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The Impact of Cybersecurity Research in Problem-Solving Through A Swarm 

Infiltration Exercise 

 

ABSTRACT 

The study explores the impact of a six-week cybersecurity Research Experience for 

Undergraduates (REU) on undergraduate students' problem-solving approaches to a cybersecurity 

challenge, employing an interactive robotic swarm as a practical testbed. The swarm was operating 

with an intruder detection algorithm and two groups of students (REU and Control) were 

challenged to develop approaches to infiltrate the swarm. This study aims to assess how formal 

education in cybersecurity bolsters students' analytical thinking and strategic development 

capabilities. Conducted in two phases, the research first involves students at the end of a 

cybersecurity Research Experience for Undergraduates summer program and then engages high-

performing students from a university-affiliated academic club without formal cybersecurity 

training. This comparative analysis evaluates the educational impact of cybersecurity training on 

their practical problem-solving skills. Participants observed the robotic swarm, designed to 

emulate biological communication patterns. Using pre- and post-experiment surveys, along with 

strategic proposal submissions from the students, this study captures differences in students' 

understanding and strategic thinking in cybersecurity. A qualitative analysis of these submissions 

and responses isolates the educational influences of the course on students' perceptions and 

abilities. Employing a mixed-methods approach, the study integrates binary and numerical 

assessment of key concepts and strategies with thematic analysis of free responses. We aim to 

capture both explicit knowledge and the conceptual frameworks guiding these groups of students' 

cybersecurity problem-solving strategies. Findings indicate that formal cybersecurity training 

enriches both theoretical knowledge and practical application skills, evidenced by advanced 

strategic proposals and a deeper understanding of cybersecurity concepts. This is despite the 

exercise centering around a novel algorithm neither group was exposed to in their studies. This 

article provides insights into how cybersecurity education shapes students' approaches to 

cybersecurity challenges, highlighting both their explicit knowledge and conceptual thinking. The 

study contributes to the discussion on preparing students for the cybersecurity landscape's evolving 

challenges, advocating for the inclusion of experiential learning in cybersecurity education. It 

underscores the importance of developing programs that enhance students' real-world problem-

solving abilities, aiming to equip them with the skills necessary to navigate and protect against 

digital threats effectively. 

1 INTRODUCTION AND BACKGROUND 

The cybersecurity landscape is rapidly transforming as individuals increasingly entrust personal 

information to companies for essential services like banking, healthcare, and education. The 

technological advancement of the past three decades has introduced numerous vulnerabilities 

that malicious actors seek to exploit for profit. This digital evolution highlights the critical need 

for a dynamic response to these safety and security challenges. The Bureau of Labor Statistics 

projects a growth of 33% in Information Security Analysis and related fields between 2023 and 



2033 [1], reflecting the growing importance of data protection at both the individual and 

corporate levels. In response to this, cybersecurity professionals must not only possess technical 

knowledge and education but be equipped to anticipate and adapt to both current threats and 

emerging risks. 

Recognizing the limitations of traditional classroom instruction alone, many universities have 

developed hands-on lab courses and summer programs to broaden students’ experiences. 

Programs like the National Science Foundation’s Summer Research Experience for 

Undergraduates (REU) program in cybersecurity aim to educate and provide students with 

hands-on experience to apply theoretical knowledge and challenge their creative thinking. While 

traditional cybersecurity education often focuses on utilizing specific tools for known 

vulnerabilities, developing a security mindset requires a shift towards analysis and critical 

thinking for problem-solving. The effectiveness of these educational programs in developing 

security-oriented thinking, however, remains challenging to assess through conventional testing 

methods. 

In response to this gap, this study uses a novel approach to evaluate the impact of cybersecurity 

educational experiences on students' cyber-related problem-solving strategies. Utilizing a swarm 

robotics testbed, participants were tasked with analyzing an unfamiliar system’s security 

mechanisms without prior knowledge of its implementation. The experiment asked participants 

to formulate infiltration strategies assuming they had access to a robot identical to existing 

swarm members, allowing them to focus on strategy development. This approach allowed the 

researchers to assess participants' ability to: identify potential security measures and intruder 

detection mechanisms and accordingly propose potential exploitation strategies.  

The study compared two distinct groups of technically proficient students: those students who 

were at the end of a six-week cybersecurity REU program and members of university-affiliated 

academic clubs without formal cybersecurity training. This comparison provides insights into 

how formal cybersecurity education influences students' approach to security challenges, 

independent of their technical capabilities. The central hypothesis examined in this work is that if 

two groups of students examine the same cybersecurity challenge, those having experienced an 

out-of-classroom experience (such as an REU) will generate qualitatively different solutions than 

those who have not.  

