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Abstract

In this Empirical Research Full Paper, we explore the effects of chatbot usage on student perfor-
mance in self-regulated learning tasks conducted in a classroom setting. The increasing use of
generative artificial intelligence (AI) and large language models (LLMs) in STEM education have
resulted in thought-provoking conversations regarding its potential benefits and dangers. While
sophisticated LLM-based chatbots developed for pedagogical purposes (i.e., context-aware infor-
mation retrieval, conversational feedback, problem-solving, etc.) may offer unprecedented acces-
sibility and efficiency in multidisciplinary subjects, they also threaten academic integrity and rigor
through abuse or hallucination. In this exploratory study, we attempt to determine the effects of
chatbot usage on student learning in the context of an upper-division embedded systems lab. We
designed five self-regulated learning tasks—completed by students (N=49 of 60) at the beginning
of each lab module—each including a short assessment. We then employed a pseudo-random
counterbalanced longitudinal design on four of the five tasks, where students used LLM-based
chatbots to prepare for half of their assessments. In the fifth task we re-randomized participa-
tion groups for a standalone experiment with different motivational conditions. These experiments
attempted to measure the effects of chatbot use on short-term performance of students’ comprehen-
sion and problem-solving. We report experimental results for the longitudinal design, as well as
the standalone design and discuss our observations. In addition, we present students’ self-reported
utilization strategies and sentiments regarding their use of chatbots in preparation for the assess-
ments alongside our own analyses of their chatlogs to compare and contrast students’ perceptions
and their actual interaction patterns. We note from the longitudinal study that, contrary to students’
generally positive attitude toward it, the use of LLM-based chatbots did not appear to have any pre-
dictive power on performance outcomes. Finally, we call for continued empirical research on the
efficacy of LLM-based technologies in STEM education and propose future research directions in
exploring their impact on teaching and learning.

1 Introduction

The introduction of OpenAI’s ChatGPT in November 2022 [1] triggered an unprecedented surge
of interest in applications of artificial intelligence (AI) based on Large Language Models (LLMs)
and their underlying transformer architecture.

In particular, LLMs appear to be exceptional in applications that involve human interaction, infor-
mation retrieval, and summation, making them an attractive prospect for improving the effective-
ness and accessibility of education in the digital age [2, 3, 4]. However, the teaching community
has raised substantial concerns regarding academic integrity, student learning, ethical application,
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and the dynamics of human-AI interaction [4, 5, 6, 7, 8]. While empirical studies on LLM usage in
education have been conducted in this early stage of adoption, given the current novelty of LLMs
in education and the myriad ways they might be incorporated into an educational setting, additional
research is crucial for better understanding the short-term and long-term effects of LLM-based AI
on teaching and learning in computer science.

Due to the relative lack of evidence from early research in this area, we believe the immediate ef-
fects of using generative AI in classroom contexts remain unclear, leading to the research questions
that motivate this exploratory study:

RQ1: What are the short-term effects of utilizing LLM chatbots to assist in self-regulated learning
tasks on student performance?

RQ2: What strategies do students employ when using LLM chatbots in their self-study?

RQ3: What are student attitudes towards the use of LLM chatbots in their self-study?

In this paper, we present an exploration of the effects of LLM-based chatbots like ChatGPT on
learning outcomes by assessing student performance on in-person formative assessments in a series
of self-regulated learning tasks. The study was conducted during the winter quarter of 2024 at a
large public research university in the context of an upper-division introductory embedded systems
course for electrical engineering, computer engineering, and computer science majors. In addition,
we collect and present survey data gauging student sentiments on their use of LLM-based chatbots,
as well as initial observations on the chatlogs collected from students.

2 Background & Related Work

Self-regulated learning (SRL) is broadly defined as the ways in which individuals regulate their
own cognitive processes within an educational setting. In the expansive psychological science liter-
ature on the topic, SRL theories generally categorize students’ cognitive and behavioral processes
across several phases that typically include: preparation, characterized by behaviors associated
with goal-setting; performance, characterized by execution and monitoring of goal-directed tasks;
and appraisal, characterized by reflection and adaptation [9, 10]. Research across multiple aca-
demic domains suggests that SRL-based interventions can improve student learning outcomes at
various educational levels [10, 11, 12, 13, 14, 15, 9, 16, 17, 18, 19].

Several major models of SRL have emerged that have seen some justification from empirical stud-
ies in educational psychology, including Zimmerman’s Cyclical Phases model; Boekaerts’ Dual
Processing model; Winne and Hadwin; Pintrich; Efklides; Hadwin, Järvelä, and Miller [10].

We designed self-study tasks aimed at promoting students’ agency in learning course material. Due
to SRL’s evident effectiveness, we adopt the SRL framework to evaluate students’ use of LLMs
during the self-study task. We aimed to answer our research questions in the context of these tasks
by designing an experiment in which task instructions were modified to permit or prohibit the use
of generative AI during their completion. To answer RQ2 in particular, we categorize the assigned
task and the chatbot usage data using the Winne & Hadwin model of SRL [20].
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2.1 The Winne & Hadwin Model

The Winne & Hadwin (W&H) model adopts the perspective of studying and learning as informa-
tion processing tasks and proposes four basic, weakly recursive phases of learning: (1) task defini-
tion, (2) goal setting and planning, (3) enacting study tactics and strategies, and (4) metacognitive
adaptation in studying behaviors [20, 21]. Furthermore, they posit that each of these phases can
be analyzed along 5 dimensions: conditions, operations, products, evaluations, and standards—
whose interactions and relationships are described in what they call the COPES model of study
tasks [20]. Greene and Azevedo [21] conducted a theoretical review of the model and noted 113
studies that provide empirical support for various aspects of the model. The W&H model is also
used as a framework for interpreting trace data collected from students’ study activities to measure
SRL, making it a practical choice for interpreting experimental results [22, 14].

