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Abstract

This study investigates the identification and persistence of misconceptions among engineering
students in foundational STEM courses, focusing on physics concepts assessed through the Force
Concept Inventory (FCI). Misconceptions, defined as systematic and deeply rooted alternative
understandings, hinder students’ ability to master complex topics and apply knowledge
effectively. Traditional models such as Item Response Theory and Cognitive Diagnostic Models
are limited in their ability to track misconceptions over time, failing to capture how these
erroneous beliefs evolve or persist across assessments. To address this gap, we employ a
Transition Diagnostic Classification Model (TDCM) that incorporates a Q-matrix to map
misconceptions to test items and monitor their transitions as distinct cognitive attributes over
successive evaluations. Using data from 1,529 engineering students who completed pre- and
post-tests in the Force Concept Inventory, the TDCM reveals the persistence and evolution of
misconceptions in areas such as Force and Motion and Vector Addition. Misconceptions in Force
and Motion, often aligned with intuitive but incorrect reasoning, exhibit strong persistence, while
misconceptions in Vector Addition are more frequently acquired but less stable. These findings
align with Conceptual Change Theories, which emphasize the coherence and resistance of
misconceptions as cognitive structures embedded in students’ mental models. By analyzing
transition probabilities and reliability metrics, the TDCM offers actionable insights for educators,
facilitating targeted interventions. This study demonstrates the TDCM’s effectiveness in
enhancing conceptual understanding, supporting data-driven strategies to address persistent
misconceptions, and improving outcomes in engineering education.
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Introduction

Misconceptions, deeply embedded in students’ cognitive frameworks, present significant
challenges in education, particularly within STEM fields such as engineering. These
misconceptions arise not as random errors but as coherent alternative understandings that conflict
with established scientific principles, often shaped by prior knowledge and intuitive
reasoning[1, 2]. The alternative conceptions that students construct tend to be robust and persist
even after instruction, hindering students’ ability to engage with more complex topics or to apply
scientific and engineering principles in real-world scenarios. The research underscores the
importance of identifying and addressing student misconceptions to foster meaningful learning
[3, 4]. Conceptual Change Theories explain the persistence of misconceptions as coherent
cognitive structures that resist change without targeted interventions. Within constructivist
learning theories, misconceptions are not simply incorrect explanations that can be corrected
simply by providing students with the correct explanations. Rather, misconceptions are both
systematic explanations students build to explain the world, but also emergent and contextual [1].
This means that supporting conceptual change requires targeted and theoretically informed
approaches to teaching [5, 6].

Different from other disciplines, engineering requires students to integrate foundational scientific
principles, technological innovation, and computational reasoning to address complex and
ill-defined real-world problems. This combination makes misconceptions particularly
problematic in engineering contexts as conceptual misconceptions may not be evident when
students are calculating values, but rather emerge when reasoning about a problem conceptually
[7, 8, 9]. In addition, errors in basic physics can lead to flawed assumptions in technology and
design reasoning [10]. Misconceptions in science like physics, such as those assessed in the Force
Concept Inventory (FCI), are not isolated errors but reflect structured cognitive frameworks that
must be understood in relation to the conceptual and cognitive interrelations they embody.
Addressing deeply rooted misconceptions necessitates a comprehensive understanding of how
misconceptions form, persist, and evolve. It is critical to examine how physics misconceptions
held by engineering students and interrelated with each other and how instruction impacts the
ways that engineering students experience conceptual change during instruction. This leads us to
examine a method for assessing transitions in student misconceptions using adaptive formative
assessment to inform targeted and individualized instruction.

This study leverages Transitional Cognitive Diagnostic Models (TCDMs) to investigate which
misconceptions persist or dissipate with instruction among first-year engineering students in a
physics context. By mapping test items to specific misconceptions and analyzing transitions
between cognitive states, the study identifies patterns of persistence and resolution, providing a
dynamic understanding of how misconceptions evolve over time [11, 12, 13]. These insights help
us address which misconceptions are persistent and which undergo conceptual change after
traditional instruction. This leads to the second key question: How do misconceptions in
foundational physics concepts, such as Force and Motion and Vector Addition, persist or evolve
in engineering students?



Literature review

Two key frameworks explain the nature and persistence of misconceptions in learning;
Constructivist Learning Theories, and Conceptual Change Theories. Together, they reveal the
cognitive mechanisms underlying misconceptions and inform strategies for their identification
and remediation in education.

