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Abstract 

The complexity of modern manufacturing environments, characterized by interactions among 

various entities, variability, and randomness, presents significant challenges for learners. 

Understanding these dynamics is essential, but traditional classroom-only focused education often 

falls short in providing students with practical insights. Hands-on experimentation is vital for 

students to observe interactions and experience process manipulations, yet such experimental 

setups can be costly and impractical for many institutions. This paper presents the development of 

digital laboratory modules to enhance students' learning experience in manufacturing education 

through computer simulation techniques. Two modules were created to address complex 

manufacturing issues: production design under demand uncertainty, manufacturing layout design, 

and different maintenance schedules. These modules allow users to control process parameters, 

design experiments, run simulations, and observe outcomes, promoting informed decision-making 

without wasting resources. This approach is particularly valuable for resource-constrained 

industries, facilitating rapid decision-making and process efficiency. Each module uses case 

studies with background information, problem statements, datasets, and expected results. The 

paper details the development process and case studies and includes experimentation guidelines 

for using the modules effectively in educational settings. 

1. Introduction 

The manufacturing ecosystem is inherently complex due to the rapid and continuous advancement 

of technology, which introduces multiple interconnected systems, processes, and innovations. 

Modern manufacturing integrates diverse technologies such as automation, robotics, artificial 

intelligence (AI), the Internet of Things (IoT), and additive manufacturing, all of which require 

seamless coordination across various stages of production [1], [2]. The adoption of Industry 4.0 

practices has led to smart factories where machines communicate autonomously, generating vast 

amounts of data that need real-time analysis for process optimization [3], [4]. This technological 

integration increases complexity by necessitating advanced infrastructure, skilled labor, and 

cybersecurity measures to protect interconnected systems. Furthermore, supply chains have 

become globally distributed and heavily reliant on digital platforms for inventory management, 

logistics, and quality control, adding vulnerability and risk management challenges. Customization 

demands and shortened product life cycles further strain manufacturing systems [5], requiring 

flexible production capabilities supported by cutting-edge technology [6]. Balancing these 

technological advancements with cost-efficiency, product quality, and market competitiveness 

makes the manufacturing ecosystem more intricate and challenging to manage effectively [7]. 

Next-generation workforce aiming to manage manufacturing processes must develop a 

multifaceted skill set integrating technology awareness, process understanding, efficiency 

improvement, data analytics, and timely decision-making [8], [9]. Technological literacy is 

paramount; students must be proficient in emerging technologies such as automation, robotics, 

artificial intelligence (AI), the Internet of Things (IoT), and additive manufacturing to understand 

how these tools can streamline production. A deep comprehension of manufacturing processes, 

https://paperpile.com/c/PXd9g6/9Sm2s+WyJCj
https://paperpile.com/c/PXd9g6/CW9XF+ikhpP
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https://paperpile.com/c/PXd9g6/pLXew
https://paperpile.com/c/PXd9g6/CJfxN
https://paperpile.com/c/PXd9g6/KFJON+PKEwQ
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including lean manufacturing principles and systems dynamics, is essential for identifying 

bottlenecks and optimizing workflows. To enhance efficiency, students should master process 

improvement methodologies, enabling them to minimize waste and improve product quality. 

Proficiency in data analytics tools and techniques is critical for interpreting vast production data 

to drive informed decisions and predictive maintenance. Additionally, familiarity with digital twin 

technology and real-time monitoring systems can aid in simulating and refining manufacturing 

operations [10]. Problem-solving and critical-thinking skills are equally important, empowering 

students to make rapid, effective decisions in manufacturing environments. Developing soft skills 

like communication and leadership will enable collaboration across multidisciplinary teams, 

fostering innovation and adaptability in a technology-driven ecosystem like [11] manufacturing. 

Current students are actively preparing for the future of manufacturing through a comprehensive 

educational approach that blends classroom instruction, laboratory-based learning, and hands-on 

experience. University curricula increasingly incorporate advanced topics such as Industry 4.0 

technologies, automation, artificial intelligence (AI), and supply chain management to build 

foundational knowledge. Courses often include case studies, simulations, and project-based 

learning to help students understand real-world manufacturing challenges and solutions. 