We used the W&H model to frame our experiment’s SRL tasks by mapping the subtasks to the
different phases of learning and categorizing them using the COPES model. This allowed us to
better describe the operations involving generative AI by leveraging the additional context the
SRL model provides. We are primarily using W&H as a meaningful framework for describing
and discussing our observations, as well as identifying when students employ generative AI and
how that affects task completion. The W&H model’s focus on concrete information processing
maps to our study’s task better than other foundational SRL theories, which place more emphasis
on internal psychological states that our study did not measure. We considered adopting other
SRL models specific to computer science education, such as Loksa & Ko’s stages of programming
problem solving [18] and Prasad & Sane’s proposed SRL model integrating generative AI [23].
However, we concluded that Loksa & Ko’s model was too specific to the context of problem-
solving tasks, and Prasad & Sane’s model, given its publication after our data was collected, would
be inappropriate to retrofit onto our experiment.

2.2 Related Work

The vast majority of existing work related to LLMs in education focused on students’ and teach-
ers’ internal states and sentiments in relationship to the technology, case studies on curriculum
integration, tool development, and position papers [24, 25, 23, 4, 6, 7, 26, 27]. Given that compre-
hensive LLMs became commercially available within the last three years and that designing and
conducting studies on LLMs use in the classroom is very challenging, the pool of empirical studies
investigating the effects of LLMs on learning outcomes is predictably limited. Nonetheless, there
are a still a number of such studies we identified across various domains that investigate LLMs’
effects on learning [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38].

Experimental studies on LLM use in higher education are incredibly difficult to design and exe-
cute, because they rely on the students choice to use LLM even if LLMs are available for them
to use, resulting in selection bias and missing data [33]. In addition, classroom usually em-
ploy multiple learning strategies and practices at the same time, which makes isolating the ef-
fect of the LLM difficult to parse from other learning practices [38, 30]. Therefore, some stud-
ies report on perceived benefits or observational description of students experience with LLMs
without statistical evidence, or without clear definitions of learning outcomes [28, 32]. While
studies report a benefit to student performance on the immediate tasks in which LLMs were
used [34, 35, 37, 36], thus far, no comprehensive evidence suggest that these benefits extend to
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summative assessments or final grades [34, 35, 37, 30, 31]. In fact, some studies suggest that
certain modes of LLM usage may have detrimental effects on summative assessment performance
post-intervention, in which access to LLMs is removed [36, 30, 34]. Hence, the majority of stud-
ies reporting benefits of LLMs focus more on student engagement, interaction patterns, and be-
haviors, or student perceptions, such as satisfaction, perceived benefit, self-efficacy, or motiva-
tion [33, 37, 25, 39, 40, 41, 26, 42, 7, 43, 27, 44, 45, 46].

We discuss the relevance of this work at further length in Section 5 but note here that our study
differs significantly in context, as our tasks are not assessing programming ability specifically,
but broader knowledge and problem-solving skills related to computer engineering and embedded
systems.

3 Methods

To test the potential impact of LLMs in SRL, we designed a 2-stage study consisting of a coun-
terbalanced repeated measures experiment, and a randomized controlled trial using an identical
measurement format.

The contents of this sections primarily describe the first stage of the study, as the design of stage 2
was nearly identical to that of stage 1. The changes made in stage 2 are outlined in Section 3.4.Our
research methodology was reviewed and approved by our university institutional review board
(IRB) and all data analyzed and published in this paper was obtained with the informed consent of
participants.

3.1 Participants & Course Context

Participant Characteristics: Participants were students recruited from a 60-person upper-division
course on introductory embedded systems. Forty-nine students consented to the use of their data
for research purposes. Demographic data was collected to assess the characteristics of the sample
and to assess potential confounds in the two counter-balancing groups. The majority of participants
were juniors or seniors in computer science, computer engineering, or electrical engineering. All
participants were in good academic standing. The majority of students reported a GPA between 3.4
and 3.79. Of the 49 students in our sample, 35% spoke English as a second language, 16% were
transfer students, 18% were first-generation college students, 22% were international students, and
18% did not identify as a man. Comparing the two counterbalancing groups the only significant
difference is in class composition (p < .01). There were more seniors in the group that used AI on
Checkpoints 1 and 3 than the group that used AI on Checkpoints 2 and 4. See Appendix A for full
demographic breakdown.

Course Description: We collected data in an upper-division computer science course at a large
public research-intensive university. The course is designed to be a thorough introduction to the
core concepts of embedded systems (i.e.,input/output, memory mapping, wired communication
protocols, interrupts , etc.). The majority of coursework is associated with lab modules, which
comprised roughly (35%) of their final course grade. Students are expected to complete the mod-
ules both in and out of the scheduled lab sections. Each module had milestones comprised of
several implementation steps followed by a post-lab assignment. The course contained a total of
four modules of varying degrees of difficulty; each module spanned four in-person sessions, ex-
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cept for Module 1, which only spanned two. All students completed labs in dyads. Students chose
their own partners. Dyads were generally stable for the duration of the quarter, barring outstanding
circumstances.