Constructivist learning theories
Constructivist theory explicit that learning is an active process where individuals construct
conceptual knowledge by integrating new information into existing cognitive structures
[14, 15, 16, 17]. Conceptual understanding is formed by using the learner’s existing conceptual
explanation (or schema) to actively decide what information to which the learner should attend,
whether the new information agrees with the existing explanation, and how to modify their
conceptual explanation [18, 19, 20].

When exposed to new information, learners attempt to engage in assimilation, the process of
integrating the new information into their existing conceptual explanations. If the information
does not align with their conceptual explanations, learners either reject the new information or
engage in accommodation, restructuring or expanding conceptual explanations to account for new
information. Accommodation is essential for conceptual change to occur, however,
accommodation is effortful and often resisted by learners. The rejection of discrepant information
is likely when the information is ambiguous and the learners’ prior knowledge appears to explain
phenomena effectively [18]. Scaffolding and reflective tasks are critical in helping learners engage
in accommodation, guiding them to recognize inconsistencies in their reasoning and revise their
frameworks [21, 22]. From this theoretical lens, misconceptions are alternative conceptions that
conflict with scientifically accepted knowledge that arise from learners’ attempts to make sense of
their experiences using existing cognitive structures. Misconceptions are not arbitrary mistakes or
aberrant wrong ideas; rather they are largely coherent mental models shaped by everyday
observations and intuitive reasoning. As such, misconceptions are a natural part of learning.

Misconceptions occur when learners attempt to assimilate knowledge into pre-existing schema
without altering the underlying framework. For instance, a student might assimilate the concept
of gravitational force into their understanding of weight, incorrectly assuming that weight
determines the rate of fall [21, 22]. Once formed, misconceptions persist because they are logical
within the learner’s current schema and they often allow learners to make correct predictions in
specific contexts, making them difficult to unlearn. Misconceptions can persist, even in the face of
evidence, as existing conceptual understanding guides attention and helps learners interpret new
information [23]. Resistance to accommodation thus results in persistent misconceptions,
particularly in cases where existing schemata are deeply entrenched, or connected to one’s
identity.

Conceptual change theories
Conceptual change theories, rooted in constructivism, focus on replacing entrenched
misconceptions with scientifically accurate conceptions [4, 24, 25]. These theories emphasize



cognitive conflict, where contradictions between prior beliefs and new evidence prompt
conceptual reevaluation. However, perception is shaped by existing mental models, causing
students to misinterpret even clear demonstrations [26, 27]. Conceptual change occurs when new
explanations are intelligible, plausible, and useful, but misconceptions persist when these criteria
are unmet. Instructional strategies like discrepant events, guided inquiry, and scaffolding aid this
transition [27]. In engineering education, hands-on, context-rich learning helps students refine
abstract concepts, while iterative engagement with theory and practice fosters conceptual change
[4, 25]. Effective instruction involves identifying misconceptions and using targeted
scaffolding—such as simulations or design projects—to refine students’ mental models through
experimentation and validation [28].

Methods of tracking misconceptions
Goris and Dyrenfurth [28] emphasized that misconceptions in engineering education arise from
the interconnected domains of science, technology, and problem-solving, deeply rooted in
students’ prior experiences and mental models. These misconceptions are resistant to change,
requiring targeted diagnostic methods and interventions guided by conceptual change theories,
such as cognitive conflict. Goris and Dyrenfurth [28] highlight the necessity of creating
dissatisfaction with flawed reasoning and replacing it with intelligible, plausible, and fruitful
concepts. This perspective aligns with the potential of adaptive online assessment systems, which
can dynamically address individual misconceptions in real-time through targeted feedback,
interactive simulations, and iterative problem-solving tasks. Diverse statistical and diagnostic
frameworks have been proposed to diagnose student misconceptions. Herrmann-Abell et al. [29]
utilized Rasch modeling to align student abilities and item difficulties on a common scale,
complemented by option probability curves to visualize how misconceptions evolve with ability
levels. Goguadze et al. [30] applied Bayesian networks to probabilistically map misconceptions
and their underlying causes, achieving high diagnostic accuracy through pretest-posttest data.
Mevarech and Zemira [31] integrated diagnostic modeling with mastery learning strategies,
combining Rasch analysis and targeted corrective instruction to reduce persistent
misconceptions.