Laboratory-based instruction further reinforces theoretical concepts by offering students practical 

exposure to cutting-edge equipment like CNC machines, 3D printers, robotics, and IoT devices. 

These labs simulate real manufacturing environments, allowing students to experiment with 

process optimization, quality control, and system integration. Hands-on experience is also gained 

through internships, co-op programs, and industry-sponsored projects, allowing students to apply 

classroom knowledge in live industrial settings. These experiences foster problem-solving, critical 

thinking, and adaptability, essential skills for navigating complex manufacturing systems. 

Additionally, many universities emphasize interdisciplinary learning by integrating engineering, 

data science, and business courses to prepare students for the multifaceted demands of the industry. 

Students develop the technical and analytical skills necessary to drive innovation and efficiency in 

the future manufacturing landscape through this combination of theoretical instruction, practical 

lab work, and real-world exposure. 

However, laboratory-based education poses significant challenges, particularly for low-income 

institutions [12]. This scenario is even worse for manufacturing education due to the high costs of 

acquiring and maintaining advanced equipment like CNC machines, robotics, and 3D printers. 

Limited funding can restrict access to modern technologies, resulting in outdated facilities that 

hinder hands-on learning. Additionally, recruiting and retaining skilled instructors proficient in 

emerging manufacturing technologies is costly and competitive. Space constraints and safety 

regulations further limit the expansion of lab facilities. Moreover, rapidly evolving technologies 

require constant updates to curricula and equipment, which many institutions struggle to sustain, 

widening the gap in educational quality and industry readiness. Digital laboratory modules using 

computer simulations offer a cost-effective and scalable solution to overcome the challenges of 

traditional manufacturing education. By leveraging simulation tools and virtual labs, institutions 

can provide students with realistic, interactive learning experiences without expensive physical 

https://paperpile.com/c/PXd9g6/xPeep
https://paperpile.com/c/PXd9g6/rMXdz
https://paperpile.com/c/PXd9g6/mP87c
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equipment. These modules allow students to experiment with complex manufacturing processes, 

design prototypes, and analyze production systems in a risk-free environment. Additionally, digital 

labs can be easily updated to reflect industry advancements, ensuring curriculum relevance. They 

also enable remote access, expanding learning opportunities for students in resource-constrained 

or geographically isolated institutions and enhancing inclusivity and accessibility. This paper 

addresses these needs and develops three laboratory-based modules to train students in 

manufacturing education.  

2. Development of Digital Laboratory Modules 

This paper presents the development of two digital laboratory modules designed to improve the 

operational efficiency of manufacturing systems. These modules aim to educate students on how 

various parameters influence production output and how to effectively manage production 

processes to achieve targeted goals. The following sections provide a detailed description of these 

modules. 

Module 1. Improving the process flow by considering different maintenance scheduling   

Problem Statement and Objectives: Semiconductor manufacturing involves multiple operational 

stations; each plays a vital role in producing high-quality wafers. In a facility where wafer 

production must meet a daily target of wafer production per shift, achieving optimal throughput 

requires analyzing and balancing station workflows, identifying bottlenecks, and ensuring efficient 

resource utilization. This study demonstrates the development of a digital laboratory module using 

simulation and modeling techniques, focusing on shift-wise output and decision-making logic for 

optimizing productivity. The wafer manufacturing process involves six critical stations operated 

by individual personnel, which are subsequently used for wafer mounting with alignment, saw 

blade setup, wafer saw dicing, frame expansion, inspection, and unloading with die handling. 

Operational times vary significantly, from 2 to 18 minutes, with wafer saw dicing and saw blade 

setup being the most time-intensive, while unloading and die handling are relatively faster, 

processing up to 20 wafers per hour. The primary objective is to optimize workflow efficiency to 

meet an output target of 50–60 wafers per shift, minimize idle times, and address bottlenecks in 

time-intensive processes. Streamlining operations and balancing workloads across stations aims to 

enhance production efficiency, reduce waste, and ultimately increase profitability. 