Course Statement on Chatbots: To provide students with additional structure in their chatbot usage,
we provided a brief statement on allowed, disallowed, and recommended usage patterns at the
beginning of the course. In addition, during the preparation phase of the assessment tasks, teaching
assistants instructed intervention group students to use chatbots as exploratory tools to gain quick
familiarity with topic terminology, but then refine their understanding using conventional research
methods. However, these instructions were not strictly enforced. Any strategy was permissible
so long as it did not violate academic integrity and outlined allowable use principles. We note
that students were allowed to use copy-and-paste functionality while working on assessment tasks
during the preparation phase.

3.2 Experimental Design & Procedure

We adopted a pseudo-random counterbalanced longitudinal design for stage 1 of our study. On the
first day of each Lab Module, students were instructed to complete an SRL task that consisted of a
1.5-hour preparation phase and a 20-minute assessment phase (Checkpoint). We assigned students
based on lab section to one of two order conditions. Group 1 was instructed to use AI during the
preparation phase of Modules 1 and 3, and barred from AI use in the preparation phase of Modules
2 and 4. Group 2 had the opposite order: barred from AI use in Modules 1 and 3, but instructed
to use it in Modules 2 and 4. The dyads in Section 1 were assigned to the first order condition
(Group 1), and the dyads in Section 2 were assigned to the second order condition (Group 2). The
dyads in Section 3 tested out a true experimental design; they were randomly assigned to either
Group 1 or 2, and seated such that physical barriers in the room divided them. In-person teaching
assistants were trained to conduct the experiment and ensure that intervention conditions were not
violated.

SRL Task Phases: The SRL tasks can be broken down into their chronological phases and physical
components and mapped to the W&H SRL model. The preparation phase of our SRL task format
may in fact encompass all 4 stages of learning: (1) task definition, in which students are given the
task instructions and intended learning outcomes that set the external conditions of the task; (2)
goal setting and planning, in which students implicitly or explicitly decide on a strategy for meet-
ing those learning outcomes; (3) enacting study tactics and strategies, in which students carry out
the operations of their strategy and generate products in the form of well-cited, digitally compiled
notes; and (4) metacognitively adapting studying as they iteratively assess their notes and knowl-
edge relative to internally and externally-defined task conditions and standards. The assessment
phase constitutes a final, externally imposed iteration on stage 3, in which the students’ completed
checkpoint assessments serve a final product from which they will receive an evaluation. This
takes the form of solutions to the checkpoint assessments which are later released to students and
which serve as a final standard against which products were monitored. Students may engage in
another phase of metacognitive adaptation at this point before repeating the cycle in preparation
for mini-exams that cover the same topics.

The presence of an LLM-based chatbot during the preparation phase is thus indicated in the task
definition phase and depends on the experimental group the subject belongs to (phase 1, condi-
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tions). Moreover, the LLM has the potential to influence each of the COPES facets at any phases
of the SRL process. For example, it might assist in creating a study strategy (phase 2, opera-
tions/products), information search and synthesis (phase 3, operations/products), or even feedback
on current understanding (phase 3/4, evaluations/standards).

SRL Task Timeline

During the preparation phase, teaching assistants gave student dyads a brief overview of topics re-
lated to the corresponding lab module and instructed students to study these topics further based on
a set of learning objectives included in the assessment task description. Students were instructed to
take well-cited digital notes for use during the checkpoint assessment and later submission.

During the assessment phase, students individually completed a checkpoint assessment. Students
were allowed to use only their digital notes as reference—further interaction with chatbots, search
engines, or other sources was disallowed. Dyad members were allowed to communicate silently
with one another but not with members of other dyads. Post-assessment surveys were administered
as part of the students’ post-lab assignments at the end of each module and were collected via web
form.

Measures: We offered a demographic survey at the beginning of the instructional quarter. The
survey was offered for extra credit and contained the consent form for the study.

Checkpoint assessment results were collected and graded using a 3-pass process. Graders con-
ducted a first pass to familiarize themselves with questions and the range of answers, then a second
pass to create detailed rubric items based on answer classifications, ending with a final pass with
the finalized rubric to ensure all students were scored by the same metrics. Rubrics were created
on a per-question basis and credit was assigned based on answers’ resemblance to solution keys
and demonstrated understanding of the questions’ underlying concepts.

Post-assessment surveys asked students to report the perceived usefulness of the chatbot(s) they
used during preparation and prompted an open-ended reflection on how they used the chatbot(s)
during preparation. Their reflections were manually labeled based on the metacognitive strategies
they reported employing. They contained 4 questions of interest:

Q1: Did you use Generative AI during self-study for this lab? (Yes/No)

Q2: How helpful did you find using GenAI to prepare for the checkpoint assessment for this lab?
(Likert Scale 1-5)

Q3: What GenAI chatbots/engines did you use if any? (Multiple Select)

Q4: Describe how you used ChatGPT to facilitate your self-study.(Open-Ended)

3.3 Materials

Checkpoint assessment topics varied based on the contents of each module. Assessments each
contained two classes of questions categorized by Bloom’s Taxonomy:

Knowledge/Comprehension: questions meant to assess basic understanding of the introduced
concepts (easier).
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Application/Analysis: questions requiring problem-solving, design, or debugging, which assess
the depth of understanding of the introduced concepts (more difficult).