Methods

Setting of study
In this study, we analyze data from 1,529 Engineering Students from six institutions who enrolled
in a physics class that used the Force Concept Inventory (FCI) on the LASSO website [32] test to
assess conceptual understanding. All students completed both the pre- and post-tests, with no
missing responses or absences. The data was preprocessed for analysis in the TDCM library in R
[33], including adjustments such as creating a Q-matrix and reversing responses, ensuring a
robust dataset for tracking changes in understanding and misconceptions over the course. The
Q-matrix (Table 1) is a binary framework mapping test items to misconceptions in Force and
Motion, Vector Addition, Friction, and Acceleration and Velocity. Each row represents an item,
each column a misconception, with 1 indicating the item assesses that misconception. Since
mastering even one misconception can lead to incorrect responses, we utilized the Deterministic



Inputs, Noisy ”Or” Gate (DINO) model with reverse response logic, where a student answers
incorrectly if they have mastered at least one misconception [12, 13, 34, 35].

Table 1: Q Matrix. Full version available in github link
Item number Force and Motion Vector Addition Friction Acceleration and Velocity

1 0 1 0 1
2 0 1 1 0
3 1 1 0 1
4 0 1 0 1
5 1 1 1 0
6 0 0 0 1
7 1 1 1 0
8 1 1 0 0
... ... ... ... ...
30 1 1 0 1
31 1 1 0 1

Modeling
Addressing misconceptions requires aligning learning objectives with students’ reasoning, as
misconceptions often manifest as systematic errors that demand detailed analysis in relation to
learning goals. TDCMs extend diagnostic classification frameworks by incorporating latent
transition analysis to evaluate changes in attribute mastery over time. Building on the DINO
model logic, TDCMs enable the study of mastery and non-mastery transitions in a pretest/posttest
setup. It combines the advantages of diagnostic classification models with longitudinal analysis,
making it suitable for assessing interventions that target specific skills or attributes
[12, 13, 34, 35]. TDCMs model the probability of an item response as:

P (Xi = 1|αc) =
exp(λi,0 +

∑
a λi,aαa +

∑
(a,b) λi,abαaαb)

1 + exp(λi,0 +
∑

a λi,aαa +
∑

(a,b) λi,abαaαb)
,

Where λi,0 is the intercept, λi,a represents the main effects of attribute mastery, and λi,ab accounts
for interaction effects [34, 35]. In practice, TDCMs specify mastery status transitions, using pre-
and posttest data to estimate transition probabilities. For instance, the probability of transitioning
from non-mastery to mastery for a given attribute (α) is modeled as τα2|α1 , where α1 and α2

represent the pretest and posttest statuses, respectively. This structure enables targeted analysis of
intervention effects, distinguishing the effectiveness of instructional strategies across multiple
attributes [13, 34, 35].

Results

Model fit statistics
Model fit was assessed using five statistical measures, as presented in Table 2. The Mean
Absolute Deviation of Correlations (MADcor) evaluates the alignment between model-predicted



and observed item relationships, while the residual covariance measure (100*MADRESIDCOV)
assesses unexplained dependencies and the assumption of local independence [9, 36, 33]. The
Standardized Root Mean Square Residual (SRMSR) quantifies the average discrepancy between
observed and predicted response probabilities, and the Mean Absolute Deviation for Q3 statistics
(MADQ3) identifies local item dependencies not captured by the model. Lastly, the Root Mean
Square Error of Approximation (RMSEA) evaluates item-level fit while penalizing model
complexity [9, 36, 33].

Table 2: Summary of Global Fit Statistics
Statistic Value

MADcor 0.065
SRMSR 0.084
100*MADRESIDCOV 1.40
MADQ3 0.046
Mean RMSEA 0.0855

The results, detailed in Table 3 and Table 4, indicate a well-fitting model. A MADcor of 0.065
confirms strong alignment between the skill structure and observed data, while a residual
covariance of 1.40 suggests the model adequately accounts for inter-item relationships,
supporting local independence [9, 36, 33]. The SRMSR of 0.084, though slightly above ideal
thresholds, indicates minimal residuals, suggesting the model attributes responses appropriately.
Furthermore, a MADQ3 value of 0.045 reinforces that most item dependencies are accounted for,
affirming the robustness of the attribute structure in diagnosing student skill mastery [9, 36, 33].
The RMSEA for the items ranged from 0.04 to 0.11 and had a mean value of 0.085. These results
indicated that most items demonstrated an acceptable fit RMSEA < 0.1, thus supporting the
assumption that the attributes successfully captured the cognitive processes required for these
items. Two items, Item 22 and Item 30, had elevated RMSEA values, signaling potential
misfitting of the model with these items or gaps in how these items are linked to the attribute
structure. These outliers require further investigation to ensure consistent fit quality across all
items.



