
Paper ID #47788

WIP: An Advanced Automation Final Project Using a Finite-State Machine
to Automate Motion Control

Mr. Bradley Lane Kicklighter P.E., University of Southern Indiana

Brad holds a BS in Electrical Engineering from Rose-Hulman Institute of Technology (1989) and an MS
in Electrical and Computer Engineering from Purdue University (2001).

His past work experience includes eleven years at Delphi (formerly Delco Electronics) as an Advanced
Project Engineer, eleven years at Whirlpool Corporation as a Lead Engineer/Solution Architect, and three
years at Ivy Tech Community College as an Instructor/Program Chair Pre-Engineering. Since 2015, he
has been employed at the University of Southern Indiana as a Clinical Associate Professor of Engineering
Technology.

He holds three patents, has served as an IEEE section officer since 2004, and has been a Licensed
Professional Engineer in the State of Indiana since 2005.

Brad is the current chair of the ASEE Instrumentation Division.

©American Society for Engineering Education, 2025



WIP: An Advanced Automation Final Project
Using a Finite-State Machine to Automate Mo-
tion Control

Abstract

Programmable logic controllers (PLCs), finite-state machines (FSMs), human-machine
interfaces (HMIs), and motion control are common topics in industrial automation
courses. In industry, PLCs are commonly used to automate processes and machines.
Using an FSM in a PLC program is a convenient way to implement the steps necessary
to control a process or machine. HMIs provide interaction with a control system for a
process or machine. Motion control, especially when using stepper motors, is widely
used in industry to control the movement of a machine.

Advanced Automation is an elective course for junior and senior engineering and engi-
neering technology students. This course is the second of two automation courses and
was taught for the first time in spring 2024. For the final project in the Advanced Au-
tomation course, students must program an Allen-Bradley Micro850 PLC using ladder
diagram (LD), structured text (ST), or a combination to control a two-axis motion
control module which consists of stepper motors providing rotary motion. In addition
to allowing students their choice of programming language, they are also able to choose
the form of their FSM: based on Boolean values or integer values. Students must also
program an Allen-Bradley PanelView 800 human-machine interface (HMI) to provide
screens to control the system.

This work-in-progress paper will describe the Advanced Automation final project and
the Two-Axis Motion Control Module that was designed and fabricated by the author.

Introduction

Programmable logic controllers (PLCs) along with human machine interfaces (HMIs) are
commonly used to automate machines and processes in industry in general and manufac-
turing in particular. Many machines and processes require some form of motion control.
Open-loop motion control in the form of stepper motors is quite common. If the control of
a machine or process is in the form of a set of steps, then the use of finite-state machines
(FSMs) is a convenient approach.

Here at the University of Southern Indiana, members of our Engineering Advisory Board have
expressed interest in our students getting more experience with automation. Additionally,
our students have asked for a follow-on course to ENGR 382 SCADA Systems Design which
introduces the programming of PLCs (using ladder logic) and HMIs. As a result, ENGR 383
Advanced Automation was created and first taught in the spring of 2024. This new course
is open to juniors and seniors who have taken ENGR 382 and is an elective for engineering
and engineering technology students.

ENGR 383 teaches Allen-Bradley Micro800 ladder diagram (LD) programming [“ladder di-
agram” is also known as “ladder logic”], structured text (ST) programming, Allen-Bradley



PanelView 800 HMI programming, finite-state machines, industrial networking, motion con-
trol, program flow control, designing for failure, documentation, functional safety, Industrial
Internet of Things, wiring standards, and control panel standards.

A PLC/HMI trainer and two-axis motion control motion module, both designed and fabri-
cated by the author, are used in the course (see Figure 1).

Figure 1: Allen-Bradley PLC/HMI Trainer with Two-Axis Motion Control Module.

The trainer is designed around an Allen-Bradley Micro850 PLC and Allen-Bradley Pan-
elView 800 HMI. Both the PLC and HMI are programmed using the Connected Components
Workbench software from Rockwell Automation. The motion control module consists of a
power supply, two stepper motor drivers, two stepper motors, and two inductive proxim-
ity sensors (used for homing the axes). Acrylic disks with markings every five degrees are
attached to the stepper motors. See Figure 2.

Figure 2: Two-Axis Motion Control Module.



Each student completes their own labs and projects. There are enough trainers and motion
control modules so that each student has their own. The course size is capped at sixteen
students.