Before administration, subject matter experts reviewed the checkpoint assessment questions to
increase our confidence that each class of questions was at the appropriate level of difficulty.

3.4 Stage 2 Modifications

Our randomized control trial occurred within the same course context as stage 1, with the same pool
of participants, using an additional 5th checkpoint that was not associated with any existing lab
module. However, instead of retaining the same experimental groups, we randomly assigned dyads
within each section to produce new experimental and control groups that spanned all three lab
sections. To gauge the potential effects of student motivation, we altered the incentive structure of
the task by rewarding extra credit points proportional to their score on the checkpoint assessment.
Checkpoint 5 contained the same two classes of questions as the other checkpoints. Aside from
these alterations, the measurement was conducted identically to Stage 1.

3.5 Analyses

Chatbot Log Analysis: We performed qualitative coding to assess the strategies that students used
in querying chatbots. We used a predefined classification scheme in labeling the chatbot data.
Specifically, we looked at whether students utilized AI to enact higher levels of self-regulated
learning. The labels we used are described in Table 3. We had a coder read through all the data
twice to ensure that all queries were accurately labeled.

The goal of this data is to describe the AI search strategies students use during self-regulated
learning. Therefore, we performed comprehensive descriptive statistics on the label data and did
not use any inferential statistics, as we were not making any comparisons between groups.

Assessment Analysis: For Stage 1, we employed a Hierarchical Linear Modeling (HLM) frame-
work [47, 48] to analyze the impact of the AI’s usage on checkpoint accuracy. HLM simultaneously
estimates between-group differences and within-group changes over time by clustering variances
at multiple grouping levels. This method parses apart individual differences and group member-
ship to isolate the effects of the experimental condition. The models were fit using Full Maximum
Likelihood to account for missing observations. We used the lmer package in R to analyze the
data. Due to the nature of the data collection procedures, we preregistered analyses with multiple
nested levels. Specifically, scores were nested by checkpoint number, student, dyad, group, and
section. However, the sample size that we collected only had sufficient power to fit a model nested
by student and group. Due to ethical constraints in obtaining consent, many dyads only contained
a single individual and, thus, posed a significant convergence issue.

For Stage 2, we randomized each dyad to either AI-use or no AI-use in preparation for the as-
sessments. To analyze this checkpoint data we use a Welch’s t-test to assess the difference in
performance across the two groups.

Post Assessments: We performed a general qualitative analysis on Q4 of the post-assessment sur-
vey to label responses for further analysis. Labeling was performed in a 3-pass process, in which
labels were dynamically defined during the first pass by multiple encoders, and reapplied during
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Table 1: Number of User Queries to Chat-
GPT
Checkpoint # Mean SD median IQR

1 6.23 5.9 5 7.75
2 7.25 5.42 5 1.75
3 4.25 2.82 3 4
4 3.8 1.61 3 2
5 3.92 1.66 4 1

Table 2: Overall Label Frequency Across
Chatlogs

Label Mean SD Median IQR

Original 17.92 25.34 0 33.33
Follow-up 5.21 10.95 0 0
Reworded 33.45 36.62 20 60
Copied 40.81 41.88 25 100
Irrelevant 1.38 7.82 0 0
Cheating 1.22 11.04 0 0
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by Checkpoint

0.25

0.50

0.75

1.00

1 2 3 4
Checkpoint Number

S
co

re

Treatment
Control
AI

Group
1
2

Not normally distributed (w = 0.97, p <.001).
 Not equal variances (F (3, 192) = 5.17, p = .002).

Figure 2: Assessment Score Distributions by
Group and Checkpoint

the second pass to ensure a consistent set of labels. The set of labels was then reduced to re-
move redundancies and renamed labels were reapplied to the data. Label definitions did not occur
according to any preexisting classification schema, as the intent was to precisely capture themes
in participant responses without bias. Responses were tagged with multiple labels if applicable.
Participants only completed this survey during the labs where they were allowed to use AI, so the
analysis of this data is purely descriptive.

More information on the pre-registered data collection and analysis plans can be found on our OSF
registration.

4 Results

4.1 Chatlogs Results

The descriptive statistics for students’ number of queries to ChatGPT show relatively low engage-
ment with the tool (see 1). Each query was labeled in every chatlog using the categories described
in Table 3. Table 2 and Figure 1 show the average percentage of each label in the chatlogs overall
and by checkpoint, respectively. We use individual chatlogs as the unit of analysis rather than in-
dividual students, because students are in dyads, so one file is submitted for two students. Check-
point 1 and 2 represent time-point one for their respective order conditions in Stage 1, whereas
Checkpoints 3 and 4 are time-point two. The general trend that we see is that from time-point 1
to time-point 2 students move away from developing prompts for the AI (Reworded, Original, and
Follow-up) and instead rely heavily on copying and pasting the learning and checkpoint objectives.
In addition, they prompt AI less frequently in time-point 2 compared to time-point 1. Checkpoint
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Table 3: Description of Chatlog Labeling Categories
Category Description Example

Original Student created an original AI query related to
course topic

When the C code is translated into assembly,
is it usually in x86? Or is it in some other
language for embedded systems?

Follow-up Student AI query asks for elaboration on a
previous AI response

Reworded Student’s AI query is reworded from the
learning objectives, Checkpoint Objectives
or Lab Instructions

What are build and flash process for
microcontrollers?