Table 3: Item-Level RMSEA Values
Item RMSEA Value

Item 1 0.08137
Item 2 0.0922
Item 3 0.0779
Item 4 0.0891
Item 5 0.0715
...

...
Item 22 0.1715
...

...
Item 30 0.1152
Item 31 0.0606

Table 4: Item Parameters

Parameter Value

λ0 -2.433
λ1,1 –
λ1,2 –
λ1,3 –
λ1,4 –
λ2,12 –
λ2,13 –
λ2,14 –
λ2,23 –
λ2,24 2.065
λ2,34 –
λ3,123 –
λ3,124 –
λ3,134 –
λ3,234 –
λ4,1234 –
λ0 -1.131
λ4,1234 1.788
λ0 -1.823
λ3,124 2.043
λ0 -1.745
λ2,24 2.4
λ0 -0.964
λ4,1234 2.678



Reliability

Reliability measures model consistency and diagnostic clarity in identifying misconceptions for
each misconception (Table 5). These measures were calculated using metrics such as the
point-biserial correlation (pt bis), information gain (info gain), tetrachoric correlation (polychor),
average maximum transition posterior (ave max tr), and the proportion of examinee posterior
probabilities exceeding specific thresholds (P(t > k)). Additionally, weighted versions of
point-biserial and information gain (wt pt bis and wt info gain) were included. specifically, pt bis
assesses the strength of the relationship between observed responses and latent traits, info gain
quantifies the informational value of transitions, polychor evaluates the correlation between
transitions under the assumption of continuous latent traits, and ave max tr measures the
consistency of classification confidence [9, 36, 33].

Table 5: Reliability of Different Categories
Reliability Metrics

Category pt bis info gain polychor ave
Force and Motion 0.500 0.388 0.803 0.831
Vector Addition 0.205 0.218 0.358 0.542
Friction 0.447 0.371 0.770 0.817
Acceleration and Velocity 0.822 0.507 0.971 0.935

Reliability Metrics

Category max tr P(t > .6) P(t > .7) P(t > .8)
Force and Motion 0.941 0.789 0.598 0.260
Vector Addition 0.293 0.268 0.249 0.224
Friction 0.923 0.750 0.626 0.433
Acceleration and Velocity 0.959 0.922 0.873 0.787

Reliability Metrics

Category P(t > 0.9) wt pt bis wt info gain
Force and Motion 0.621 0.512 0.512
Vector Addition 0.249 0.261 0.261
Friction 0.593 0.493 0.493
Acceleration and Velocity 0.859 0.648 0.648

Acceleration and Velocity consistently shows the highest reliability values across all metrics. For
instance, pt bis = 0.822, polychor = 0.971, and ave max tr = 0.935 indicate a high level of stability
and diagnostic clarity. Proportions exceeding thresholds, such as P (t > 0.9) = 0.787, further
confirm the model’s strong confidence in classifying misconceptions in this domain. These results
suggest that misconceptions in Acceleration and Velocity are persistent and readily identifiable,
making this domain a critical target for instructional interventions. Its high reliability underscores
the effectiveness of the model in capturing the latent constructs and providing actionable
diagnostic information (Table 5).



In contrast, Vector Addition exhibits the lowest reliability values, with pt bis = 0.205, polychor =
0.358, and ave max tr = 0.542, along with P (t > 0.9) = 0.224. These values reflect low reliability
and highlight challenges in diagnosing misconceptions consistently in this domain. The abstract
and multidimensional nature of Vector Addition likely contributes to this inconsistency, indicating
the need for more refined diagnostic tools. Force and Motion and Friction show moderate
reliability, with pt bis values of 0.5 and 0.447, respectively. Metrics such as polychor = 0.803 for
Force and Motion and ave max tr = 0.817 for Friction further support this moderate classification.
These findings suggest that while the model performs reasonably well in these areas, there is room
for improvement in capturing and diagnosing misconceptions more consistently (Table 5).

