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Abstract
This study explores a novel instructional approach that integrates agile methodologies with tradi-
tional teaching practices to enhance learning outcomes in an introductory Computer Science (CS1)
course. A high rate of D, F, and Withdraw (DFW) grades, coupled with student dissatisfaction in
previous iterations, prompted a comprehensive redesign of the CS1 curriculum at a mid-sized
public land-grant university. The redesigned course emphasizes student-centered learning, incor-
porating strategies such as near-peer instruction, supplemental tutoring, and flexible assessment
timelines. These changes aim to help students engage more effectively with core computing con-
cepts at their own pace. Grounded in a constructivist framework, the course encourages active
knowledge construction through hands-on activities and iterative feedback. Preliminary results
show a substantial reduction in DFW rates and increased student satisfaction, leading to a co-
hort better prepared for advanced computing coursework and more capable of applying computing
principles across disciplines. This paper details the redesigned course structure and evaluates its
effectiveness through a constructivist lens, suggesting that this agile-inspired model promotes more
positive learning experiences and improved outcomes in CS1.

Introduction
The first computer science course (CS1) serves as a critical foundation for students’ understand-
ing of computational thinking and core computer science principles. As students’ initial exposure
to programming concepts, CS1 significantly influences their perception of computer science and
their potential success in the field. This work explores a novel instructional approach at a public
land-grant institution in the Mountain West region, serving approximately 10,000 students. By
adapting key principles from agile software development—including rapid concept iteration, reg-
ular student retrospectives, and sprint-based content delivery—this proposed approach responds to
student needs and backgrounds to provide content specifically tailored to students with the goal
of improving student motivation to complete the course as measured by the course success rate.
This work builds upon on evidence that agile-aligned pedagogies support reflective learning and
communication in computing courses [1].



The goal of this work is twofold:

1. Provide a retrospective analysis of a novel instructional model, offering sufficient detail for
other educators to adopt, adapt, or extend the approach.

2. Demonstrate the effectiveness of this modified instructional approach in addressing stagna-
tion in content delivery, preparing students for the rapidly evolving field of computer science.

In a field as rapidly changing as computer science, modifications to the methods of instruction may
help intrinsically prepare students for this rapidly changing ecosystem.

Theoretical Framework
Constructivism as an educational theoretical framework has often been applied to the sub-field of
computer science education (CSE). The theory, at its core, focuses on mental models created by
students and emphasizes students’ construction of mental models as a proxy for transferable un-
derstanding [2]. Therefore, the students are able to develop their understanding of computation
and the inner workings of the computer as a way to understand the limits and possibilities of com-
putational thinking. Developing computing artifacts, such as computer programs, is the primary
learning approach employed by many constructivist approaches to CSE [3].

The primary hurdle identified when applying constructivist frameworks to CSE is the lack of a
functional model for students [2]. Since many students lack an understanding of how computers
perform tasks they believe to be simple (such as opening a web page or saving a file), they enter
CS courses without a foundational framework on which to scaffold new concepts and ideas. As a
result, a primary goal of early computer science courses must be the development of a functional
model for how computation is performed by computers and how computational problem solving
differs from other domains.

Some researchers have argued that ”[constructivism] is less effective and less efficient than instruc-
tional approaches that place a strong emphasis on guidance of the student learning process” [4].
While there is valid concern that students may not be successful working under the assumption
voiced in [4] that ”knowledge can best ... be learned through experience,” the conclusion that
this educational model must therefore be made up of ”unguided practical or project work” is not
necessarily true. In fact, it has been directly contested as ”mistakenly conflat[ing] problem-based
learning and inquiry learning with discovery learning” [5]. This interdisciplinary, constructivist
approach aligns with our agile model’s emphasis on learning-by-doing in CS1.

The instructional approach described in this work joins experimental spaces for students to con-
struct knowledge with focused guidance and direction from instructors to avoid these specific prob-
lems.

Early Computer Science Course Content
CS1 courses generally serve two overlapping but distinct purposes. First, from a constructivist
perspective, the goal for CS students is to develop a working mental model for how computers
(devices) and computation interoperate. Second, a less-frequently articulated goal of CS1 courses
is to share computational methods and means of reasoning to non-CS students. Meeting the needs



of these divergent groups of students requires meaningful content, guided programming exercises,
opportunities for creative self-expression, and tangible rewards. These requirements conflict with
existing collegiate education approaches, which often omit early emphasis on collaborative and
inquiry-based practices that can improve engagement and retention [6].

