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Work-in-Progress: Advancing Construction Management Education with 

Core Data Analytics Skills 
 

 
Introduction  

  

Construction management (CM), as a crucial discipline within civil engineering, addresses the 

complexities of modern projects through a combination of technical, managerial, and 

organizational skills. It refers to various tasks, from planning, coordinating, and budgeting to 

controlling and monitoring construction projects through the project lifecycle. The construction 

industry is evolving rapidly due to urbanization, technological advancements, and increased 

project complexity, leading to a significant demand for effective management practices. This 

trend is evident in the growing number of academic programs and student enrollments in CM 

that are aligned with the industry’s demand. According to the recent US Bureau of Labor 

Statistics report, the “employment of construction managers is projected to grow 9 percent from 

2023 to 2033, much faster than the average for all occupations," [1] highlighting the robust 

demand for skilled CM professionals.  

 

As construction projects become increasingly complex, a multidisciplinary approach 

incorporating elements from architecture, engineering, management, and leadership is essential 

[2]. Consequently, CM programs are evolving to include perspectives from economics, 

sociology, and information technology, making the field more appealing to civil engineering 

students for its practical and theoretical relevance [3]. In today’s dynamic environment, the 

ability to solve complex problems is crucial.  Traditional management skills and techniques often 

prove insufficient as projects grow in scale.  

 

CM Education Status 

 

The CM education has evolved from being a part of civil engineering programs to becoming a 

standalone discipline for many institutions in the US. This transition was driven by the growing 

demand for specialized knowledge that civil engineering curricula could not fully address. 

Additionally, the industry has supported this shift by emphasizing the need for specialized 

accreditation [4]. CM programs are designed to equip students with the skills required to excel as 

constructors, focusing on construction methods, materials, budgeting, scheduling, quality 

management, safety, and leadership.  

 

In this vein, CM requires ongoing updates to academic curricula to align with the evolving 

demands of the workforce. The undergraduate CM program needs to implement a strategic plan 

to prepare future professionals to handle the increasing complexity of the construction industry. 

Key skills and attributes identified for success include problem-solving, analytical thinking, 

decision-making, and forecasting [5]. Additionally, the CM industry emphasizes the importance 

of analytical skills and the ability to navigate projects with multiple conflicting objectives [6]. 

Outstanding CM programs are proactively adopting integrated curriculum models to enhance 

learning outcomes, which aim to decompartmentalize knowledge and improve the quality of 

education by inculcating a more cohesive learning environment [7]. Therefore, skills in data 



 

analytics, particularly Multi-objective Optimization (MO) and Machine Learning (ML), are 

becoming essential for aspiring professionals. 

 

Significant Use of MO in CM 

 

Various optimization models, including MO, are used to manage conflicting objectives and 

constraints. These techniques help achieve optimal or near-optimal solutions[8]. In construction 

management, MO plays a pivotal role in navigating the complexities of modern projects, where 

multiple, often conflicting objectives must be managed simultaneously. The ability to balance 

cost, time, and quality is essential for project success, and MO provides a structured approach to 

achieve this balance. For instance, project managers may face the challenge of minimizing costs 

while ensuring high-quality deliverables within strict timelines. By employing MO techniques, 

they can evaluate various strategies that allow them to identify the most cost-effective methods 

without sacrificing quality or extending project duration. This is particularly important in 

competitive bidding environments, where cost overruns and delays can significantly impact 

profitability and client satisfaction. 

 

Additionally, MO is crucial in resource allocation, especially when dealing with limited 

resources or unexpected changes. For example, project managers may need to optimize labor, 

equipment, and materials during construction. By applying MO, they can analyze different 

scenarios to determine the optimal combination of these resources that meets project deadlines 

while minimizing costs.   Studies have highlighted how the optimization technique can be used 

to allocate resources [9] [10] and risks [11] effectively in large-scale construction projects while 

ensuring that productivity is maximized without exceeding budgets. 

 

Addressing the complex trade-offs between time, cost, and safety risks in construction 

scheduling problems is one of the main applications of MO [12]. By simultaneously considering 

these three objectives, project managers can develop schedules that not only minimize project 

duration and costs but also enhance safety outcomes. This method allows for identifying optimal 

scheduling solutions that balance tight deadlines with budget constraints while ensuring that 

safety standards are met. Stakeholders can evaluate various scenarios, facilitating informed 

decision-making that aligns with project goals and their priorities. Ultimately, this holistic 

approach leads to more sustainable and efficient construction practices. 