Item parameters and misconception prevalence

Item parameters in Table 4 reflect both the sensitivity of test items to specific misconceptions and
their effectiveness in diagnosing students’ misconception status. The baseline parameter (λ0)
represents the likelihood of an incorrect response for students without misconceptions. The
predominantly negative values suggest that misconception-free students are generally less likely
to answer incorrectly [12] More negative values, such as λ0 = −2.433, indicate items with low
sensitivity to misconception-free students, meaning these items strongly differentiate between
students with and without misconceptions. Conversely, items with less negative λ0 values, such as
λ0 = −0.964, suggest a greater chance of incorrect responses even among those who do not hold
the misconception, indicating that some items may be more difficult or susceptible to general
errors rather than misconception-driven mistakes [12].

Higher-order parameters (λk) illustrate how misconceptions influence incorrect responses and
how their interactions compound error likelihood. For instance, λ2,24 = 2.065 suggests that
students holding misconception 2 and misconception 4 are significantly more prone to errors on
this item, demonstrating how multiple misconceptions reinforce one another. Similarly,
λ4,1234 = 2.678 highlights an item where the presence of misconception 4, particularly when
interacting with other misconceptions, strongly increases the likelihood of an incorrect response
[12]. The interaction effects observed in parameters such as λ3,124 = 2.043 suggest that certain
items may be particularly diagnostic in identifying complex misconception patterns. These
findings underscore the importance of considering both individual and interacting misconceptions
when designing assessments, as certain items are more effective at detecting conceptual
misunderstandings than others. Identifying these items is crucial for refining instructional
approaches and developing targeted interventions to address persistent misconceptions [12].

Misconception persistence

Proficiency proportions indicate the evolution of misconceptions over time, offering a diagnostic
lens into student learning [33]. A reduction in proportions over time reflects the success of
interventions, while minimal change indicates the need for more effective strategies to address
entrenched misconceptions. The proficiency proportions from Pre to Post all showed a decline
over time, reflecting an overall decrease in the number of students that endorse misconceptions in
introductory physics [33]. For example, ”Force and Motion” decreased from 0.650 at Pre to 0.393
at Post, while ”Acceleration and Velocity” decreased from 0.722 to 0.418 (see Figure 1). The
relatively high probabilities of students transitioning from a misconception state to a



Figure 1: Proficiency proportion [33, 12]

misconception-free state demonstrate that targeted instructional efforts can be moderately
effective at correcting misconceptions [33]. Transition probabilities help teachers identify
persistent misconceptions and track learning progress, while transition posteriors provide
student-specific insights for targeted interventions [11].

According to Table 6, for students who begin non-proficient (Pre[0]), the students of remain
non-proficient (Post[0]) are high across all domains, with values such as P = 0.974 for Force and
Motion and P = 0.825 for Vector Addition, indicating the persistence of misconceptions.
Conversely, transitions from non-proficiency to proficiency (Post[1]) are low, such as P = 0.026
for Force and Motion. Students who start proficient (Pre[1]) have a moderate to high population
rate of retaining their proficiency (Post[1]), with values like P = 0.590 for Force and Motion and
P = 0.566 for Acceleration and Velocity. These patterns suggest that while misconceptions are
difficult to overcome, maintaining proficiency is more stable, highlighting the need for
interventions that specifically target transitions to proficiency (Table 6).

Table 6: Transition Probabilities Across Time Points
Force and Motion Vector Addition Friction Acceleration and Velocity

Pre/post post [0] post [1] post [0] post [1] post [0] post [1] post [0] Post [1]

Pre [0] 0.974 0.026 0.825 0.175 0.972 0.028 0.968 0.032
Pre [1] 0.410 0.590 0.680 0.320 0.413 0.587 0.434 0.566
Note: Pre(0) = Students who begin as non-proficient; Pre(1) = Students who begin as proficient;

Post(0) = Students who end as non-proficient; Post(1) = Students who end as proficient [33]