Students see the best way to learn CS content as programming and practicing, but many students
lack the intrinsic motivation to explore these ideas without the external motivation provided by
a course and a grade [7]. As a result, student expectations center on being guided through pro-
gramming exercises which are meaningful to them; being allowed some degree of creative self-
expression; and being rewarded for such practice with the tangible outcome of good grades [8].
These needs are often at odds with traditional approaches to collegiate education which see an
instructor lecturing and dictating assessments such as homework and exams to assess the retention
of lecture content.

A number of works have sought to address this apparent gap between expectations of students
and the reality of the courses they must take. A common approach is to formulate two distinct
courses, targeting CS students with a ”traditional” CS1 course and targeting non-CS students with
a ”computational thinking” course [9,10]. Treating these two groups as distinct and without overlap
has been shown to be successful with respect to keeping students in CS1 courses when they are non-
major students; however, not all institutions have the capacity and resources to separate CS1 into
two unique courses. One intention between this distinction between major specific and non-major
specific approaches to early CSE is to provide different motivations to different students [11].

A commonly held belief about the computer science field is that courses are ”dry” and ”boring,”
and it has been suggested that one possible explanation for such impressions is the use of ”aca-
demic” languages for early courses such as Scheme or Logo [12]. Python has emerged as a clear
favorite for early CSE, and CS1 specifically, in order to address the needs of students to learn a
production ready language. A major benefit is that Python, as a language, is approachable for
learners without a preconceived framework of what computation is.

Other Approaches
While the content focus of CS1 courses is well studied and documented in the literature, a sampling
of interesting approaches is included here. Course content has been presented which ranges from
games programming to robotics to data analysis [13]. The course in Anderson et al. [13] utilized
a data centered focus with the goal of allowing non-major students to have meaningful skills they
could adapt to the computational needs of their specialized domains. Data visualization played a
major role in both instructing students, by visualizing the movement of data within the compu-
tational system, and in assignments, by developing visualization artifacts which were a result of
students’ computing efforts. This content focus was paired with the agile method of instruction
laid out in the remainder of this work.

Other novel methods of instruction have been explored in the past with the intention of adapt-
ing modernized CSE approaches to CS1 courses. For instance, robotics-based constructivist in-
struction has demonstrated potential to foster creativity and deep engagement in computing con-
cepts [14]. Active learning, flipped classrooms, and collaborative assignments are all modifications
to the traditional lecture-first course structure which have seen assorted degrees of improvement to



instruction [15]. Other domain specific practices, such as pair-programming, have also seen adop-
tion within early CSE courses [16], specifically as an instructional method within lab sections and
assignments. These approaches address concerns of their own, but often still suffer from the lag
time between instruction, assessment, and feedback. The novel instructional approach presented
in this work seeks to address this secondary hurdle and so applied a different model than prior
works.

Agility
Agile software development practices are likely to be at least familiar to many CS faculty, but for
educators for whom the software development life-cycle is less ingrained, we seek to provide a
brief description of ”agility” as it is used within the field of software engineering. Agile software
development practices emerged in the early 2000s as a response to the limitations of traditional,
linear design methodologies that dominated much of the 20th century [17]. Instead of creating
a comprehensive initial design, agile employs sequential iterations that continuously refine both
design and implementation. [18]. The principle of observing the state of the process, responding
to current needs, and modifying future plans to address current concerns, embodies the aspects of
agile being employed in this course. For a comprehensive examination of agile practices in soft-
ware engineering, readers are directed to seminal works [19, 20].

This work first explores the non-standard structure of this course, including motivations for the
modification from traditional lecture style modalities. Both qualitative and quantitative analyses
are employed to assess the efficacy of this pedagogical model. We conclude by offering anecdotal
advice after presenting two semesters of this modality and a call for further analysis in the short
and long terms of this model in additional classroom settings.

