. 

3.4   LLM output and testing 

After inputting the prompts, the LLM generates outputs in the form of suggestions and code snippets. 

These suggestions were integrated into the appropriate code classes, and we tested the functionality to 

ensure it was maintained. Bugs and errors were identified and addressed through RSpec [7] testing files 

and manual local development testing of Expertiza. Suggestions that introduced errors or bugs were 

removed and documented, while successful suggestions that improved code design were committed to 

Git. The Halstead Python script was rerun to verify whether complexity had decreased for Expertiza. 

Suggestions related to design principles and parent-child relationships were also reviewed and validated.  

4. Results 

Our research demonstrates that when LLMs are provided with sufficient context about the codebase, they 

can effectively improve code design, reduce complexity, and generate proper documentation. 

4.1  Halstead Measure complexity reduction by LLM suggestions 

The Halstead Measure, evaluated after implementing LLM-suggested changes to Expertiza, demonstrated 

reductions in difficulty, effort, and time. All approved changes adhered to proper code design principles 

and caused no errors in Expertiza. The Halstead difficulty, which indicates how challenging the code is to 

read or write, decreased by 9.66. The Halstead time, estimating the time required to implement and fully 

understand the software, decreased by 2047.5 minutes. This reduction highlights the substantial additional 

time previously required to implement and comprehend Expertiza. Adhering to principles like method 

inheritance and minimizing unnecessary operators and operands, the code now reflects improved design 

and therefore reduced implementation time. Halstead effort, measuring the mental workload needed to 

reimplement the software, also decreased by 2047.5. These results demonstrate a reduction in code 

complexity and an improvement in readability for Expertiza, supporting our hypothesis that LLM-

generated suggestions for code design can effectively reduce complexity and improve the quality of open-

source software (OSS) projects.  Table 1 below shows the differences for the entire expertiza system. 

Table 1. Table showcasing the changes Halstead measure metrics after LLM code design changes for OSS Expertiza 

 

While the table above presents percentage reductions across the entire Expertiza codebase, it’s important 

to note that the LLM was only applied to a small portion of the system, only a few classes were covered. 



The differences of 0.37% and 0.32% shown above were obtained by refactoring only three classes, 

Response, ResponseMap, and ResponseViewMap, which account for just 2.59% of the total lines of code 

in Expertiza. If these changes (0.32% to 0.37% reduction on 2.59% of the code) could be extrapolated to 

the rest of the system, that would represent a decrease of 12.4% to 14.3% in Halstead metrics for the 

entire system. These findings highlight how even limited use of LLMs can lead to measurable 

improvements, and how broader adoption could enhance code readability and reduce complexity 

throughout large open-source projects.  

4.2 Application of code design principles  

The code design principles were incorporated into our prompts so that suggestions provided for Expertiza 

would ensure adherence to proper coding practices. Our findings indicate that design principles are 

addressed both when the LLM is given a specific principle to follow and when it is simply tasked with 

improving code design. Parent-child class relationships in OOP and DRY principles were effectively 

addressed, as the LLMs suggested changes were successfully applied while maintaining functionality. In 

Expertiza, a complex parent-child relationship exists for questionnaires, with Questionnaire as the 

parent class and several specialized child classes such as ReviewQuestionnaire, 

SurveyQuestionnaire, and AuthorFeedbackQuestionnaire. As detailed in Figure 2, when the 

LLM was prompted to follow the DRY principle and consider parent-child relationships with relevant 

Ruby files provided as context, it suggested moving the methods post_initialization, 

get_assessments_for, and symbol into the Questionnaire parent class. After manual analysis, 

we confirmed that this recommendation eliminated code duplication across multiple child classes, 

following the DRY principle. 

 

Figure 2. The LLM suggestion to move methods to the parent class Questionnaire to be utilized by multiple child classes 



The changes to the inheritance hierarchy are shown in Figure 3. These suggestions successfully aligned 

with both DRY and LSP principles, enhancing the code's design and maintainability. The LLM was also 

prompted to make the code follow the Single Responsibility Principle (SRP), leading to findings that  

 

Figure 3. The class hierarchy for questionnaires before and after the suggestions given to improve code design from the LLM 



suggested reorganizing several classes within Expertiza to improve readability and ensure that each class 

adhered to a single responsibility. However, due to limitations in the LLM's ability to maintain full 

context across the entire source code, some of its recommendations for method relocation were 

inconsistent. Despite these challenges, our experiments demonstrated that the LLM could effectively 

apply code design principles and provide actionable suggestions for improving code quality. Our 

methodology highlights the potential of LLMs to enhance code design and maintainability through 

adherence to established principles. 

The Questionnaire hierarchy in Expertiza plays a key role in enabling feedback collection and evaluation 

across various contexts, such as surveys, peer reviews, and assessments. Originally, the structure of the 

questionnaire classes involved repetitive implementations of similar methods across multiple child 

classes, leading to inefficiencies and potential maintenance issues. The LLM analyzed this structure and 

recommended centralizing common methods into the parent class, streamlining the functionality and 

making the system more cohesive. 

Before the change, each child class individually implemented overlapping functionalities, making it 

difficult to maintain consistency when updates were needed. The LLM suggested a new structure where 

shared logic was moved to the parent class, ensuring that all child classes could inherit and utilize the 

methods without duplication. This approach not only reduced redundancy but also made the system more 

extensible, allowing for easier addition of new questionnaire types in the future. By reorganizing the 

methods, the LLM improved the overall clarity and maintainability of the code while preserving the 

unique functionality of each child class. 