Table 7 represent the likelihood of correctly classifying each student into their actual
misconception status across different physics concepts. The table provides insight into how well
students are classified and their probability of being placed into an alternative misconception
status. For Force and Motion (FM), students who were initially misconception-free (P (X00))



were classified correctly with probabilities ranging from 0.450 (Student 2) to 0.867 (Student 1).
However, Student 2 had a 23% chance (P (X01) = 0.230) of being misclassified as having
developed a misconception. Similarly, for Vector Addition (VA), the probability of remaining
misconception-free varies, with Student 1 at 0.772 and Student 2 at 0.490, indicating
classification stability differences among students. In Friction (FR) and Acceleration and Velocity
(AV), classification into misconception states (P (X11)) remains relatively low, with Student 1 in
Friction having only a 4.0% chance (P (X11) = 0.040) of retaining a misconception, while
Student 2 has a higher probability of 17%. These results suggest that while some students are
correctly classified according to their misconception status, others have a substantial probability
of being categorized differently [33].

Table 7: Transition Posteriors for Different Skills for each student
Skill Transition Student 1 Student 2 Student 3 Student 4 . . . Student 1,529

FM X00 0.8676 0.4200 0.5100 0.8120 . . . 0.8450
FM X01 0.0451 0.2300 0.1300 0.0950 . . . 0.0600
FM X10 0.0321 0.1500 0.2100 0.0320 . . . 0.0380
FM X11 0.0552 0.2000 0.1500 0.0610 . . . 0.0570

VA X00 0.7720 0.4900 0.4650 0.7440 . . . 0.7600
VA X01 0.0950 0.1400 0.1550 0.1150 . . . 0.1070
VA X10 0.0650 0.1800 0.2050 0.0720 . . . 0.0580
VA X11 0.0680 0.1900 0.1750 0.0690 . . . 0.0750

FR X00 0.9020 0.4100 0.4850 0.8650 . . . 0.8930
FR X01 0.0270 0.2300 0.1650 0.0420 . . . 0.0330
FR X10 0.0250 0.2000 0.1800 0.0380 . . . 0.0260
FR X11 0.0460 0.1600 0.1700 0.0550 . . . 0.0480

AV X00 0.8900 0.4700 0.4500 0.8580 . . . 0.8800
AV X01 0.0410 0.1700 0.1900 0.0580 . . . 0.0450
AV X10 0.0290 0.2000 0.1950 0.0450 . . . 0.0360
AV X11 0.0400 0.1600 0.1650 0.0390 . . . 0.0390

Note:FM: Force and Motion; VA: Vector Addition; FR: Friction; AV: Acceleration and Velocity.
X00 (No Mastery → No Mastery): The transition posterior probability that a student did not
have mastery at Pre and still does not have mastery at Post; X01 (No Mastery → Mastery): The
transition posterior probability that a student did not have mastery at Pre but gained mastery by
Post; X10 (Mastery → No Mastery): The transition posterior probability that a student had mastery
at Pre but lost mastery by Post; X11 (Mastery → Mastery): The transition posterior probability
that a student had mastery at Pre and still has mastery at Post [33].

Discussion

Student conceptual understanding is constructed in both formal and informal educational settings
by individuals actively trying to make sense of the world. These conceptions can align with or
diverge from scientific consensus. However, these conceptions are both contextual and dynamic
[1], evolving through a complex interplay of perception, assimilation, and accommodation



[26, 14, 16], which are shaped by the nature of the misconceptions and the educational
interventions. For conceptual change to occur, instructors need to know students’ conceptions and
misconceptions. However, assessing student misconceptions is challenging, particularly for large
enrollment introductory STEM courses where it may be impossible for instructors to examine
every students incorrect answers on every assessment. The TDCM framework provides a nuanced
lens to examine students’ misconceptions as well as conceptual change [26, 14, 16].

As shown in Table 6, misconceptions are generally persistent, with low transition rates to
scientifically accurate conceptions (P (X01)), particularly for Vector Addition, where only 32% of
students initially holding misconceptions transitioned to correct conceptions. Additionally, a high
probability of students remaining in misconception states (P (X11)) was observed, aligning with
prior research on the persistence of alternative conceptions in physics education [11, 37, 38].
Despite these challenges, Force and Motion, Friction, and Acceleration and Velocity exhibit
stronger retention of correct conceptions, with over 97% of students who started
misconception-free remaining so at post-instruction. However, Vector Addition remains an
exception, with a substantial proportion of students retaining misconceptions. These findings
underscore the need for targeted interventions, such as embodied learning activities, to support
conceptual change [39]. This aligns with prior research demonstrating that introductory physics
course instructors sometimes erroneously believe that conceptual understanding is developed
through solving calculation-based problems [8, 7].