Operation data: This is a case study in the semiconductor industry, focusing on wafer 

manufacturing. The primary objective of the study is to meet client production targets, which 

involves producing the required quantity of wafers within the allocated timeframe while adhering 

to stringent quality standards based on various Predefined conditions. This study highlights the 

challenges faced by the semiconductor industry in meeting customer demands. Time constraints 

vary depending on factors such as order volume, lead time agreements with clients, and the 

complexity of wafer designs. A simulation model is developed using AnyLogic Simulation 

software to support enhanced learning [13, 14]. This model allows students to compare various 

production line configurations and optimization strategies, incorporating demand variability to 

determine the most efficient setup. For the simulation-based educational approach, the study 
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focuses on a basic wafer type to simplify the learning process while still reflecting key industrial 

challenges. By integrating these digital laboratory modules into manufacturing education, the 

study aims to provide a more interactive and practical understanding of production systems and 

decision-making in dynamic environments. 

 

Figure 1: 3D visualization of the model (Process step). 

The study is designed to represent typical operations in the semiconductor manufacturing process 

for student learning objectives. The data used for the model is shown in Table 1. The wafer 

production process involves six steps across six different workstations. The production line begins 

with the wafer cleaning operation, where impurities and residues are removed from the wafer 

surface.  

Table 1: Processing Time at each workstation. 

Station Name/ 

Time (min) 

wafer mount 

with alignment 

saw Blade 

set up 

wafer saw 

dicing 

Frame 

expansion 
Inspection 

Unloading 

& Die 

handling 

Min (min) 5 13 11.6 2 3 2 

Max (min) 7 18 14 5 6 3 

Mode (min) 6 15 12 4 5 3 

The cleaned wafer is then passed to the next workstation, where the photolithography process is 

performed to define intricate patterns on the wafer. The finished wafer progresses through 

subsequent stations, including etching, doping, deposition, and polishing, among others, before 

reaching the final inspection stage. This simulation model captures the dynamic production 

processes and demand fluctuations in wafer manufacturing, enabling the evaluation of various 

line-balancing strategies to achieve optimal production efficiency. The visual representation 

enabled real-time monitoring of station activities and ShiftWise analysis, providing insights into 
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the Clear visualization of how wafers moved across stations and Real-time tracking of station-wise 

outputs, downtime, and bottlenecks, as shown in Figure 1. 

Solution approach: This presented module demonstrates three key aspects of the semiconductor 

manufacturing process: 1) defining decision variables in the interface that facilitates decision-

making, 2) Output dashboard showing the shift-wise impact of alternative resource allocation, 

Maintenance and usage of extra machines, and 3) Scenario Based analysis showing the outcome 

of the user defined decision variables. 

Decision Variables: In this section, the following figure (Figure 2) illustrates the interactive 

decision parameters that enable users to dynamically modify maintenance schedules and operator 

settings. Key components include the 𝑆𝑡𝑎𝑟𝑡𝑀 𝑎𝑛𝑑 𝐸𝑛𝑑𝑀 buttons, which allow users to manually 

control the initiation and completion of maintenance schedules for specific machines or sections, 

providing flexibility in scheduling. 𝑁𝑂𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 , 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑀𝑆  buttons further enhance 

control over maintenance activities. 𝑁𝑜 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 turns off planned maintenance to prioritize 

continuous operations, while 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 Activates a predefined maintenance 

schedule, ensuring periodic equipment servicing. Additionally, Unplanned Maintenance simulates 

unexpected maintenance events based on an exponential distribution, incurring higher costs than 

scheduled maintenance. The operator settings, such as operatorF4MFID and operatorFSawDicin, 

enable adjustments to the number of operators assigned to tasks, directly influencing production 

rates and efficiency. The Events parameters, including EVST, EVSTPre, EVEND, EVENDPre, 

represent system triggers for maintenance tasks, incorporating real-world delays and downtime 

into the simulation. Lastly, the “Extra Machine” and “No Extra Machine” buttons allow users to 

determine whether an additional machine should be utilized during maintenance or failure of the 

primary machine, optimizing resource allocation. 

 

Figure 2: Decision Variables in the model 

System Outputs: In this step, Figure 3 demonstrates how changes in decision parameters influence 

system outputs, presented through shift-based metrics and production analysis. Key components 

include Shift-based Output Metrics, which track critical data such as operator workloads (e.g., 

Wkr1, Wkr2), total profit, and costs for each shift, enabling detailed productivity analysis. 