Finite-State Machines

A finite-state machine (FSM) is a class of automata where it has a finite set of states, can
only be in one state at a time, has an initial or start state, has a finite set of inputs, has a
finite set of outputs, and transitions from one state to another based on the inputs [1].

Ladder Diagram Implementations

Two ladder diagram implementations are taught in the course based on a white paper by
Anderson[2].

One ladder diagram implementation uses ladder diagram primitives (DirectContact, Rever-
seContact, and DirectCoil) which are Boolean values. See Figures 3 and 4.

Figure 3: FSM implementation using LD primitives. Previous states are outlined in red, transition logic is
outlined in green, seal in is outlined in purple, next states are outlined in yellow, and current state is outlined
in blue. (Source: [2])

Figure 4: Decoding of states into outputs. (Source: [2])

The other ladder diagram implementation assigns an integer value to each state and uses
Equal (=) and Move function blocks. See Figures 5 and 6.



Figure 5: FSM implementation using LD using Move and Equal. Previous states are outlined in red,
transition logic is outlined in green, and current state is outline in blue. (Source: [2])

Figure 6: Once the current state is updated, then the previous state is set to the current state. This rung
must be placed after the state rungs. (Source: [2])

Cohenour describes a version of the Boolean finite-state machine implementation in ladder
logic for a final project using a fluid process rig [3].

Structured Text Implementations

Two structured text implementations are taught in the course.

One structured text implementation is similar to the ladder diagram primitives implementa-
tion where states are Boolean values and the If-Then-Else statement is used. The following
is a generic FSM example implemented in ST using If-Then-Else statements:

// Input Conditioning

R_TRIG_1(Input1_In);

Input1 := R_TRIG_1.Q;

R_TRIG_2(Input2_In);

Input2 := R_TRIG_2.Q;

// States

...

// State1

IF State0 AND Input1 THEN

State1 := TRUE;

ELSIF State2 THEN

State1 := FALSE;



END_IF;

// State0

IF __SYSVA_FIRST_SCAN OR (State4 AND Input2) THEN

State0 := TRUE;

ELSIF State1 THEN

State0 := FALSE;

END_IF;

// Output Decoding

IF State0 THEN

Output1 := TRUE;

ELSE

Output1 := FALSE;

END_IF;

IF State1 THEN

Output2 := TRUE;

ELSE

Output2 := FALSE;

END_IF;

The other structured text implementation assigns an integer value to each state and uses the
Case statement along with If-Then-Else statement. The following is a generic FSM example
implemented in ST using a case statement:

// Initialization

IF __SYSVA_FIRST_SCAN THEN

NextState := State0;

CurrentState := State0;

END_IF;

// Input Conditioning

R_TRIG_1(Input1_In);

Input1 := R_TRIG_1.Q;

R_TRIG_2(Input2_In);

Input2 := R_TRIG_2.Q;

// States

CASE CurrentState OF

0: // State0

Output1 := FALSE;

Output2 := FALSE;

IF Input1 THEN

NextState := State1;

END_IF;



1: // State1

Output1 := TRUE;

Output2 := FALSE;

IF Input1 THEN

NextState := State2;

ELSIF Input2 THEN

NextState := State3;

END_IF;

...

END_CASE;

// Update CurrentState

CurrentState := NextState

Motion Control

When some part of a machine must move in a controlled manner, we apply a sub-field of
automation called motion control[4]. The motion may be linear, rotary, or a combination.
Motion control may be closed-loop (a feedback sensor indicates the position of the system)
or open-loop (there is no feedback to verify actual position).

Examples of motion control applications include:

� Conveyors for material handling.

� Pick and place.

� Computer Numerical Control (CNC) machining.

� 3D printing.

� Laser engraving.

� Water jet cutting.

� Plasma cutting.

� Industrial robots.

Closed-Loop Motion Control

In a closed-loop motion control system, there is a feedback sensor that indicates the position
of the system. In many cases an encoder is used as the feedback sensor. The encoder may
be absolute or incremental. An incremental encoder requires the system to be “homed” to
establish the home or origin of the axis.

Servo motors are commonly used in closed-loop systems. The encoder may be part of the
servo motor or may be a separate device. In most cases, a servo drive is required to drive a
servo motor. The PLC or controller in the system is connected to and commands the servo



drive which then drives the servo motor to the desired position and at the desired speed.
Typically, the encoder in the system is connected to the servo drive.