The results from this study also emphasize the role of diagnostic precision in shaping the
understanding of misconception dynamics. The holistic perspective, supported by global fit
statistics and detailed item-level analyses, underscores the intricate relationship between
diagnostic accuracy, instructional effectiveness, and the inherent characteristics of
misconceptions. Model fit statistics indicate that the TDCM approach is appropriate for the data.
However, the reliability scores indicate room for improvement in the individual items on the
assessment. The moderately high-reliability scores for Force and Motion and Acceleration and
Velocity suggest diagnostic adequacy to detect and track these misconceptions. However, there
remains room for refinement to enhance precision, particularly for Vector Addition
misconceptions due to lower reliability scores. These scores reflect the need for more refined
assessment strategies to address the multidimensional nature of this domain. Future research
needs to continue developing assessments to identify specific misconceptions as well as assess
canonical conceptions to more effectively inform targeted interventions.

Conclusion

By the time students enroll in foundational STEM courses, they have developed explanations that
have allowed them to successfully navigate the world around them. These alternative conceptions
can be resistant to change. This is especially true in engineering and physics courses that engage
students with everyday phenomena, or involve ambiguous counter evidence [27, 23]. This
underscoring the need for innovative instructional strategies tailored to address their intuitive but
incorrect appeal.

Conceptual Change Theories are a robust framework for understanding the development,
persistence, and evolution of misconceptions in STEM education. Conceptual Change Theories



emphasize that misconceptions are not random errors but coherent cognitive structures that
provide learners with a sense of internal consistency, even when scientifically inaccurate. The
theory identifies three key criteria for replacing misconceptions with accurate concepts:
intelligibility (the new concept must make sense to the learner), plausibility (the new concept
must seem believable within the learner’s worldview), and fruitfulness (the new concept must be
useful and applicable). Misconceptions persist when these criteria are not met, as learners are
unlikely to abandon intuitive frameworks that appear logical and functional within their everyday
experiences [40, 28]. However, instructors need to assess the scientific conceptions and the
specific misconceptions held by students to plan instruction to motivate conceptual change.

By employing Q-matrices within the TDCM, our study tracks transitions in misconception states
over time, providing a dynamic view of learning. This temporal perspective reinforces the
theory’s assertion that conceptual change is not a one-time event but a gradual process requiring
repeated exposure to conflicting evidence and iterative refinement of mental models. For
example, the frequent acquisition of misconceptions in Vector Addition, despite its low
persistence, reflects the ongoing cognitive struggle learners face when reconciling new
information with pre-existing schemas. These transitions, captured quantitatively in our results,
demonstrate the robustness of Conceptual Change Theories in explaining how misconceptions
evolve and resist correction over time [40, 28, 30].

The study illustrates that misconceptions persist and evolve during introductory physics courses
for engineering majors. In addition, this study identifies misconceptions that appear to be more
resilient to change. These misconceptions appear to be linked to abstract concepts involving
spatial reasoning or everyday scenarios that differ from the idealized physics contexts, such as,
projectile motion problems that ignore air resistance. While this study demonstrates a powerful
method for examining misconception change, and potentially revealing pathways for improving
educational practices and reducing the prevalence of these cognitive barriers in engineering
education, a limitation of this study is that we did not systematically examine the instructional
context or content for the students in the study. Because of this, we did not aim to examine the
causes or instruction that led to conceptual change or persistence. Rather our goal is to examine
the potential for the TDCM model to measure misconceptions and conceptual change. Future
research should utilize more focused studies that incorporate the TDCM method for examining
the precise nature of conceptual change in introductory STEM courses.
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[40] G. Özdemir and D. B. Clark, “An overview of conceptual change theories,” Eurasia Journal of Mathematics,
Science and Technology Education, vol. 3, no. 4, pp. 351–361, 2007.

[41] D. Hestenes, M. Wells, G. Swackhamer, I. Halloun, R. Hake, and E. Mosca, “Cuestionario sobre el concepto de
fuerza,” The Physics Teacher, 1995.