Our findings suggest that while prior technical experience contributes to problem-solving ability, 

REU cybersecurity experience significantly impacts approach sophistication. REU participants 

demonstrated more advanced analytical approaches and sophisticated strategy development, 

regardless of their prior technical experience than the control group. By analyzing the differences 

in the strategies proposed by both groups, the study provides insights into the role of interactive 

educational experiences beyond the classroom in developing analytical problem-solving and 

creative thinking skills. 

Our research makes several contributions that distinguish it from existing literature: 

1. Educational Impact Assessment: We evaluate how formal cybersecurity educational 

experiences impacts students’ problem-solving approaches when faced with an unfamiliar 

https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.htm


system, creating a framework for measuring educational effectiveness beyond traditional 

knowledge-based testing. 

2. Strategy Analysis Framework: Our four-level classification system for evaluating strategy 

sophistication provides a structured approach for assessing the development of 

adversarial thinking skills is applicable to cybersecurity as a whole. 

3. Experiential Learning Focus: Our study examines how hands-on education experience 

shape students’ conceptual frameworks and problem-solving approaches, going beyond 

their technical knowledge. 

4. Security mindset development: Our preliminary findings suggest that focused 

cybersecurity education contributes more to developing advanced security thinking than 

diverse or numerous technical experiences alone. 

This research contributes insights into developing education programs that effectively 

prepare students to address complex security challenges in technological systems.   

These results have implications for both cybersecurity education program design and assessment 

methods, emphasizing the value of interactive, real-world scenarios in developing advanced 

problem-solving capabilities. The findings suggest that immersive experiences encourage 

students to develop more advanced and diverse technical solutions when approaching unfamiliar 

security challenges. The results emphasize the value of hands-on, scenario-based learning 

experiences in preparing future professionals to address complex challenges in a changing safety 

and security landscape, particularly in fields such as aerospace, defense, and autonomous 

systems. 

2 BACKGROUND 

To contextualize our approach within existing research, we first examine relevant literature in 

cybersecurity education and robotic systems security. 

2.1 Existing Research on Cybersecurity Education  

Research on cybersecurity often education emphasizes hands-on, experiential learning 

approaches. Yett et al. [2] demonstrated learning gains when students engage with cybersecurity 

concepts through robotics-based activities, though their work focused on programming while our 

study addresses analytical problem solving. Phuong et al. [3] and OConnor & Stricklan [4] found 

that structured, hands-on educational frameworks led to improved outcomes, with OConnor 

specifically noting that adversarial thinking skills are not necessarily correlated with prior 

experience. OConnor & Stricklan found that students perform significantly better on dynamic, 

hands-on assessments (99.06%) compared to static problems (84.42%), suggesting that the 

structure of education and assessment may be more important than prior technical knowledge 

and experience in developing advanced analysis capabilities.  

2.2 Cognitive Models and Security Planning  

Malloy and Gonzalez [5] introduced an Instance-Based Theory of Mind model that examines the 

transfer of learning between attack and defense roles. Their work demonstrated the value of 

understanding how an attack thinks while developing defense strategies, supporting our approach 



of asking participants to develop infiltration strategies. DuBois et al. [6] offered insights into 

modeling different levels of attacker sophistication in cybersecurity planning, supporting our 

four-level classification of strategy sophistication. In contrast to this study, they focused on 

defender strategy selection rather than education’s influence on strategy development.  

2.3 Security in Robotic Swarns 

The security challenges of robotic swarms have been examined from several technical 

perspectives. Chen and Ng [7] proposed solutions using hash chains to identify rogue robots, 

while Wolf et al. [8] demonstrated how adversarial swarms can compromise perimeter sentry 

functionality. Andreoni Lopez et al. [9] highlighted communication security challenges facing 

robotic swarm, focusing on security and resilience issues in wireless mesh networks for UAV 

swarms. Their work identified high mobility, vulnerability to jamming, and compromised nodes 

as critical security challenges and proposed a multi-layered security architecture. Li et al. [10] 

introduced a framework for robotic swarm communication networks, proposing an architecture 

that integrates a robotic swarm with wireless mesh networks to serve as a backbone 

infrastructure. While these studies provide technical frameworks for securing swarm systems, 

they do not address the educational dimension of preparing cybersecurity professionals to 

analyze and defend such systems.  