Course Structure
While traditional lecture-based instruction remains prevalent in post-secondary education, it has
faced criticism for potentially fostering student passivity. Despite these concerns, the lecture
model persists for valid pedagogical reasons, as it enables efficient knowledge dissemination to
large student populations, particularly in subject areas where structured, sequential content deliv-
ery proves most effective. Many students have also developed successful learning strategies within
this conventional framework. This course’s design deliberately sought to bridge the gap between
traditional lectures and more active learning approaches by implementing a collaborative ”I Do,
We Do, You Do” methodology. This structured pipeline facilitates knowledge transfer from in-
structors to students while promoting increased learner engagement

Pedagogical Model: Agile Constructivist
Two primary objectives informed the development of the new instructional mode - Agile Con-
structivist Pedagogy - presented in this work. First, working under the premise that students value
practice as a means to develop content mastery, a primary goal was to utilize assessments which
can double as practice. Secondly, to allow for early intervention and correction of misconceptions



held by students, a cyclic, agile system which can adapt to the student needs of each unique course
section was desired. These two aims converge in a course structure which intentionally mirrors the
agile software development patterns common in the software engineering field while also aligning
to gradual release of responsibility from instructor to learners - informally ”I Do, We Do, You
Do.”

Each cycle, often referred to as ”sprints” in the agile world, takes place over a three week period.
One topic is presented as the primary focus of the sprint. This is covered in a bottom-up approach
by one of the course instructors (”I Do”). This first presentation of content makes heavy use of
debugging techniques, step-by-step execution, and other investigative approaches which provide
explicit insight into how code translates to actions within the computer. Chunks of complete code
are presented with specific ”hang-ups” being pointed out such as the difference between == (the
comparison operator) and = (the assignment operator). Student questions about how code struc-
tures work and how new content ties to previous content is explored in depth by hand.

The second presentation of the same content, referred to as ”reinforcement” and occurring the
week after first presentation, focuses on a top-down perspective by presenting problems which re-
quire application of the content. The content of reinforcement lectures varies in accordance with
perceptions of understanding from students. When topics require more explicit explanations, re-
inforcement lectures may appear very similar to the content lectures from the previous week, but
when students have grasped a topic to a greater degree, a situation which occurs with increasing
frequency as the semester progresses, example problems are solved collaboratively with the in-
structor guiding solutions and pointing out potential problems as they come up (”We Do”). These
reinforcement lectures also place additional focus on providing working demonstrations of pro-
gramming concepts beyond the field of computer science. Exercises are undertaken collaboratively
to explore topics in game theory, astronomy, and genetics among other domains.

The third week, which has students engaging with assessment content without explicit direction
from instructors, provides yet another problem for students to solve, this time through prompted
application of learned skills. This ”You do” section of the course has assignments which are re-
ferred to as ”quests,” an assessment with greater impact than a quiz but less than a test. Quests,
covering the same topic though presented as a different challenge, may be repeated by stu-
dents during any subsequent reinforcement week to improve the grade received by a student.
This explicitly provides the chance for non-major students, which historically drop CS1 courses
at greater rates than CS majors [7], to develop a mental model for computational thinking without
having a punishment to their grade applied before they’re able to reach the level of understanding
necessary for success in the course. Quests are divided into two segments, a knowledge evaluation
which makes use of multiple-choice questions, Parson’s puzzles [21], and short-answer questions
to assess students conceptualization of course content and a programming assignment which asks
students to complete a partially finished program which is provided to them. Either segment may
be re-attempted independently in subsequent weeks by students, and only their best scoring quest
attempt is finalized in their overall course grade.

This approach seeks to optimize for the development of meaningful mental models within students
as well as optimizing for the prompt correction of mistaken assumptions baked into those models.
The assessments administered to students during the final week of the content cycle is reviewed by
the team of instructors prior to presentation of new content the following week. Feedback is then



presented to all students in the course prior to new content being introduced to ”close the loop” and
ensure students possess a meaningful, applicable mental model of the concepts introduced up to
this point before moving on to more complex topics which rely upon a working mental framework
to be most effectively introduced.

Agile Constructivist Pedagogy emphasizes quick iteration and feedback loops, mirroring agile
”sprints,” to let students actively build understanding with instructor guidance. Such an approach
aligns with evidence that agile-inspired teaching can adapt to student needs in real-time, fostering
positive learning experiences and outcomes

Content Sprints
The content presented in the course is broken up into five high-level categories. Each builds se-
quentially upon the content presented in the previous sprint, but some degree of isolation is still
possible between the categories. The section on ”Advanced Collections and Files” certainly must
come after the section on ”Collections of Data,” but exempting this, the segregation of content
serves to keep students engaged and returning to the course content even when one topic presents a
more difficult challenge to student mastery than another topic. The overall structure and sequenc-
ing is presented in Table 1.