Copied Student’s AI query was directly copied from
Learning Objectives, Checkpoint Objectives,
or Lab instructions

Know build and flash process for
microcontrollers

Irrelevant Student’s AI query was about formatting,
communication style, or something unrelated
to the class

Respond in a conversational New York style
accent. ”whaddya mean?”

Cheating Student’s AI query pertained the checkpoint
assessment questions (which they were not
allowed to use AI to answer)

Directly copied checkpoint assessment
questions

Table 4: Model Summary
Model Fit

AIC= -98.69 BIC= -62.86
Pseudo-R² (fixed effects) = 0.35
Pseudo-R² (total) = 0.63

Random Effects Grouping Variables

Group Variance Std. Dev. N ICC

student:group .009 0.07 49 0.27
student .005 0.09 49 0.16

Residual .019 0.15

Fixed Effects
Group Est. Std. Err. t-value D.F. p-value2

β0:Control C1 (Grp. 2) 0.72 0.04 20.05 120.11 .00
β1:Control C2 (Grp. 1) -0.11 0.05 -2.15 120.11 .03
β2:Control C3 (Grp. 2) -0.36 0.04 -9.36 137.04 .00
β3:Control C4 (Grp. 1) -0.17 0.05 -3.16 124.188 .00
β4:Intervention C1 (Grp. 1) 0.01 0.05 0.22 122.13 .83
β5:Intervention C2 (Grp. 2) -0.16 0.09 -1.85 71.83 .07
β6:Intervention C3 (Grp. 1) 0.03 0.06 0.62 137.87 .54
β7:Intervention C4 (Grp. 2) -0.10 0.09 -1.14 73.13 .26
[2] p-values calculated using Satterthwaite D.F.

5 (Stage 2) is standalone because across all lab sections dyads were randomly assigned to AI-use
conditions. Both trends persisted in Checkpoint 5.

4.2 Assessment Results

Stage 1 Assesmment Results. The distributions of checkpoint assessment scores by AI use and
group are charted in Figure 2. We fit a mixed-effects hierarchical linear model to assess the impact
of AI use on students’ checkpoint assessment scores. Table 4 shows the results of the model. The
intercept is the average score for the control group at Checkpoint 1 (Group 2), β0 = 0.72. The next
three coefficients (β1 = −0.11,β2 = −0.36,β3 = −0.17) show the expected change in average
score for the control group at each checkpoint compared to Checkpoint 1. All three coefficients
show a significant decrease in average score compared to Checkpoint 1, p < .05. It’s important to
note that even though comparisons were made across groups, the nested structure controls for the
effect of the shared variance within-person and within-groups.

In reference to the effects of AI use, β4 = 0.01 represents the change in average score for the AI use
group at Checkpoint 1 (Group 1) compared to the control at Checkpoint 1 (Group 2). We found
no evidence that using AI influenced students’ scores at Checkpoint 1, p > .05. The last three
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Figure 3: Reported Usefulness of Chatbots Figure 4: Behavioral Categorization of Re-
sponses by Label

coefficients (β5 = −0.16,β6 = −0.03,β7 = −0.10) represent the change in average score of the
intervention group compared to the control group at that time point. At each checkpoint, we found
no significant differences in checkpoint score for any checkpoint, p > .05. The random effects and
ICC suggest only weak clustering of variances at the student and group level.

Stage 2 Assessment Results. For Checkpoint 5, we saw no statistically significant differences
in assessment performance between the AI-use (M = 78.16,SD = 12.91) and No AI-use (M =
74.36,SD = 14.76) groups, t(42.67) = 0.92, p > .1.

4.3 Survey Results

Survey question responses for Q2 are charted in Figure 3. It reports the distribution of student
responses across a Likert scale of 1 to 5, where a higher score indicated a higher degree of perceived
usefulness during assessment preparation. There is an average reported score of 3.70 during the
first intervention and of 3.97 during the second intervention; however, a repeated-measures analysis
showed no statistical difference in the reported helpfulness from the first use to the second use,
t(33.9) = 33.90, p > .05.

As Q1 of the survey was used primarily as a filtering question, its responses are not charted. In
response to Q3, nearly all participants reported relying primarily upon ChatGPT; only participants
in 2 dyads reported using Google Bard instead of or in addition to ChatGPT.

A small number of students also used their response to Q4 to comment on their perceptions of
ChatGPT’s usefulness; these were both positive and negative.

We have defined a set of behavioral categories to describe how students utilize chatbots. These
behavior categories—defined in Table 5—were synthesized from a set of qualitative intermediate
labels that captured a variety of specific usage strategies. Intermediate labels can be found in our
OSF repository. Figure 4 shows the proportion of students who reported each behavioral category
based on responses to Q4.