Production Efficiency Indicators provide real-time visualization of efficiency, correlating operator 

numbers, maintenance downtime, and working minutes with outputs and profitability metrics 

Profit_shift1, Profit_shift2, Profit_shift3, offering a clear performance assessment per shift. 
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Visualization Components, such as bar charts, highlight comparative efficiency and profitability 

across shifts, with metrics defined as LE1, LE2, and LE3 showcasing labor efficiency trends. 

 

Figure 3: Dashboard showing shift-wise output. 

Additionally, pie charts depict the distribution of operator workloads (e.g., mounting vs. dicing), 

helping to identify bottlenecks or underutilized resources. Metrics are defined as 

𝑇𝑜𝑡𝑎𝑙𝑂𝑝𝑟𝑡𝑟, 𝐿𝑖𝑛𝑒𝐸𝑓𝑓𝑐, 𝑤𝑎𝑓𝑒𝑟𝑃𝐷  offer comprehensive measures of production efficiency and 

capacity utilization.  The interactive interface also enables users to make real-time decisions about 

operator allocation, Extra machine usage, and maintenance scheduling, directly impacting system 

performance. For instance, increasing operator availability improves productivity but may incur 

higher labor costs. Delaying or advancing maintenance affects efficiency, with potential trade-offs 

between short-term productivity and long-term equipment reliability. This dynamic decision-

making process and shift-specific performance visualization support strategic planning and 

optimization of industrial systems in a simulated environment.  

Results & Scenario Analysis: In this Paper, we define the Key variables based on operational 

characteristics, including time ranges (minimum, maximum, and mode) for each station, standard 

minute values (SMV), and efficiency calculations. The system calculated the throughput for an 8-

hour shift, providing insights into the total number of wafers processed at each station. Parameters 

such as basic time, allowances (20%), and operator efficiency were included to address variability. 

The Efficiency formula is defined as: 

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
𝑀𝑎𝑛𝑝𝑜𝑤𝑒𝑟 × 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑀𝑖𝑛𝑢𝑡𝑒𝑠

𝑂𝑢𝑡𝑝𝑢𝑡 × 𝑆𝑀𝑉
× 100 (1) 
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Saw Blade Setup and Wafer Saw Dicing exhibit the lowest efficiencies due to high processing 

times. Unloading and Die Handling consistently outperformed other stations, processing up to 20 

wafers per hour.  The model identified bottlenecks by analyzing the output data and offered 

recommendations for resource allocation and task scheduling. 

a) 

 

b) 

 
 

c) 

 
 

Figure 4: Scenario-based outcome from the simulation, (a) Efficiency, (b) Production, (c) Cost vs 

Profit. 

The simulation revealed a substantial disparity in station performance, underscoring the need to 

reallocate resources with maintenance considerations. Note that we considered different scenarios 

based on extra machine set-up and maintenance types of categories (Table 1). Another table (Table 

2) compares four scenarios in the wafer manufacturing process, evaluating the impact of 

maintenance strategies, additional machines, and operator count on efficiency, output, work-in-

progress (WIP), total cost, and profit. The first scenario, featuring scheduled maintenance without 

extra machines, appears as the best-performing option. It achieves the highest efficiency of 90.7%, 

the highest profit of $4450, and the second-lowest total cost of $4197.12 while maintaining a 

manageable WIP level (562). In contrast, in Scenario 2, with extra machines, the factory suffers 

from reduced efficiency of 85.2% and a profit of $3326, highlighting diminishing returns despite 

slightly lower WIP. Scenario 3, with unplanned maintenance and no extra machines, closely 

matches that of scenario 1, with an efficiency of 90.6% and a profit of $4200, but it incurs higher 

costs, which are $4226.23. In Scenario 4, combining unplanned maintenance and extra machines, 

the reduced efficiency is 88.2%, a moderate profit of $4000, and the highest total cost is $4240.15. 
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Thus, Scenario 1 is the most optimal solution, balancing high efficiency, cost-effectiveness, and 

maximum profitability, making it the preferred choice for sustainable operations. 