Week # Cycle Concepts Lab Available Quests

1 C
Storing and Manipulating Data

1: Hello World
2 R 2: Cash Register
3 Q Quest A
4 C

Controlling Flow and Process
3: Collatz Numbers

5 R 4: RPS Retake Quest A
6 Q Quest B
7 C

Collections of Data
5: toki pona Translator

8 R 6: Genetics Analysis Retake Quest A / B
9 Q Quest C

10 C
Files & More

7: Movies I: Pre-Processing
11 R Movies II: Structured Data Retake Quest A / B / C
12 Q Quest D
13 C

Advanced Concepts
9: Movies III: Data Visualization

14 R 10: Yacht Dice
15 Q Retake Quest A / B / C / D
16 Q FINAL QUEST

Table 1: The 16 week schedule for the CS1 course including lab major topics, lab names, and
available quests and retakes. Labs are available on github [22].

The selection of appropriate content for CS1 courses has been extensively debated in computer
science education research. This course adopts a data-first pedagogical framework, positioning
computation as a tool for analyzing and modeling problems across multiple disciplines. By em-
phasizing data processing and analysis, this approach aligns with similar curriculum designs that
prioritize practical data manipulation skills [13]. The focus on data-driven problem-solving pro-
vides students with immediately applicable skills while building foundational programming con-
cepts through concrete examples.



Lecture Structures
The content lectures begin with a brief retrospective on the last sprint of content. This enabled
students to adjust their internal models of how CS works to have a better working model leading
into the next sprint. Instruction is conducted by the course professor in a hands-on, demonstration
of the concept. As an example, in the case of introducing variables, students are shown 1) an IDE
with a few assignment statements in a code file, 2) a debugger which shows the currently allocated
variables and values, and 3) a step-by-step visualizer which allows for the program to be stepped
through and dissected during execution.

Reinforcement lectures presented take the concept manually demonstrated from the previous week
and embed it in a number of example programs which are analyzed interactively with students.
Continuing the variables example from the previous paragraph, multiple programs are developed
which showcase using variables for embedding other domain principles into computing problems.
The ”ideal gas law,” a foundational formula learned in chemistry courses, showcases the power
for quickly performing manual calculations with programming solutions and how variables enable
this type of computation.

The level of independence provided during quest weeks serves students which have full confidence
very well; and students which are intrinsically motivated, most commonly the computer science
majors [7], need no further direction and are able to complete their work independently. Instructor
attention is therefore diverted to students which are motivated to succeed in class based on grade
requirements, but are not internally invested in computing. These students are frequently the non-
computer science majors and these students are major contributors to course DFW counts [11]. In-
structors then open and provide small group instruction for students during this time period.

Lab Timing
Lab sessions were held weekly with a maximum group size of thirty students, facilitated by a grad-
uate teaching assistant, and assisted by one or two undergraduate teaching assistants. Following
the agile modality presented in this work, the sprint structure was also adapted to the lab setting.
Two weeks were content focused, with the third week being an open work period in which full
support is available while students are given the option of attending to have a dedicated space,
with support, for the completion of the quests and other outside assignments. During lab sections,
students are presented with the lab tasks and work is facilitated by the teaching assistants in the
room.

The first week of each sprint has a simpler version of the problem space being explored in lecture.
The second week extends these problems by having a more abstract application of the sprint topic.
One example of this is the move from the Collatz number lab (which asks students to manually
check whether a number satisfies the Collatz conjecture) to the RPS lab (which asks students to
implement the logic for an application which plays the game Rock, Paper, Scissors). Each lab as-
sess students’ ability to create control flow structures; however the number and complexity of said
structures is far lower in the Collatz number lab. The former has only a single loop and a single if
statement while the latter has multiple of each.



Each of the elements within this novel instructional model may itself be utilized in existing CS1
courses. The novelty comes in the way these approaches are integrated together and in the way
the course adapts current best practices from the field of software engineering to implicitly expose
students to these ideas. The approach utilizes this agile method to more efficiently respond to stu-
dent struggles and to improve student confidence in their development of computational thinking
throughout the course.

Student Outcomes
This work employs both qualitative and quantitative methods to evaluate the pedagogical ap-
proach. Qualitative data was obtained through voluntary, anonymous student evaluations during
the implementation period of the agile methodology. Student perception of the learning environ-
ment serves as a critical indicator for necessary adjustments, independent of grade performance
trends. The quantitative analysis utilized existing University records and assignment grades col-
lected through standard course evaluation procedures. All data analysis was performed on aggre-
gated, anonymized information that was already being collected as part of normal course opera-
tions.