As shown in Figure 4, students reported using chatbots primarily for Information Gathering (IG:CG
= 65% & IG:FG = 47%). Overall, 24.49% of students reported using chatbots to enhance their
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Table 5: Label Categories
ID Category Description

CD Cognitive Demonstration chatbot asked to assist user by demonstrating a cognitive task
CD:An ↪→ Analyzing ↪→ chatbot asked to perform an analysis task
CD:Ap ↪→ Applying ↪→ chatbot asked to perform an applying task
CD:Cr ↪→ Creating ↪→ chatbot asked to perform a creating task
CD:Un ↪→ Understanding ↪→ chatbot asked to perform an understanding task
D Disengagement chatbot is used to sidestep or disengage from cognitive task
E Evaluation user engages in verification of the chatbot’s outputs
IG Information Gathering chatbot is used to gather information
IG:CG ↪→ Coarse-Grain ↪→ gather general information
IG:FG ↪→ Fine-Grain ↪→ gather specific information
MA Metacognitive Assistance chatbot is used to assist user with metacognitive task

cognitive effort. These students reported enhancing their higher-order cognitive strategies through
metacognitive assistance (MA = 8%), evaluation (E = 6%), and cognitive demonstration( CA:Un =
6%, CA:Cr = 6%, CA:Ap = 4%, CA:An = 2%). However, a few indicated using chatbots to avoid
cognitive effort (D = 10%). We also looked at students who reported engaging in multiple behav-
ioral categories (n=22). Through this analysis, it appeared that all but one of the students who
reported avoiding cognitive effort did not also report engaging in higher-order cognitive strate-
gies.

5 Discussion

5.1 Interpretation

The linear mixed-effects regression results found that students’ performance decreased after the
first checkpoint when we controlled for the within-person and within-group variances, implying
that C1 was significantly easier than the other three assessments. The estimates suggest that C3
was the most difficult as students did worse overall on this assessment. The difficulty of C2 &
C4, while significantly higher than C1, were fairly similar in performance. As lab modules cover
progressively more difficult concepts, we expected that students would perform worse on the later
checkpoints. However, the checkpoint questions took different forms depending on the topic tested,
so it is unclear whether the difficulty stemmed from the course topics covered in the module or if
the checkpoint problems themselves were more difficult.

In both data collection stages, we found no evidence that the use of AI better prepared students for
the checkpoint assessments. When controlling for individual differences and group differences,
and in the randomized control trial, the students in the control and the intervention groups did
not perform significantly differently. Therefore, in response to RQ1, we did not find evidence
to conclude that using chatbots during SRL has any short-term effects on performance outcomes.
This observation is consistent with results from previous research, which suggested that observed
benefits of LLMs are unlikely to extend to summative assessments and final grades [36, 31].

Interestingly, performance results appeared to be at odds with student survey responses. Accord-
ing to students’ responses, participants generally reported that chatbots were more useful than
other methods for preparing for the checkpoint assessment. Additionally, the high degree of copy-
and-pasting observed in collected chatlogs contrasted with the relatively low levels of reported
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disengagement in the survey. Since the disengagement label was synthesized from students’ self-
reported copy-and-pasting in a manner indicative of disengagement, this would suggest either a
difference in perception among students regarding the nature of copy-and-pasting behavior, or po-
tential issues with the accuracy of student self-reports. Students also demonstrated an insignificant
increase in the average reported usefulness between the first and second interventions. However,
our ability to interpret this result is limited due to the noticeable drop in response rate over time.
Nonetheless, these observations may indicate a gap between students’ perception of chatbot useful-
ness and chatbots’ actual usefulness in achieving performance outcomes. This would be consistent
with previous findings [31]. Therefore, in response to RQ3, our results indicate that although stu-
dent attitudes toward chatbot utilization are positive on average, these attitudes did not translate to
performance improvement.

The highest reported chatbot utilization behavior was Coarse-Grained Information Gathering
(IG:CG). This was expected, as it is aligned with the strategy that was recommended to students at
the beginning of the course. In conjunction with the results of our chatlog analysis, which indicates
a high degree of copy-and-paste behavior with relatively little follow-up, this seems to imply that
students simply adopt the externally recommended strategy in the goal setting and planning phase
of SRL, then execute a particular IG:CG strategy in the enactment stage by copy-and-pasting the
provided products from task definition (the learning objectives), allowing the chatbot to respond at
will, much as they might a search engine.

Notably, Fine-Grained Information Gathering was also a popular behavior, which indicates that a
number of students utilized chatbots to find topic-specific information, and constitutes a different
learning strategy established in SRL Phase 2 and 3. By contrast, Evaluation—which indicated that
students attempted to verify information provided by the chatbot—appeared to have a concerningly
low rate of utilization. Collectively, our results may suggest that students have a tendency to rely
on chatbots without fact-checking the information they receive from them, which would indicate
a lack of Phase 3 and Phase 4 evaluation. However, this implication is contingent on the accuracy
of student self-reporting and therefore requires further investigation. Unfortunately, only a rela-
tively small proportion of students reported any higher-order learning strategies— such as using
the chatbot to assist in goal setting and planning or validation and evaluation of LLM-generated
products during enactment— but over twice as many students reported using chatbots to engage
in higher-order learning strategies than those who reported disengaging behavior. However, the
observed behaviors in the query are inconsistent with those self-reported behaviors.

Considered in context of the W&H phases, we place the observed strategies associated with IG
and CD in phase 3, and observed MA behaviors in phase 2. Disengagement might be considered
part of phase 1, as it might be indicative of initial internal conditions, such as lack of motivation or
disinterest. The reported popularity of such strategies is unlikely to generalize as the instructions
and AI Guidelines presented a significant threat to external validity. We did not include Evaluation
with the above list, as it describes how a subject interacts with chatbot outputs as opposed to how
the chatbot is used and is therefore irrelevant to RQ3.

In response to RQ3, we can make the limited observation that students report employing strate-
gies characterized by information gathering, cognitive demonstration, metacognitive assistance,
or disengagement, but the content of their queries suggest otherwise. We want to note that SRL
and higher-order engagement with the LLM responses may occur during note-taking and peer
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discussion, but we are unable to discern this from the chatlog data.