 

3 METHODOLOGY 

3.1 Experimental Design 

 

Figure 1: Experiment Design Flow Chart 



This study employed a comparative analysis approach to examine how cybersecurity education 

influences students' problem-solving strategies (Figure 1). Participants were divided into two 

groups: students at the end of a cybersecurity Research Experience for Undergraduates (REU) 

program (n=12) and a control group of high-performing students from university-affiliated 

academic clubs without formal cybersecurity training (n=7).  

The experimental setup centered around a swarm of approximately 10 robots utilizing LED-

based communication for member verification. Inspired by insect colonies, our study 

implemented an intruder identification algorithm on a swarm of approximately 10 robots. Each 

wheeled robot was equipped with a low-resolution camera, capable of identifying color, and an 

LED light. Each agent displayed red and blue LED patterns as unique identifiers, representative 

of the ant’s CHC profile. When two robots encountered each other, they verified each other’s 

pattern to identify one another as “friendly.” Successful verification was indicated by both robots 

flashing green LEDs, as a sort of “handshake.” This decentralized verification system enhanced 

system resilience and redundancy by allowing each robot to independently identify and verify 

other members of the swarm, eliminating the challenges that come with a centralized controller 

or “queen.” We chose to examine intruder detection because current methodologies in robotic 

fault detection fall short in providing dynamic and adaptive solutions [11][12][13]. 

 

2           

Figure 2: Robots Used In Experiment 

The specifics of the intruder detection algorithm are omitted from this article for two reasons. 

First, feedback from this experiment is being used to refine the algorithm and we do not wish to 

publish a partial result. Secondly, the focus of this experiment is on the different strategies 

proposed by the two groups in response to the same unknown swarm behavior, not the ability to 

correctly identify the swarm behavior. In other words, we are interested in their different 

perceptions and responses of the unknown behavior, independent of the actual behavior. Our 

focus is not on testing the algorithm’s effectiveness but on assessing whether the educational 

experience influenced the quantity, diversity, or technical sophistication of the proposed 

strategies. 

Participants observed the swarm's behavior for one hour without prior briefing about its 

operational algorithms or communication methods. They were tasked with documenting their 



observations, forming hypotheses about the swarm's operation, and proposing potential 

infiltration strategies in a packet provided by the investigators.           

3.2 Data Collection 

Data collection involved multiple instruments (complete survey instruments available upon 

request): 

1. Pre-experiment surveys: demographics, academic background, prior experience in 

programming, robotics, and cybersecurity, and an initial cybersecurity familiarity self-

assessment. 

2. Observation documentation: both written responses and optional diagrams or illustrations of 

the following: real-time observations of swarm behavior, hypotheses about communication 

methods, and proposed infiltration strategies. 

3. Post-experiment surveys addressing: self- assessed changes in cybersecurity understanding, 

self-assessment of strategy development, self-assessed impact of education and prior experiences 

on approach. 

Each data collection instrument served a specific purpose in understanding the participants' 

problem-solving approaches and development of security mindset. Pre-experiment surveys 

established baseline knowledge of cybersecurity and identified potential influencing factors such 

as academic background and prior technical experiences. This information helped contextualize 

strategy development patterns and understand the impact of prior knowledge on approach 

sophistication. Prior experience was recorded using a binary checklist system for both high 

school and college-level experiences, including academic coursework and extracurricular 

activities. 

The observation documentation phase captured participants' real-time analysis processes and 

problem-solving approaches. Written responses and diagrams provided insight into how 

participants identified and interpreted the swarm’s behaviors, while strategy proposals 

demonstrated their ability to apply this understanding to develop potential exploits. The 

following prompts were provided to participants during their one-hour observation period, with a 

page of space for each question’s written response and diagrams.  

1. Please record your general observations about the swarm’s behavior. Feel free to use a 

combination of written description and diagrams as needed.  

2. After observing the swarm, please describe any hypothesis you have about the swarm’s 

behavior. This can include specific protocols, control strategies, communication 

strategies, or anything else of interest. Please feel free to describe with labeled diagrams 

and written descriptions as needed.  

3. This swarm has the ability to detect intruders. Given what you have observed, imagine 

you were given a similar robot and tasked to enter the swarm undetected (i.e. infiltrate the 

swarm). Please describe what approaches you would use. Document with written 

description, diagrams, pseudo-code, or behavior diagrams (e.g. statecharts as needed). 



Please document your reasoning for why you believe your approach will/could succeed. 