Table 2: Evaluation Matrix for different Scenarios (24 hrs. Timeframe) 

Scenarios Maintenance Extra 

machine 

Operators Efficiency 

(%) 

Output WIP Total 

Cost ($) 

Total 

profit ($) 

Scenario-1 Schedule  No  

 

18 

90.7 160 562 4197.12 4450 

Scenario-2 Schedule Yes 85.2 140 580 4221.31 3326 

Scenario-3 Un-Planned  No 90.6 158 560 4226.23 4200 

Scenario-4 Un-Planned Yes 88.2 151 569 4240.15 4000 

 

Module 2. Optimization of the floor operators to maintain the proportional production target 

Problem Statement and Objectives: The case study focuses on an electrical structure 

manufacturing company that manufactures five styles: Chassis, Mainbreaker, Utility, Combo, and 

Stacks. This facility operates five production lines for five types of structures. Four are connected 

to two sub-assembly lines, while the fifth line is connected to a single sub-assembly line, as shown 

in Figure 5. The facility operates a batch production model and needs to divide the batch among 

five production lines according to the required proportion of the output to meet the customers' 

demand. To accommodate high customization, every type of structure comes with five complexity 

levels mixed according to the required proportion. Production begins with integrating several 

processes embedded into a frame, and not every process in the production line may be necessary 

for a specific frame of structures. 

The facility operates on a standard schedule of two eight-hour shifts daily and produces about 35 

electrical structures. If the demand exceeds, the existing systems must extend their working hours 

and even work on Saturdays. Despite these efforts, they fail to meet the demand, resulting in 

backlogs and unfulfilled orders. In such a situation, managers face difficulties balancing the 

production line to achieve the targeted output. Hence, this study aims to streamline operations by 

optimizing the number of workers in each workstation to fulfill its production goals within a 

standard workweek and avoid the additional labor costs associated with overtime and weekend 

shifts.  
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Figure 5. Facility layout of production lines 

Operational data: The production process starts with discrete event simulation [15] by integrating 

various processes within a frame, which differ in complexity and type. Work-in-progress (WIP) 

parts are moved to the next station in sequence as each processing stage finishes. Processors 

(workstations) in every production line follow triangular distribution (𝑇 ∼ Triangular(𝑎, 𝑏, 𝑐)). In 

this case, the mode is the average of the lower and upper values (𝑖. 𝑒.  𝑐 =
𝑎+𝑏

2
).). Each batch for 

input will be allocated to the production lines based on the percentages, as shown in Table 3. The 

five complexity types for each assembly line also follow the same percentage distribution. 

Table 3. Targeted output quantities and complexity proportion for production lines 

Assembly lines Target Qty /shift % 

Chassis 28 39% 

Mainbreaker 21 30% 

Utility 10 14% 

Combo 10 14% 

Stacks (SCMMs) 2 3% 

 Total 71 100% 

The processors are arranged sequentially in each production line to maintain a streamlined 

workflow. However, specific processors in the main assembly and sub-assembly lines are 

configured to operate in parallel. This setup facilitates a higher degree of customization, enabling 

the production lines to efficiently meet varying demands and complexities. For instance, the 
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arrangement of workstations in the Mainbreaker line and the distribution of its workflow across 

parallel processors are organized in Figure 6 and Table 4, respectively. 

 

Figure 6. Layout of the Mainbreaker production line 

Table 4. Product flow distribution for parallel paths in Mainbreaker 

Assembly lines 
 

Parallel path % 

Mainbreaker  

Main 

assembly 

line 

Connectors2 → Prewiring2 25 

Connectors2 → Inspection2 25 

Connectors2 → Wiring2 50 

Sub-

assembly 

line 

ConnectorsAndRiserbar2 → Pringles2 5 

ConnectorsAndRiserbar2 → Magnums2 5 

ConnectorsAndRiserbar2 → Q222 45 

ConnectorsAndRiserbar2 → Cassettes2 5 

ConnectorsAndRiserbar2 → Bussway2 40 

Solution approach: The methodology for this study focuses on simulating and optimizing worker 

allocation in a stochastic manufacturing system to meet production targets efficiently. FlexSim 