5.2 Implications

Given our interpretation of the results, it would appear that students tend to believe that chatbots
are helpful in their learning without the evidence to subtantiate this belief. This may suggest an
over-reliance on chatbot capabilities when taken in conjunction with our observations that at least
47% of students reported engaging in fine-grained information gathering while only 6% reported
engaging in evaluation of that information.

That almost 25% of students reported engaging in higher-order cognitive strategies despite re-
ceiving no explicit instructions to do so suggests that students already have some intuition for
the variety of ways that chatbots might be utilized in a constructive manner. Additionally, 10%
of students reported using chatbots to avoid cognitive effort (disengage) which suggests chatbot
utilization in learning can be potentially detrimental.

5.3 Threats to Validity

Our model design and demographics analysis accounted for a number of potential external vari-
ables; however, there are still limitations in our study. Students’ time spent actively preparing and
level of motivation to prepare for the assessment are the most significant threats to internal valid-
ity, as these variables play a role in self-regulated learning, but were not measured or controlled.
Therefore, it is uncertain if these variables are evenly distributed across both groups, which may
have implications on the validity of our participant selection. It has also been noted in prior work
that student factors like self-efficacy, fear of failure, and prior grades can play a role in baseline
usage of chatbots, which may also be a potential confound [44]. Moreover, the notable difference
in graduating class between groups may have influenced these unaccounted-for variables and rep-
resent a potential confound. While allowing clustering in co-variances can help statistically control
for this effect in our model, it does not provide a guarantee.

Additionally, there may be potential information bias as C4 is different from other checkpoints in
that it has one less question in the Application/Analysis category, and one of the two questions in
that category contained a typo in its instructions. The typo was announced to all groups; however,
it was not apparent that all students noted this change, possibly affecting the correctness of their
final answer. We attempted to account for this by regrading according to solutions created for each
variation of the problem with a corrected or uncorrected typo. While we cannot claim certainty, we
do not believe that any information bias is occurring given the lack of any statistical significance
on C4 in our results.

6 Future

As we have acknowledged in Section 5.3, there are a number of limitations in our study that may
prevent the generalization of our findings. Therefore, we propose altering our experimental design
as follows: enact true randomization of the order conditions for all sections as had been piloted
in lab section 3; amend the post-assessment survey to obtain student reports on motivation levels
and time spent preparing for the assessment; change participation incentives to increase external
motivation; and rewrite assessment quizzes for greater consistency and better scaffolding. We also
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propose repeating the experiment in new course contexts to investigate whether our results are
reproducible across subject domains.

Additionally, there are still potentially observable trends that we may find in the raw data. We col-
lected participants’ preparation notes and, more importantly, chat logs that have not yet undergone
a thorough qualitative analysis and may yet yield additional insights in relation to performance
data. In any case, such an analysis will prove helpful in understanding student habits in self-
regulated learning tasks as well as their current strategies for prompting AI chatbots.

Finally, a number of additional questions arise from our observations which may provide a basis
for future work:

• To what extent do students rely on information from LLM-generated responses without verifi-
cation?

• Are there specific learning formats in which LLM-based chatbots can be used that might yield
performance gains relative to learning outcomes?

• What are the roles of internal and/or external motivation on students’ chatbot utilization strate-
gies?

• Are there any observable long-term effects of chatbot usage students’ university careers?
• How does LLM usage affect learning efficiency as opposed to quality?

7 Conclusion

In this study, we investigated the short-term impacts of LLM-based chatbot usage during self-
regulated learning on subsequent assessment performance. Our exploratory study reveals that
while students exhibit a positive attitude towards using LLM-based chatbots for self-regulated
learning tasks, these tools do not significantly influence performance outcomes in an upper-division
embedded systems lab. This could imply that students have a tendency to overestimate the useful-
ness of chatbot-dependent operations in the enactment stage of the W&H SRL model, which may
lead to over-reliance on the products they provide. The contextual nature of our study limits its
generalizability and necessitates further empirical research to better understand the potential ben-
efits and limitations of LLM-based technologies in STEM education. Such research could clarify
the extent and conditions under which students over-rely on chatbot information, how other vari-
ables like time and motivation influence performance, as well as what long-term effects chatbots
might have on student learning and engagement throughout their academic career.

The degree of uncertainty surrounding LLMs impact on education continues to give cause for
concern given its rate of adoption in higher education. In light of this, the research community
should devote particular attention to continuing empirical research in this area. As this study has
shown, trends derived from student self-reports may not accurately reflect the reality of behaviors
or outcomes and curricular changes seeking to incorporate LLMs should be done with caution and
careful observation.
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A Participant Demographics

Table 6: Participant Demographics
Characteristic N Overall, N = 491 group1, N = 241 group2, N = 251 p-value22

Age 49 22.00 (21.00, 23.00) 22.00 (21.75, 23.00) 22.00 (21.00, 23.00) 0.7
Fin. Support 49 6 (6, 7) 6 (5, 7) 6 (6, 7) 0.3
e exp 49 100 (99, 100) 100 (98, 100) 100 (99, 100) 0.8
GPA 42 3.60 (3.40, 3.79) 3.60 (3.23, 3.80) 3.60 (3.40, 3.76) 0.6
Final Grade (%) 48 91.5 (88.5, 95.2) 91.7 (88.2, 94.9) 90.8 (88.7, 95.2) ¿0.9
Mini Exams (max 64) 48 49 (46, 54) 48 (45, 54) 52 (47, 56) 0.3