 

Risk management is another area within construction projects. Project managers can make 

informed decisions that balance risk with project objectives by assessing multiple risk factors, 

such as safety, environmental impact, and financial exposure. For example, MO could help 

construction firms evaluate different safety measures while considering both cost implications 

and compliance with regulations, thus promoting safer work environments without incurring 

excessive costs [13]. 

 

In the context of sustainable construction, MO can facilitate the integration of environmental 

considerations, positive contribution to society, and balancing all with the economy in project 

planning. By simultaneously addressing multiple goals, from minimizing environmental impact 

to maximizing resource efficiency and safety, this approach enables project stakeholders to make 



 

informed decisions aligning with economic and ecological objectives. It facilitates the 

identification of trade-offs between conflicting criteria, allowing for the selection of optimal 

solutions that meet regulatory requirements and promote long-term sustainability.  

 

Multi-objective decision models can integrate carbon emissions with cost and time objectives to 

enhance sustainability in construction projects [14]. Also, project managers can use MO to 

balance sustainability goals with economic and performance metrics when selecting construction 

methods and materials. Stakeholders can better prioritize eco-friendly materials and practices 

than ever before while still meeting budgetary constraints and performance standards [15].  

Integrating technologies like Building Information Modeling (BIM) and project management 

software has transformed traditional practices, enhancing efficiency and communication [16]. 

Integrating these models with BIM has recently been explored to simulate and validate resource 

optimization strategies, ensuring practicality in real-world situations [17].  

 

In addition to all the mentioned applications, MO can enhance stakeholder satisfaction by 

incorporating diverse objectives from various stakeholders, including clients, contractors, and 

regulatory bodies. For example, engaging stakeholders in the decision-making process using MO 

can lead to better alignment of project goals, ensuring that the final outcomes reflect the interests 

of all parties involved. This collaborative approach not only improves project outcomes but also 

fosters a sense of ownership and commitment among stakeholders. 

 

Transformative Use of ML In CM 

 

The transformative field within artificial intelligence, known as ML, enables systems to learn 

from data and improve autonomously. The growth of ML is driven by the availability of large 

datasets and advancements in algorithms [18]. ML is increasingly being integrated into CM to 

enhance efficiency, accuracy, and data-driven decision-making processes. This integration 

addresses challenges of efficiency, schedule, productivity, safety, and cost-effectiveness. 

 

One key area where ML is making a substantial impact is cost estimation and forecasting. 

Traditional methods often rely on historical data and expert judgment, which can be subjective 

and prone to errors. ML algorithms can analyze vast amounts of data from previous projects to 

provide more accurate cost predictions for horizontal and vertical construction projects, from 

highways to buildings and power infrastructure [19] [20]. Studies have found that ML models 

can predict construction costs more accurately than traditional estimation methods [21], 

achieving superiority rates of up to 90% [22]. This capability allows project managers to make 

more informed financial decisions and allocate resources more effectively. 

 

ML significantly enhances CM capabilities when integrated with big data and virtual reality. For 

instance, engineering ML automation platforms can be employed for risk management and 

decision support, showcasing their ability to improve project efficiency [23]. Risks related to 

project delays can be assessed through evaluating factors such as weather conditions, labor 

availability, and material supply chains [24]. Project managers can implement mitigation 

strategies in advance by predicting these risks, saving time, and reducing costs. 

 



 

Safety assessments in construction are also significantly enhanced through the application of 

ML. By leveraging historical accident data, ML can identify risk factors associated with 

construction sites. Predictive models enable project managers to implement preemptive safety 

measures, reducing the likelihood of accidents [25]. Research indicates that ML can predict the 

likelihood of accidents on construction sites using real-time data from wearables and sensors, 

leading to a safer working environment [26]. 

 

Regarding quality control, ML assists construction managers in evaluating processes and 

materials against required standards. Additionally, ML can significantly contribute to sustainable 

construction practices by optimizing energy and resource use while addressing environmental 

challenges [27]. Moreover, it can support scope management by analyzing project changes and 

assessing their implications on time and cost. ML algorithms effectively predict scope changes, 

enabling proactive project management [28]. By continuously monitoring project parameters, 

ML can alert managers to potential scope creep, allowing them to take corrective actions before 

issues escalate. 