Please sort your strategies from most likely to least likely before submitting.  

4. Was your answer to 3 connected or influenced by any content covered by your education, 

extra-curricular activities, or work experiences? If so, how?   

Post-experiment surveys served multiple purposes: assessing changes in cybersecurity 

understanding, gathering participants' self-reflection on their approach development, and 

evaluating the impact of their educational background on strategy formation. This final phase 

helped connect participants' backgrounds with their demonstrated problem-solving approaches. 

Participants' understanding of cybersecurity principles was assessed through a self-reporting 

scale (No familiarity, basic awareness, somewhat familiar, moderately familiar, very familiar) 

both before and after the experiment, providing a basis for measuring changes in comprehension 

and application. 

3.3 Analysis Methods 

The analysis employed a mixed-methods approach combining quantitative metrics (survey 

responses) with qualitative assessment (participant written reflections and diagrams). 

Strategies were initially categorized by their primary approach: blending-in strategies focused on 

mimicking legitimate swarm behavior to avoid detection, while disruption strategies aimed to 

actively interfere with normal swarm operation. Blending-in approaches typically involved 

careful observation and replication of swarm member behaviors, while disruption approaches 

focused on identifying and exploiting vulnerabilities in the swarm's communication or 

verification processes. These approaches included but were not limited to, trying to accuse a 

legitimate agent of being an intruder to divert attention, or trying to jam signals between agents.  

Data collected including strategy count per participant, strategy names and execution steps, the 

presence and types of supporting diagrams, self-reported influence of prior experience, and 

approach strategy (blending in vs. disruption). 

Participant comprehension was assessed through two key indicators: (1) color-state recognition, 

where responses were marked as demonstrating understanding if they explicitly noted different 

colors representing different behavioral states or modes of operation; and (2) verification 

understanding, where responses were marked as demonstrating understanding if they identified 

peer-to-peer verification between robots, rather than assuming centralized control mechanisms.  

Finally, a four-level classification system was developed to evaluate strategy sophistication 

(Table 1). Classification was performed by the primary researcher, with consistency maintained 

through the identification of key terms and characteristics in each response. Each strategy was 

assigned to the highest level of characteristics demonstrated, based on the following criteria: 

Level 1 - Fixed Operation: This approach was characterized by predetermined, unchanging 

behavior with no adaptation to stimuli or responses. Key identifying terms included "always," 

"constantly," or "keep doing." Any single action or pattern-based strategy such as "always 

display red and blue" was assigned level 1. 



Level 2 - Basic Behavioral Response: This approach was characterized by simple reactive 

behaviors, taking the form of if-then responses to immediate stimuli and limited adaptation to the 

environment. Key identifying terms included "when," "if seen," or "in response to." "Move and 

flash purple until I am approached by another agent, then freeze" would be a level 2 strategy. 

Level 3 - Strategic Deception: This approach was characterized by complex planned sequences 

with adaptation, including but not limited to strategic positioning and timing, sophisticated 

behavioral adjustments, and elements of risk assessment and response modification. Key 

identifying terms included "gradually," "strategic," "positioning," or "monitoring." "Stay on the 

perimeter, away from other agents until another intruder is 'caught', then move towards agents 

and copy a known member's LED pattern" would be a level 3 strategy. 

Level 4 - System Exploitation: This approach was characterized by active malicious interference 

with system operation including technical disruption of communication and verification 

attempts. Key identifying terms included "analyze," "disrupt," "exploit," “replicate”, or 

"manipulate." "Analyze, spoof, and disrupt communication protocols" would be a level 4 

strategy.  

 

Table 1: Four Level Strategy Sophistication Classification 

Level Key Terms Example Strategy Classification 

Rationale 
1 – Fixed Operation Always, constantly, keep 

doing 

“Always display red and 

blue flashing” 

No adaptation or response 

to environment 

2 – Basic Behavioral When, if seen, in response 

to, if under detection then, 

if then else  

“When approached by 

another robot, change 

color to copy them” 

Simple reactive behavior 

with basic adaptation 

3 – Strategic Deception Gradually, strategic, 

position, monitor 

“Stay on the perimeter 

and observe others, then 

gradually integrate” 

Complex planned 

sequence with strategic 

adaptation 

4 – System Exploitation Analyze, disrupt, exploit, 

manipulate, run script, 

download 

“Analyze communication 

protocol and inject false 

signals” 

Active interference with 

system operation 

 

4 RESULTS AND DISCUSSION 

4.1 Participant Demographics and Background 

A total of 19 participants took part in this study. The REU group (n=12) consisted of seven males 

and five females, ages 19-35 years (median 23.5), representing 10 different institutions. The non-

REU group (n=7) consisted of four males and three females, ages 18-22 years (median 20), all 

from the same institution. 