Open-Loop Motion Control

In an open-loop motion control system, there is no feedback to verify actual position. Position
is assumed based commands given to the axis motor. A system like this must be “homed”
to establish a home position or origin. This requires each axis to have one or more limit
switches, photoelectric sensors, or proximity sensors to sense when the system is at the home
position.

The most common motor type used in open-loop motion control systems is the stepper
motor. Usually, a stepper motor driver is used to drive the stepper motor phases directly
and the PLC or microcontroller provides step pulses and a direction signal to the stepper
motor driver.

For this course, open-loop motion control using stepper motors was selected since the system
cost was much lower that using servo motors.

Examples in the literature where a PLC is used to control a stepper motor in labs and
projects include Lee (elevator)[5][6], Tepe et al. (conveyor belt)[7], Fotouhi and Eydgahi
(utility cart)[8], and Sokoloff (low level control of stepper motor)[9]. In all of these examples,
ladder logic is used to program the PLCs.

The motion control instructions in the Micro800 series PLCs are based on PLCOpen Motion
Control[10]. There are a set of function blocks for performing motion control such as con-
trolling power to (enabling) an axis, resetting axis errors, performing an absolute position
move, performing a relative position move, performing a velocity move, homing an axis, and
halting axis motion.

Methods

ENGR 383 is a project-based course where students are assessed using exercises, quizzes,
labs, and projects. The final project (final assessment) for the course has the following
objectives:

1. Design and create a two-axis motion control system.

2. Use a finite-state machine to implement a motion sequence.

3. Design and program the human machine interface (HMI) to implement a user interface
for the system.

The following is the problem statement for the project:

Create a system that controls a two-axis motion control module. The motion
control module (MCM) must execute a motion sequence. All system interaction
must be done using one or more HMI screens.



Students are allowed to use ladder diagram (LD), structured text (ST), or a combination.
In addition, students may choose to use a Boolean or integer based finite-state machine
approach and use either absolute or relative positioning of the motion control axes. These
choices allow students some freedom in their implementation and make the project less
prescriptive.

The system must implement the following functions:

� Enable motion control axes.

� Reset motion control errors.

� Home each motion control axis.

� Execute a seven-step motion control sequence in the form of angular rotations (see
Table 1).

Table 1: Motion sequence with absolute positions for each step in fractions of a revolution. Step 0 is the
stopped state (waiting for the start button to be pressed). The sequence is 1 to 2 to 3 to 4 to 5 to 6 to 1 ...

Step Axis0 Axis1
0 - -
1 0.5 0.5
2 0.0 -
3 - 0.0
4 0.25 -0.25
5 -0.25 0.25
6 0.0 0.0

Results and Discussion

The final project was the first time the students were able to create an FSM or interact
with the motion control module. This was due to late availability of the hardware. Even
with that being the case, the majority of the students did quite well on the project. Some
students required more help than others with the FSM, the motion control instructions, or
both.

Overall, the author was happy with the results of the final project and the students enjoyed
getting the motion control module to perform.

Students provided the following feedback on the course:

“Practical labs, learned a lot about HMI/PLC programming.”

“This course gave a better understanding of Industrial Controls Engineering, which reinforces
the material from the previous course. The experience programming a PLC is valueable for
those interested in working in the manufacturing area.”



“The labs and projects were very helpful. They allowed for a better understanding of more
complex scenarios involving PLC programming.”

“Some of the labs take quite a bit of time, some (Resistor Calculator) are big enough to be
projects and some projects (hopper volume) are small enough to be just labs.”

“I would like to learn how to build a PLC system as well as program it. I understand that
the trainers are limited and expensive, but possibly having a lab to spec out a PLC and
components for a specific automation scenario would be nice to implement.”

Conclusions and Recommendations

ENGR 383 and its final project meet the need for exposing students to more automation
topics and to explore some automation topics deeper than the prior course, ENGR 382. This
helps satisfy the desire of our Engineering Advisory Board members for our students to get
more automation experience.

The final project assesses major course topics including ladder diagram programming, struc-
tured text programming, HMI programming, finite-state machines, motion control, and doc-
umentation (in the form program comments).

Two of the students who graduated after taking the course remarked about how they were
applying many of things they learned in ENGR 383 to their new jobs and were grateful for
the course.

What could be done better? Since the hardware is now available, the students will get
exposed to it earlier in the course. A lab devoted to creating an FSM should be added and
a lab that introduces the motion control module should be added.