 

Resource allocation is another ML application domain for predicting labor productivity and 

equipment utilization. Florez‐Perez et al. [29] illustrated how ML models could analyze past 

project data to forecast labor performance under varying conditions, enabling construction 

managers to schedule labor more effectively and reduce idle time. Last but not least, ML can 

enhance communication and collaboration among project stakeholders. It could analyze project 

documentation and extract relevant information for different parties involved, streamlining 

communication between architects, engineers, and contractors, reducing misunderstandings, and 

improving project coordination [30]. 

 

Research Objectives 

 

Given the limited scope and depth of current CM curricula in addressing the evolving demands 

of the construction industry, this research was conducted to test two hypotheses:  

(1) CM professionals lack proficiency in data analytics, such as MO and ML, and 

(2) A video-based intervention can effectively enhance the knowledge of both undergraduate and 

graduate students in these areas. 

 

To test these hypotheses, two groups of students participated in this research: CM graduate 

students, as CM professionals with work experience, and civil engineering undergraduate 

students enrolled in CM courses. 

 

 

Methodology 

 
To meet the research objectives, the methodology for this research can be defined in three steps: 

 

• Step 1: Develop questionnaire surveys to assess students’ current knowledge in data 

analytics, focusing on MO and ML. 

 



 

• Step 2: Create educational modules introducing students to data analytics skills, focusing 

on MO and ML. 

 

• Step 3: Conduct questionnaire surveys once more to evaluate the potential improved 

knowledge among students.  

 

A total of 21 seniors enrolled in the CM course in the Fall 2025 and 23 in Spring 2025, and 13 

CM master’s students attended this research study. Over two to three weeks, participants were 

surveyed twice using multiple-choice and short-answer questions to evaluate their understanding 

of MO and ML. The survey included 10 technical questions to determine students' initial 

knowledge and a short-answer question requiring them to define MO and ML and their 

significance in our field. Additionally, students conducted a self-assessment of their knowledge, 

and the CM instructor provided further evaluations based on the short answers. Participants 

watched the educational video through EdPuzzle, facilitating engagement by tracking video 

completion.  

 

 

Results and Discussion  

 

Survey data were collected for both modules (MO and ML), with responses gathered for each 

module across three different groups of students (two undergraduate and one graduate) and two 

separate samples (before and after video watching). The first survey’s responses were evaluated 

to determine current knowledge. All responses were assessed and evaluated after students were 

exposed to educational video modules, and the second survey was conducted.    

 

It is important to note that students who attended only one of the two surveys for each module 

were excluded from the comparison analysis. After finalizing the participants, 19 undergraduates 

(group one), 23 undergraduates (group two), and 10 graduate students (group three) were 

included for MO. Regarding ML, 21 undergraduates (group one), 22 undergraduates (group 

two), and 11 graduate students (group three) were considered. Scores for all groups are presented 

in Tables 1, 2, and 3. 

 

Table 1. Obtained scores from undergraduate students (group 1) before and after watching videos 

 
Undergraduate 

Students 

MO ML 

Before After Before After 

#1 50 90 80 100 

#2 50 40 30 100 

#3 50 80 70 90 

#4 50 80 80 80 

#5 40 80 80 100 

#6 60 80 90 80 

#7 50 100 70 90 

#8 100 90 90 90 

#9 80 80 80 90 

#10 60 90 80 60 



 

#11 70 100 80 90 

#12 60 90 80 40 

#13 70 80 90 80 

#14 80 90 80 100 

#15 50 90 90 90 

#16 80 60 80 90 

#17 80 90 70 100 

#18 70 80 60 100 

#19 90 90 80 100 

#20   90 100 

#21   100 100 

Total Average 65.2% 83.2% 78.5% 89% 

 

 

Table 2. Obtained scores from undergraduate students (group 2) before and after watching videos 

 
Undergraduate 

Students 

MO ML 

Before After Before After 

#1 70 90 50 90 

#2 50 70 10 80 

#3 10 100 40 100 

#4 10 20 40 100 

#5 70 90 20 60 

#6 80 100 80 100 

#7 50 90 100 100 

#8 80 100 50 70 

#9 70 80 40 90 

#10 20 40 40 100 

#11 60 80 70 60 

#12 80 90 70 90 

#13 40 90 60 100 

#14 40 50 70 100 

#15 0 50 80 30 

#16 50 90 50 70 

#17 20 90 80 80 

#18 10 100 70 100 

#19 0 30 30 70 

#20 50 70 20 50 

#21 80 100 80 100 

#22 70 80 80 100 

#23 50 90   

Total Average 46.1% 77.82% 55.9% 83.6% 

 

 

 

 

 



 