5. Discussion 

This study shows that LLMs like GPT-4 can help improve code quality through intelligent, context-aware 

suggestions. While traditional tools such as linters, static analyzers, and peer reviews still play an 

important role, LLMs offer more flexible and interactive support for writing better code. They respond to 

natural language input, understand code structure, and adapt their suggestions to the developer’s goals. 

LLMs give contextual guidance, meaning they don’t just check syntax or style. They look at how the code 

fits together across files. This makes them useful for improving not just formatting, but logic and 

structure too. In our research, the LLM analyzed parts of the Expertiza codebase and recommended 

specific changes that helped with readability and simplicity. One example is shown in Figure 4, where the 

LLM added a helpful comment about how the Course object is used across multiple classes in the system. 

This kind of high-level understanding is difficult for rule-based tools to achieve [14]. 

Compared to static analysis tools like SonarQube or ESLint, which are designed to enforce predefined 

rules, LLMs provide personalized support. They adjust their suggestions based on the current code and 

user input. This makes them more adaptable for different coding styles or project requirements. As shown 

in Figure 5, the LLM identified and removed an unused method from a file. It was able to recognize that 

the method served no purpose in context and suggested removing it, which reduced clutter and improved 

maintainability [15]. Another advantage of LLMs is their ability to help developers learn better coding 

practices while writing code. They can act like mentors by explaining why a certain change is helpful or 

what principle it supports. For example, they may suggest breaking large functions into smaller ones, 



replacing nested logic with cleaner alternatives, or naming variables more clearly. These kinds of 

suggestions not only improve the current code but also teach better habits over time [14]. 

We measured the impact of these suggestions using Halstead metrics. After applying the LLM’s changes, 

we saw improvements in difficulty, effort, and time. This suggests the code became easier to read, 

maintain, and understand, which is a key goal in software quality. While LLMs don’t replace automated 

testing or peer reviews, they are a strong addition to the toolkit, especially when used together with 

traditional methods [16]. Ultimately, LLMs give developers a more interactive and dynamic way to 

reinforce good coding practices. They go beyond syntax checks and allow for continuous learning and 

refactoring. Tools like GPT-4, when combined with static analyzers or automated tests, can make the 

development process faster, cleaner, and more understandable, especially in large or complex codebases 

[15]. 

 

Figure 4. The LLM code comment addition that showcases connection to other classes and Course object use 



Figure 5. The LLM code suggestion that removed unused code from an independent class 

Our findings demonstrate the potential of LLMs to transform OSS projects by automating refactoring and 

improving code design. However, current limitations, such as token constraints and inconsistent context 

handling, highlight the need for more specialized tools or training methods. 

6. Conclusion 

This study highlights the transformative potential of Large Language Models (LLMs), like GPT-4, in 

improving the quality and maintainability of open-source software (OSS) projects. By applying these 

models to the Expertiza codebase, we demonstrated their effectiveness in enhancing code design, 

reducing complexity, and generating meaningful documentation. Our results show a tangible reduction in 

software complexity, as measured by Halstead metrics, with clear decreases in difficulty, effort, and 

implementation time. These improvements reflect the ability of LLMs to suggest meaningful refactoring 

that adheres to established code design principles such as DRY, Single Responsibility, and object-

oriented parent-child hierarchies. 

The LLM’s suggestions, such as consolidating methods in parent classes for inheritance and removing 

redundant code, improved maintainability and readability while maintaining full functionality. When 

given context, LLMs provide detailed documentation and comments, and identify code smells effectively. 

However, challenges remain, particularly when the LLM lacks full context of the entire codebase. While 

generally accurate and beneficial, some inconsistencies in recommendations highlight the importance of 

comprehensive context and combining automated insights with manual verification. 

Overall, our findings affirm that LLMs are valuable tools for OSS development. They improve code 

quality, reduce complexity, and enhance documentation. By integrating these tools into software 

development workflows, teams can streamline refactoring processes, adhere to design principles, and 

foster more robust and maintainable software. This research paves the way for broader adoption of LLMs 

in OSS projects, contributing to a future where AI and human developers collaborate seamlessly to 

advance software innovation. 



7. Future Work 

For future work, one priority is addressing the limitations of the LLM when it comes to understanding the 

full context of a codebase. Currently, the model struggles with larger and more interconnected tasks, 

where the relationships between classes or components play a crucial role. To improve this, we plan to 

explore ways to provide the LLM with more detailed and relevant input, ensuring it has a clearer picture 

of the code's structure. This could involve breaking tasks into smaller steps that better align with the 

model's strengths or providing additional metadata about the code. By focusing on these improvements, 

we aim to make the LLM more reliable for handling real-world scenarios, especially in projects where the 

scope goes beyond isolated functions or methods. 

 

Another key area of future work involves testing the LLM on more complex and larger-scale refactoring 

tasks. This includes scenarios where the codebase exceeds 1,000 lines and involves multiple tightly 

coupled components. These tests will allow us to assess not only the LLM's ability to make accurate 

suggestions but also how it scales with increasing complexity. Additionally, we plan to evaluate the 

model’s performance on specific challenges like reducing class coupling or improving readability across 

interconnected files. By tackling these challenges, we hope to uncover strategies for making the LLM a 

more effective tool for developers working on projects of all sizes. These efforts will help bridge the gap 

between theoretical capabilities and practical applications. 
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