References

[1] “Finite-state machine,” Wikipedia, Nov. 2023. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=Finite-state machine&oldid=1187480774

[2] E. Anderson, “Sequential Function Chart to PLC Ladder Logic Transla-
tion.” [Online]. Available: https://www.dmcinfo.com/latest-thinking/blog/id/10076/
sequential-function-chart-to-plc-ladder-logic-translation

[3] C. Cohenour, “Teaching Finite State Machines (FSMs) as Part of a
Programmable Logic Control (PLC) Course,” in 2017 ASEE Annual
Conference & Exposition, Jun. 2017. [Online]. Available: https://peer.asee.org/
teaching-finite-state-machines-fsms-as-part-of-a-programmable-logic-control-plc-course

[4] “Motion control,” Wikipedia, Oct. 2023. [Online]. Available: https://en.wikipedia.org/
w/index.php?title=Motion control&oldid=1178610879

[5] S. Lee, “Integration Of Motion Control Teaching Components Into The
Programmable Logic Controller Course,” in 2009 Annual Conference & Exposi-
tion, Jun. 2009, pp. 14.776.1–14.776.10. [Online]. Available: https://peer.asee.org/
integration-of-motion-control-teaching-components-into-the-programmable-logic-controller-course

[6] ——, “Development Of A Four Story Elevator System For Teaching Motion Control
Concept With Programmable Logic Controller,” in 2010 Annual Conference & Expo-
sition, Jun. 2010, pp. 15.400.1–15.400.10. [Online]. Available: https://peer.asee.org/
development-of-a-four-story-elevator-system-for-teaching-motion-control-concept-with-programmable-logic-controller

[7] C. Tepe, A. S. Aslan, and İ. Eminoğlu, “Conveyor belt experiment setup
for programmable logic controller education,” International Journal of Electrical
Engineering & Education, vol. 60, no. 3, pp. 258–272, Jul. 2023. [Online]. Available:
https://doi.org/10.1177/0020720920958134

[8] K. Fotouhi and A. Eydgahi, “Using A Plc Trainer To Control A Utility Cart,”
in 2001 Annual Conference, Jun. 2001, pp. 6.1100.1–6.1100.6. [Online]. Available:
https://peer.asee.org/using-a-plc-trainer-to-control-a-utility-cart

[9] L. Sokoloff, “Plc Stepper Motor Controller,” in 1998 Annual Con-
ference, Jun. 1998, pp. 3.447.1–3.447.12. [Online]. Available: https:
//peer.asee.org/plc-stepper-motor-controller

[10] V. Eldijk, “Motion Control,” Apr. 2018. [Online]. Available: https://plcopen.org/
technical-activities/motion-control

https://en.wikipedia.org/w/index.php?title=Finite-state_machine&oldid=1187480774
https://en.wikipedia.org/w/index.php?title=Finite-state_machine&oldid=1187480774
https://www.dmcinfo.com/latest-thinking/blog/id/10076/sequential-function-chart-to-plc-ladder-logic-translation
https://www.dmcinfo.com/latest-thinking/blog/id/10076/sequential-function-chart-to-plc-ladder-logic-translation
https://peer.asee.org/teaching-finite-state-machines-fsms-as-part-of-a-programmable-logic-control-plc-course
https://peer.asee.org/teaching-finite-state-machines-fsms-as-part-of-a-programmable-logic-control-plc-course
https://en.wikipedia.org/w/index.php?title=Motion_control&oldid=1178610879
https://en.wikipedia.org/w/index.php?title=Motion_control&oldid=1178610879
https://peer.asee.org/integration-of-motion-control-teaching-components-into-the-programmable-logic-controller-course
https://peer.asee.org/integration-of-motion-control-teaching-components-into-the-programmable-logic-controller-course
https://peer.asee.org/development-of-a-four-story-elevator-system-for-teaching-motion-control-concept-with-programmable-logic-controller
https://peer.asee.org/development-of-a-four-story-elevator-system-for-teaching-motion-control-concept-with-programmable-logic-controller
https://doi.org/10.1177/0020720920958134
https://peer.asee.org/using-a-plc-trainer-to-control-a-utility-cart
https://peer.asee.org/plc-stepper-motor-controller
https://peer.asee.org/plc-stepper-motor-controller
https://plcopen.org/technical-activities/motion-control
https://plcopen.org/technical-activities/motion-control