Table 3. Obtained scores from graduate students (group three) before and after watching videos 

 
Graduate 

Students 

MO ML 

Before After Before After 

#1 30 70 40 60 

#2 20 70 40 80 

#3 60 100 50 80 

#4 30 70 90 100 

#5 100 70 100 90 

#6 20 80 90 100 

#7 90 80 80 100 

#8 90 100 80 90 

#9 20 80 70 100 

#10 10 100 50 90 

#11   40 100 

Total Average 47% 82% 66.36% 90% 

 
According to the sample size, a two-tailed t-test was conducted to test the null hypothesis of 

having the same mean values (average of total scores), with a p-value less than 0.05 as a 

common significance level [31]. Table 4 presents t-test results, in which having the same mean 

between two samples was rejected. This highlights the statistically significant improvements in 

students' knowledge of MO and ML after watching the videos in both graduate and 

undergraduate groups. 

 

Table 4. p-values in the T-test for all comparisons 

 
 Undergraduate Students  

Group I 

Undergraduate Students 

Group II 

Graduate Students 

MO 0.001 0.0001 0.012 

ML 0.045 0.0002 0.002 

 

 

Our preliminary results for the MO module showed that the graduate and undergraduate groups 

had a baseline knowledge score of 47%, 65.2%, and 46.1%, respectively. After the intervention, 

the graduate group improved to 82%, a 35% increase, and the undergraduate students group one 

increased to 83.2%, and group two to 77.82%  (Tables 1, 2, and 3). This suggests that the video 

significantly enhanced both groups' understanding. Individual question analysis revealed an 

improvement in the number of correct responses, up to 8 in the graduate group and up to 4 in the 

undergraduate group. Before the video, 81.8% of the graduate and 37.8% of undergraduate 

students rated their knowledge at the lowest level. Post-video, no one rated their knowledge at 

the lowest level, with a 100% rating between levels 2 and 4, out of which 63.6% of the graduate 

group and 75% of the undergraduate group were between levels 3 and 4. This improvement 

considerably highlights the increased confidence and knowledge.  

 



 

For ML, our preliminary results showed the graduate and undergraduate groups had a baseline 

knowledge score of 66.36%, 78.5%, and 55.9%, respectively. After the intervention, the graduate 

group improved to 90%, and the undergraduate students group one improved to 89%, and group 

two to 83.6% (Tables 1, 2, and 3). These results suggest that the video significantly enhanced 

both groups' understanding. Individual question analysis revealed an improvement in the number 

of correct responses up to 6 and 5 in the graduate and undergraduate groups, respectively. Before 

the video, 54.5% of the graduate and 39.3% of undergraduate students’ self-rating was at the 

lowest level. No one rated their knowledge at the lowest level post-video. These results highlight 

the students' improved confidence and knowledge. 

 

The results reveal low current knowledge among all students. It was found that despite generally 

higher expectations from graduate students with more work experience, they still have a limited 

grasp of the subject. Our findings indicated that the educational video enhanced all students' 

knowledge and self-reported confidence in MO and ML within CM courses, particularly in the 

CM professionals’ group.   

 

 

Conclusion 

 

CM requires continuous updates to academic curricula to meet the evolving demands of the 

workforce. Integrating key problem-solving and analytical thinking skills into the curriculum is 

essential to equipping students with the decision-making and forecasting tools necessary for 

success in CM. Among the critical data analytics skills are MO and ML. 

 

MO is vital in CM to effectively balance cost, time, quality, and other essential factors. 

Construction project managers can leverage this skill to optimize resource allocation, manage 

risks, integrate sustainability, and enhance stakeholder satisfaction, ultimately leading to more 

successful and efficient construction projects. Additionally, the integration of ML in CM offers 

numerous advantages, including accurate cost estimation, improved risk management, enhanced 

safety, better quality control, and optimized resource allocation. As the construction industry 

continues to evolve, harnessing ML technologies will be crucial in driving efficiency and 

ensuring successful project outcomes. 

 

This research indicates that CM professionals currently lack proficiency in core data analytics 

skills. Furthermore, it was found that a video-based module intervention can significantly 

enhance the knowledge of both undergraduate and graduate students in these areas, preparing 

them to make informed decisions in the complex and dynamic environment of the construction 

industry. It is essential to introduce undergraduate students, even those without advanced 

education, to these core analytical tools. The findings of this research can provide valuable 

insights to civil engineering and CM institutions on how to effectively enhance their CM 

education.  
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