Simulation [16] Software has been used to model and analyze the production system. This tool 

helps visualize the flow, identify bottlenecks, and test potential solutions. The operational and flow 

distribution proportions were collected from the company's historical records. This data served as 

the foundation for understanding processing times, complexity levels, and production flow, 

ensuring the simulation model accurately reflects real-world operations. The methodology consists 

of the following steps. 
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Figure 7. Steps of the solution approach 

Identify decision variables: In this study, the primary decision variable is the number of workers 

allocated to each workstation across the five production lines. This variable plays a critical role in 

determining the efficiency and throughput of the system. By adjusting the number of workers at 

different stages of the production process, the simulation evaluates how operator distribution 

impacts key performance measures such as output levels, bottlenecks, and utilization rates. This 

decision variable is central to balancing the workload across the main and sub-assembly lines, 

ensuring the production system operates efficiently under varying levels of complexity and 

demand. In FlexSim, we manage this decision variable (number of operators) using parameter 

tables. The parameter table is used to change variables for different scenarios automatically.   

 

Figure 8: FlexSim model for the facility layout 
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Model development: The simulation model was constructed to replicate the production facility, 

incorporating five distinct production lines—Chassis, Mainbreaker, Utility, Combo, and Stacks, 

as shown in Figure 8. The simulation model includes the production layout for all five styles, 

including main assembly lines and sub-assembly lines, parallel product flow paths based on 

predefined percentages for each production line, and worker allocation and resource availability 

as key decision variables. Each line was designed to reflect its respective products' associated 

complexity levels, processing times, and flow distributions. The model integrates operational data, 

including triangular distributions for processing times and proportional flow allocations derived 

from historical data. The model can also identify bottlenecks, track machine utilization, and 

analyze worker performance, ensuring a comprehensive representation of the manufacturing 

process. This structured approach enables precise experimentation and optimization to meet 

production goals efficiently. 

Performance measures: The performance measures for this study are centered around achieving 

the target output for each production line and evaluating workstation utilization. The target output 

serves as a benchmark for assessing whether each production line meets its production goals based 

on the allocated resources and processing times. On the other hand, workstation utilization 

provides insights into resource use efficiency across different production stages. The simulation 

can identify underutilized or overburdened workstations by monitoring these metrics, allowing for 

worker allocation or process flow adjustments to optimize performance. These measures ensure 

the system operates efficiently while meeting demand within the given constraints. As an example, 

the performance measures (FlexSim output) are displayed in Figure 9.  

(a) (b) 

 

 

 
 

 

Figure 9: Performance measures (a) machine utilization and (b) line throughput 

Experimentation and optimization: The experimentation phase involves testing various scenarios 

within the simulation model to evaluate the impact of different worker allocation strategies on 

production performance. The study aims to identify the optimal allocation that achieves the target 
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output of 142 structures per day by adjusting the number of workers across workstations in the 

five production lines. Scenarios include redistributing workers between main and sub-assembly 

lines to balance workloads, minimizing idle times, and addressing bottlenecks. Performance 

measures such as output numbers, workstation utilization, and line efficiency are monitored for 

each scenario to determine the most effective configuration. This iterative approach ensures the 

final recommendations are based on comprehensive and validated results. This way, the worker 

allocation is optimized to ensure that each line meets its targeted output without overloading any 

workstation or requiring additional shifts. 

3. Conclusion 

The digital laboratory modules developed in this study effectively model the complex workflows 

involved in the manufacturing processes of semiconductor and electrical structures. By integrating 

simulation and modeling techniques, these modules offer a comprehensive understanding of the 

necessary actions to optimize productivity. Incorporating 3D visualization significantly enhances 

the user experience, allowing stakeholders to monitor processes in real-time and make informed 

decisions. This study highlights the pivotal role of simulation and modeling in modern 

manufacturing facilities, demonstrating their potential to streamline operations and achieve target 

outputs in highly variable environments. Future integration plans involve incorporating these 

digital laboratory modules into the existing "Strategic Design for Manufacturing" course. The 

modules will serve as case studies in classroom settings, where students will interact with the user 

interface to explore various parameters and observe their impacts on the manufacturing process. 

Students will also be instructed to identify appropriate parameters to manage processes efficiently. 

Students are expected to gain practical, hands-on learning experiences through these modules. The 

learning outcomes and students' perceptions of the modules will be thoroughly examined and 

presented in a future study. 
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