4.2 All Proposed Strategies 

A full list of the 24 proposed strategies is below, sorted by sophistication level.  

Level 1 - Fixed Operation: 



• "In and Out": Simple movement, run in and out of center as fast as possible  

• "Spam": Always flash red/blue 

• "Hungry": Attempt to “eat” all other swarm members 

• "Lost Puppy": Drive around “searching” flashing blue and red, never show blue, purple 

or green, pretend to never notice another bot in the vicinity 

Level 2 - Basic Behavioral: 

• "Operation fit in": Basic reactive behavior (Flash red and blue, go pink when someone 

else does) 

• "Fit in": Watch and copy others 

• "Copying with/without guide" (2): Copy the colors and movements of other robots in a 

loop, copy the colors and movements of one specific robot 

• "The Imitation game": Move flashing colors, try to avoid confrontation, show blue or 

purple whenever seen but default to “searching” mode after a period of time  

• "Hollow purple": Flash purple and move to avoid being near other agents 

Level 3 - Strategic Deception: 

• "Physical recognition": Copy a valid QR code  

• "Center Avoidance": Planned positioning to avoid being seen by other agents  

• "Blend in": Complex behavior sequence with timing and position elements 

• "Operation Mask and Hide": Planned position close to another agent to steal their 

signal/ID 

• "Armageddon": Use a similar LED pattern and frequency to original swarm agents 

• "Decoy": Deliberately allow one infiltrator to get caught, learn and adapt based on 

behavior patterns 

Level 4 - System Exploitation: 

• "Don't hate the player hate the game": Malicious script implementation to steal real 

instructions 

• "Radiohead": Protocol analysis and signal manipulation using packets and Wireshark 

• "UTA or Liar": Disorient swarm through signal jamming to steal another agent’s ID 

• "Transformer generated identification keys": TransformerAI based system manipulation 

• "Sensor/Signal Exploitation 1,2,3" (3): Technical analysis and copying of signals, ML to 

copy code run on robots, and exploiting signals 



• "Machine Learning color recognition": ML-based system analysis to learn and copy color 

and behavior patterns for implementation on agents 

4.3 Group Comparisons: Distribution of Proposed Strategy Sophistication  

Analysis of the proposed strategies revealed patterns between the two groups. The REU group 

(n=12) proposed 16 total strategies, averaging 1.33 strategies per participant with an average 

sophistication level of 3.25. Their strategies were generally more sophisticated, with 75% of all 

strategies at Level 3 or 4. Specifically, 50% were classified as System Exploitation (Level 4), 

25% as Strategic Deception (Level 3), and 25% as Basic Behavioral (Level 2), with no Fixed 

Operation (Level 1) strategies.   

In contrast, the non-REU group (n=7) proposed 8 total strategies, averaging 1.14 strategies per 

participant with an average sophistication level of 1.75. Their approaches tended toward lower-

level strategies, with 75% at Level 2 or below. The distribution showed 50% Fixed Operation 

(Level 1), 25% Basic Behavioral (Level 2), and 25% Strategic Deception (Level 3), with no 

System Exploitation (Level 4) approaches.  

 



 

Figure 3: Visual Representation of Strategy Sophistication by Group 

 

4.4 Group Comparisons: Concept Understanding 

Both groups demonstrated a similar ability to recognize color-based behavior states, with 75% of 

REU participants and 71.4% of non-REU participants referencing the colors in their notes. 

However, understanding of verification processes, defined as identifying peer-to-peer 

verification between robots rather than assuming centralized control, showed an unexpected 

pattern: 50% of REU participants versus 85.7% of non-REU participants demonstrated this 

understanding.  

Documentation methods also significantly varied between groups. Among REU participants, 

41.7% included diagrams in their responses, with all of these participants identifying color-based 

behaviors and four mentioning verification between swarm members. In contrast, no non-REU 

participants utilized diagrams in their forms. 

4.5 Combined Analysis: Experience Level Impact 

Due to limited sample sizes between both groups, data were combined to examine broader 

patterns across experience levels and academic backgrounds.  