The qualitative assessment draws from student feedback collected in the Fall 2022 and Spring
2023 course sections. The anonymous nature of the departmental surveys precludes the inclu-
sion of demographic or performance-related metadata such as student majors or final grades. The
Electrical Engineering and Computer Science department’s survey instrument focuses on three key
areas: the effectiveness of assignments in facilitating learning objectives, student engagement lev-
els throughout the course, and students’ self-reported correlation between their engagement and
academic success.

Student answers to the survey were given in the form of open response text questions. The surveys
on which the qualitative analysis is based were offered to the entire class across two semesters.
The fall semester had 77 respondents out of 129 students (a 60% response rate) and the spring
semester had 34 respondents out of 90 students (a 38% response rate).

The quantitative analysis utilizes institutional data to examine student performance trends across
multiple course sections. Key variables include academic performance metrics (midterm and fi-
nal grades), student demographics (sex and class standing), and program enrollment status. For
analytical purposes, grades were dichotomized into pass/fail outcomes, and student majors were
classified as either computer science or non-computer science, with undeclared students catego-
rized in the latter group.

Qualitative Analysis
Instructor perception of the course’s performance is undoubtedly important; it is a guiding force
behind nearly all recommendations for improvements to CS1 course presentation. However, stu-
dents’ conceptions of the course and their learning throughout the experience are perhaps equally
valuable. If students are able to see the value in what they were taught, as well as perceiving
value in the way they were taught, it lends credence to the value of this novel modality. Comments



from the students within the survey administered at the end of the course provide this exact feed-
back. One student says: ”The way [the course was designed] was absolutely genius. The only
stress I felt was motivational stress because I had so many opportunities to improve my grade and
understanding with [quest] retakes.” While addressing student motivation is a complicated issue,
moving to a level of instruction where motivation is the primary hurdle for students to overcome
represents a strong result for breaking down many of the barriers encountered by students entering
CS1 courses [10, 23].

Other feedback from students lacked the direct commentary on the structure of the course. In-
stead, they placed focus on the value of the multiple instructors and their differing approaches to
content. Specifically, the utilization of ”reinforcement lectures” were identified by multiple stu-
dents as being helpful for developing student models of computation. Some comments received
stated:

• ”The lectures led [during reinforcement weeks] were extremely easy to follow and down to
earth;”

• ”[The instructor] provided many examples of how the information from this course can be
used in real life in the CS field and outside of it. I used the knowledge from this class in
another class because it made the content easier to comprehend in that class;” , and

• ”[the instructor] made sure that we understood what was happening [when things went
wrong] and how to do it better next time.”

Student feedback demonstrated strong satisfaction with both the course content and instructional
approach. Survey responses emphasized the practical value of the material, with multiple stu-
dents specifically noting how the knowledge could be applied beyond the course. Students also
responded favorably to their active role in the content delivery process, indicating that this partici-
patory approach enhanced their learning experience

Quantitative Analysis
Positive student perception of a course is a welcome opinion, but unless this perception is paired
with a similar improvement in students’ understanding of course material, it is unlikely to translate
to a deep understanding of computer science topics. Thus, it is valuable to also consider student
success rates in the course and place those rates in the larger context of the historic success rates
at the same institution. When we discuss ”success” in this context, we refer to a commonly used
metric of students who received passing grades (A, B, or C which correspond to 70%+ for this
course) in comparison with students who received a non-passing grade, including students who
withdraw from the course.

The success of CS1 courses is a topic of much focus in the CSE field, as without students who pass
the introductory course and develop mastery over introductory content, the totality of CS remains
unavailable. A range of pass rates has been reported in the literature, with the most common
values being in the upper seventy percent of students passing CS1 courses [24–26]. Specialized
classes, such as media computational courses have been introduced over the previous decades,
with the explicit purpose of being more relatable to non-major students. These courses, while



being successful and even achieving pass rates of approximately 90%, may been criticized for not
necessarily achieving the same student understanding of CS as a traditional CS1 course.

Semester Major Students Non-Major Students Total
Students (n=72) (n=147) (n=219)
Fall 2022 98.15 91.42 94.35

Spring 2023 88.88 90.41 90.11
AY 22-23 95.83 90.90 92.56

Table 2: Pass rates for major and non-major students across two semesters of the new instructional
method.