Class 49 0.002
Junior 16 (33%) 3 (13%) 13 (52%)
Senior 29 (59%) 20 (83%) 9 (36%)
Senior+ 4 (8.2%) 1 (4.2%) 3 (12%)

ESL 48 ¿0.9
No 31 (65%) 15 (65%) 16 (64%)
Yes 17 (35%) 8 (35%) 9 (36%)

Transfer 49 0.5
No 8 (16%) 5 (21%) 3 (12%)
Yes 41 (84%) 19 (79%) 22 (88%)

Gender 49 0.2
Man 40 (82%) 22 (92%) 18 (72%)
Woman 8 (16%) 2 (8.3%) 6 (24%)
Non-Binary 1 (2.0%) 0 (0%) 1 (4.0%)

First Gen. 49 0.7
No 40 (82%) 19 (79%) 21 (84%)
Yes 9 (18%) 5 (21%) 4 (16%)

Residency 49 0.5
International 11 (22%) 4 (17%) 7 (28%)
US 38 (78%) 20 (83%) 18 (72%)

1: Median (Quartile 1, Quartile 3); n (%)
2: Wilcoxon rank sum test; Wilcoxon rank sum exact test; Fisher’s exact test

Table 6 presents the breakdown of participant demographics and controls for variations between groups. As already
noted, the only major difference between intervention groups was in the distribution of juniors and seniors.

B Post-Assessment Survey Response Labels
Figure 5a reports labels corresponding to the different chatbot usage strategies we were able to identify and commen-
surate number of responses that were identified as such. These labels are defined in Table 5b, which also contains the
code indicating the behavioral category they belong to. These figures show combined data for participants’ first and
second interventions—i.e., first intervention group encompasses responses from Group 1 on C1 and Group 2 on C2
(44 total), while the second encompasses responses from Group 1 on C3 and Group 2 on C4 (34 total).

C Assessment Grading Principles
These were the principles adopted during rubric construction and grading:

• More specificity is better, point values will be adjusted at the end based on the level of understanding that each
rubric item represents
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(a) Reported Usage Strategy Frequencies

(b) Usage Label Definitions
Cat. Usage Label Label Description

IG:CG topic exploration chatbot was used to perform high-level exploration of topics from learning goals
IG:FG topic clarification chatbot was used to refine/clarify understanding of topic details
IG:CG summarization chatbot was used to provide summaries of requested topics
IG:CG identify search terms chatbot was used to identify topic-specific terminology for later search engine input
IG:FG defining terms chatbot was directly used to define topic-specific terminology
D question copy paste chatbot was directly given learning goals or questions copied from task instructions
MA learning strategizing chatbot was used to select strategies for learning topics
E search-based

verification
information provided by chatbot was later validated via search engine

CD:Cr example generation chatbot was used to generate illustrative examples of topic-specific concepts
CD:Un search validation information provided by chatbot was used as support for initial search engine research
CD:Ap debugging chatbot was used to suggest debugging strategies related to topics
CD:An comparison chatbot was used to compare concepts
IG:FG search engine substitute chatbot was used as fallback information gathering strategy when search engine yielded

few/poor results
CD:Un code explanation chatbot was used to explain topic-specific code snippets

Figure 5: Usage Strategy Labels

• Partial credit awarded based on how close answer is to correct answer, unless shown work is inconsistent with
answer (missing work treated separately)

• If all work is correct but a final answer is not explicitly given, award generous partial credit.

• If an answer is given that uses different terminology for tangential subjects, but understanding is obvious, apply
the relevant rubric item generously.

• If the terminology was used in the question and is clearly a necessary part of understanding, apply item con-
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servatively.

• If an answer was too short to discern student understanding, apply rubric items conservatively.

Generosity here is to lean towards applying rubric items to award more points, while conservative application leans
towards awarding fewer points.

D Ethical Considerations
There were no direct risks posed to participants by the experimental procedures; our primary ethical considerations
were regarding participant’s data privacy and equity between students who opted in and opted out. To address data
privacy, after the conclusion of the course, before any analysis, student data was anonymized using a randomly gen-
erated unique identifier (UID) associated with their demographic and experimental data. All personally identifiying
information including name, email, and student ID were redacted from raw data before cleaning and analysis and a
manual scan was performed to ensure no identities could be inferred on the basis of our cleaned data. Linking keys
used to map participant data to their UID were destroyed before public release of anonymous data used for analysis.
To address questions of equity, interventions were incorporated into the course structure in order to ensure all students
would benefit equally from any potential gains to be had from the intervention. As extra credit was used as the motivat-
ing incentive for participation, we ensured that any credit assigned could be obtained regardless of consenting status.
Moreover, in order to prevent participation status from influencing the researchers on course staff, the demographic
survey results and participation status were kept confidential by an uninvolved member of the research team and shared
only after final course grades were submitted. Additionally, in order to prevent advantages offered by the intervention
from influencing course grade, checkpoint assessments were graded on completion rather than correctness; students
were instead incentivized to take assessments seriously through the mini-exams, in which questions similar to those
on the checkpoint assessments would appear.

E Open Science
Our study has been preregistered on OSF at https://osf.io/z4juc and our anonymized dataset and source code is
publicly available at https://github.com/comp-sotl/asee-ace-25.
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