Analysis of participants grouped by prior experience levels revealed unexpected patterns in 

strategy complexity. Participants with fewer prior experiences (0-1, n=11) demonstrated the 

highest average strategy level (3.55) and proposed 13 strategies (1.18 per participant), with 

45.4% citing educational influence on their approach. This group consisted predominantly of 

REU participants. The medium experience group (2-3 prior experiences, n=5) showed a 

comparable strategy level (3.0), proposing 6 strategies (1.2 per participant), with 60% citing 

education influence. This group was comprised of both REU and non-REU participants. The 

REU group indicated an average of 0.81 prior experiences, including three participants who 

indicated “none of the above.” This could be because the REU students signed up for the 

program due to a desire to increase their experience with cybersecurity. The non-REU group 



indicated an average of three prior experiences, including one participant who indicated “none of 

the above (listed options for experiences).”  

Participants with the most prior experience (4+, n=3), demonstrated the lowest average strategy 

level (1.67), though they proposed more strategies per participant (1.67), with none citing 

educational influence on their approaches. This group consisted only of non-REU participants. 

REU students' strategies were, on average, 1.5 levels more sophisticated than those of non-REU 

students with similar technical backgrounds. Notably, high-performing REU students shared no 

common technical experiences, suggesting that the REU cybersecurity experience, rather than 

specific prior experiences, and knowledge gained in classes or clubs enhanced their security 

analysis capabilities. While non-REU participants often had more diverse experiences, this 

broader exposure did not translate into more sophisticated security approaches. The involvement 

in a firsthand cybersecurity focused program appeared more valuable than the quantity of prior 

technical experiences in developing infiltration techniques. 

This counterintuitive discovery that participants with fewer prior experiences demonstrated 

higher strategy sophistication parallels a recent study. OConnor & Stricklan (2021) found that 

students perform significantly better on dynamic, hands-on assessments (99.06%) compared to 

static problems (84.42%) suggesting that the structure of education and assessment may be more 

important than prior technical knowledge and experiencing in developing advanced analysis 

capabilities. The success of the REU program in improving students’ ability to tackle security 

challenges aligns with current cybersecurity education literature. Both Phuong et al. (2023) and 

OConnor & Stricklan (2021) found that structured, hands-on educational frameworks led to 

improved outcomes, with OConnor specifically noting that adversarial thinking skills are not 

necessarily correlated with prior experience. This supports the finding that education through a 

hands-on cybersecurity program, rather than general technical experience, appears to be the key 

factor in developing diverse and complex solutions to security problems.  

4.6 Combined Analysis: Academic Background Analysis 

Strategy development patterns varied significantly across different disciplines. Computer Science 

and Cybersecurity majors (n=8) demonstrated the highest number of strategies, 15 with an 

average sophistication level of 2.67 and 62.5% of students proposing multiple strategies. 

Engineering majors (n=7) proposed fewer strategies (6) but maintained the same average 

sophistication level (2.67). Mathematics majors (n=2) and Information Technology/Information 

Systems (IT/IS) majors (n=2) showed divergent patterns, despite their small sample size. 

Mathematics majors averaged 3.0 in strategy sophistication (proposing one strategy total) and 

IT/IS majors achieved the highest average sophistication level of 3.5 across two strategies. Only 

Computer Science and Cybersecurity majors proposed multiple strategies. 

4.7 Combined Analysis: Multiple Strategy Analysis 

Of the 19 participants, 5 (26.3%) proposed multiple strategies. Four participants (three REU, one 

non-REU) maintained or increased strategy sophistication levels in their later proposals, while 

one non-REU participant showed decreasing sophistication across multiple strategies. 



Analysis of gender distribution revealed no significant differences in strategy development. Male 

participants (n=11) and female participants (n=8) showed comparable patterns in both number of 

strategies proposed and sophistication levels, though the small sample size limits statistical 

significance of these comparisons. 

5 CONCLUSIONS 

This study provides critical insights into the importance of hands-on cybersecurity education in 

bridging knowledge and real-world applications. The Research Experience for Undergraduates 

(REU) program significantly enhanced participants' ability to generate complex infiltration 

strategies, demonstrating that interactive, scenario-based learning is more impactful than 

traditional classroom instruction or prior experiences alone. Key findings suggest that immersive 

and focused educational experiences encourage a broader analytical mindset, particularly in 

adversarial thinking skills and attack planning and mitigation. These challenge the assumption 

that many technical experiences alone determine problem-solving ability and ingenuity. As 

cybersecurity threats continue to evolve, educational approaches must similarly adapt to 

adequately prepare future professionals who can anticipate and creatively address complex safety 

and security challenges. 
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