This course, using the instructional method presented in this work, has been offered for two
semesters consecutively with similar passing rates in both semesters. This generalization holds
for both major and non-major students, with non-majors having a higher passing rate than declared
computer science students in total. Major specific pass rates were more variable than non-majors
with 98.15% of students passing in the Fall 22 semester (53 of 54) and 88.88% of students pass-
ing in the Spring 23 semester (16 of 18). Non-major pass-rates had more consistency with Fall
22 seeing 91.42% of students passing (71 of 82) while 90.41% of non-major students passed in
Spring 23 (66 of 73). See Table 2 for semester-by-semester combined pass rates. The total pass
rate across both semesters and for both major and non-major students was 92.56%, a significantly
higher rate than traditional CS1 courses reported in the literature, and only a few percentage points
higher than specialized, media computation classes which are seeing interests rising in response to
the proliferation of computing courses for non-major audiences.

Discussion
Much of the impact of this novel modality is available either anecdotally from student testimony
or is represented in the pass-fail performance of students. With that said, the instructor perception
of a classroom can be a useful barometer for evaluating whether more rigorous study of a modality
would be beneficial, or even if a modality should be abandoned altogether. One of the greatest
strengths seen in this modality is the flexibility surrounding the timing of student learning. In a tra-
ditional CS1 course if a student hasn’t been able to learn the content which is being assessed, there
is often no recourse for them to recover their grade if they later understand a topic. This problem,
which exacerbates the problems already identified by students as to why they are unsuccessful in
CS1: lack of time, the unfamiliarity of the content, or even just the foreign nature of computational
thinking to newcomers in the field, is directly alleviated by a flexible evaluation schedule such as
the one utilized in this course.

While exam retakes are a well-established pedagogical practice, the agile approach innovates by
implementing targeted content revision immediately following student evaluations. This immedi-
acy allows for rapid correction of misconceptions and enhancement of student understanding. The
post-evaluation instruction periods are structured to address both common challenges faced by the
cohort and individual student difficulties.

A concrete example of this approach’s effectiveness emerged in teaching array indexing concepts to



CS1 students. Python’s half-open interval notation for array slicing typically presents a significant
challenge. During the first semester implementation, students struggled considerably with this
concept. However, the second cohort demonstrated markedly better comprehension of the same
material, despite minimal changes to the content presentation.

Traditional course development often relies on end-of-semester reflection and subsequent modifi-
cations to improve content delivery. While instructors can provide clarification when they identify
student misconceptions, the traditional approach often results in a delay of a month or longer
between identifying and addressing these learning challenges. The agile instructional model sig-
nificantly reduces this timeline, ensuring that any misconceptions are addressed within three weeks
of the initial concept introduction.

This quick turnaround, coupled with a lack of pressure placed on students to learn something
immediately and in the exact way it was presented, was identified by the teaching team as a major
contributor to the improved student performances in this version of a CS1 course.

Limitations
Several limitations warrant consideration in analyzing this course’s outcomes. The COVID-19
pandemic’s impact on degree completion patterns presents a significant confounding factor. While
enrollment numbers recovered to pre-pandemic levels during the implementation of this course,
the pandemic may have influenced student willingness to engage with interdisciplinary content,
particularly during online and asynchronous instruction periods.

These effects extend beyond what enrollment data alone can capture. Additionally, while the stu-
dent feedback was collected anonymously through institutional channels rather than course staff,
its anecdotal nature limits the strength of our conclusions. To validate the effectiveness of the pre-
sented teaching methods, future research would benefit from more rigorous empirical assessment,
including pre/post evaluations and longitudinal studies tracking student performance in subsequent
coursework.

Conclusion
This work introduces a novel mode for computer science education which directly parallels pro-
fessional standards from the field of computer science. Students achieved high levels of success in
the course, and non-major retention was strong. Multiple students directly credited the modality
with their strong understanding of computer science after a CS1 course taught at a medium-sized,
land-grant, state institution in the United States of America. A case is made for this instructional
method and a number of the atypical aspects which were identified as contributing to the success
of the method are explored in detail.

The transferability of this method to other institutions is an important future question remaining
after this work. While success was found in these offerings of the course, more data must be
gathered to determine the efficacy of this mode within a multitude of educational environments. A
common concern with trying novel methods of instruction are the potential downsides to student
understanding. No instructor wants to take the risk of putting students at a disadvantage because



of experimentation in the classroom; however, this method provides integrated tools to address
struggles in student understanding, allowing an instructor to navigate the difficulty surrounding
novel course implementations while still placing student success and student learning at the center
of the course.
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