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Developing an introductory machine learning course

Abstract

This work-in-progress paper presents the design of the introduction to machine learning
(ML) course at the University of Virginia. This course is targeted toward first and second-year
undergraduate students and has no prerequisite courses beyond the introduction to program-
ming course; notably, there are no linear algebra nor probability prerequisites. A key design
feature of the course is that it is entry level but emphasizes the mathematical perspective of
ML and conceptual understanding behind ML algorithms. This course presents the basic prin-
ciples behind ML to make ML feel less like a “black box” and covers a range of applications,
focusing on applications in the electrical engineering field. Students collect and interpret data,
translate between textual and mathematical descriptions of systems, gain the skills necessary
to implement and test ML functions in Python, and practice presenting data in easy-to-interpret
plots. This paper concentrates on the set-up of the course and initial instructor reflections; we
have not yet collected student data on how the course is meeting curricular goals.

1 Introduction

More engineering departments are offering, and sometimes requiring, courses on machine learn-
ing (ML). Given the breadth of the subject area, it is no surprise that these courses vary consider-
ably. Some ML courses focus on the implementation or “how to” aspects; these courses tend to be
coding-heavy and may include learning objectives familiar to many computer science courses such
as learning how to interact with existing libraries. Other ML courses focus more on the mathemat-
ical theory or “how it works” aspect of ML algorithms; these courses tend to have mathematical
prerequisites such as linear algebra and probability and are typically targeted for upper-level un-
dergraduate students. Most courses blend “how to” and “how it works” learning objectives, with
the amount of each depending on the level of the course and the specific learning objectives.

Many ML courses focus on third and fourth year undergraduate students, e.g., [1], [2]. Some
new ML curriculum design efforts, e.g., [3], [4] integrated multiple ML concepts across courses,
including those early in their curriculum. Regardless of the student level, most of these papers
cite challenges in deciding the mix of “how to” and “how it works” learning objectives, balancing
the mathematical nature of the course with its engineering applications, and/or how to reach a
multidisciplinary audience.

As part of a curriculum revision at the University of Virginia, the faculty decided to introduce and
require a new Introduction to ML course as part of the electrical engineering degree. The idea
for the course came from faculty comments that our electrical engineering students would benefit
from additional exposure to coding and that students would also benefit from a basic background
in ML. The goal of this paper is to describe the educational activities and design decisions behind
a course that combines both goals to share lessons learned with other instructors, especially those
designing their own new ML courses.



2 Course goals

The initial goals for the intro to ML course were to increase programming practice for electrical
engineering students and to expose them to ML concepts. There were two primary directions
the faculty considered for the course. One option, which was ultimately rejected, was to have a
“how to” focus for the course. Students would have read documentation on how to use existing
ML libraries and build their own systems around these tools, considering the algorithms largely
as “black boxes.” This approach is enticing because it allows students to quickly see exciting
applications without the need for upper-level prerequisite math courses and easily meets our goal
of increasing programming practice.

The other option, which was ultimately selected, was to design more of a “how it works” ML
course, where students see the details behind an ML algorithm then implement it. This option
aligns better with our other electrical engineering foundational courses, such as circuits and digital
logic design, which emphasize building systems from first principles. To further increase the par-
allels with our curriculum, the intro to ML course incorporates experimental design, with multiple
assignments where students are required to collect their own data and interpret results.

The final list of learning objectives for the course are that students should be able to:

1. Thoroughly explain the workings behind simple ML classification, clustering, and regression
algorithms. These should not seem like a black box!

2. Use ML terminology such as training vs testing, supervised vs unsupervised, loss functions,
sparsity, hyperparameter, etc.

3. Comfortably work with arrays and matrices to represent and store data.
4. Conduct a simple machine learning experiment from writing a hypothesis, collecting data,

coding a ML algorithm, to analyzing the results.
5. Present data in easy-to-interpret plots.
6. Read Python library documentation and use the information in writing new code.
7. Implement an algorithm in Python given its description in math and words.

Goals 1-2 represent the ML content in the course, goal 3 is mathematical, goal 4 is experimental,
goal 5 is about technical communication, and goals 6-7 focus on coding. The coding goals empha-
size the ability to work with code rather than any specific coding concepts; we do not consider the
intro to ML course a valid substitute for an introductory programming course.

3 Course organization

The intro to ML course has three main parts:

1. Part 1 (6 weeks): What’s inside the black box that we call ML? This part concentrates on two
algorithms: nearest neighbor classification and k means. Unlike the following parts, the goal
of this part is to fully understand these algorithms, including implementing them in Python.

2. Part 2 (5 weeks): How can I use ML resources? This part covers linear regression, neural
networks, sparsity, and dictionary learning. The goal of this part is for students to see a vari-
ety of ML methods that they can understand most of, but they do not code these applications
from scratch. Instead, students use Python libraries.



3. Part 3 (3 weeks) What other cool ML things are out there? This part briefly introduces
advanced ML algorithms and the ethics of ML.

The following subsections describe the learning activities in each course part and Fig. 1 summa-
rizes the schedule for the Fall 2024 semester. Key activities are highlighted in blue text in both the
following text and in Fig. 1.

3.1 Part 1

Given the desire to present ML algorithms from first principles and the lack of prerequisite mathe-
matics courses, we carefully selected ML algorithms that exemplify ML concepts without compli-
cated mathematics. The k-nearest neighbor (kNN) classifier is one obvious choice; to understand
this algorithm, students only need to understand vector notation and generalize a definition of dis-
tance to a multi-dimensional space. We spend roughly three weeks on background material (syl-
labus review, introduction to numpy, defining vectors, and coding strategies), defining the general
classification problem and its applications, and the kNN algorithm.

On the first day of class, we have an introduction “class”ification activity. We ask students to
stand up if their birthday is anytime January through April and define them as our training dataset.
We then ask all the sitting students to find the person standing up who is closest to them, introduce
themselves, ask that person what their favorite class was last semester, and keep note of whether the
answer is the same as their favorite class. Next, students report out by show-of-hands if they had the
same favorite class. Finally, as a class, we map out the steps involved in the activity and generalize
them to the nearest neighbor algorithm. In particular, we emphasize that we load data (students
enter the classroom), define a training and testing dataset (have some students stand up), loop
over all test data (ask everyone not standing), find the nearest training data point (nearest standing
student), and compare labels (ask for their favorite class and see if it is the same). The activity
naturally leads to conversations about how to define distance, a preview for future classes.

We then introduce a 2D dataset of basketball players’ heights and weights and try to classify their
position. Many students have expressed that they appreciate having a consistent, simple example
throughout lecture and the initial homework problems, rather than relying on abstract mathematical
notation, i.e., using height and weight rather than x1 and x2. We used a version of the freely
available NBA dataset [5], where we label each player as either a forward (combines the center
and forward class) or a guard, removing any players that play both positions.

After generalizing the idea of distances and kNN to multidimensional spaces via vector notation,
students apply the algorithm to the handwritten digit NMIST dataset [6] in a homework problem.
This requires a conversation about data representation and vectorization. For the experimental
problem, students must either test the impact of (1) using different norms (2, 1, and 0-norm) for
the kNN algorithm, (2) using different training dataset sizes, or (3) using the average digit of all
training digits to define the training data set. In all cases, students are asked to report on the
classification accuracy and make a visualization of their results.

For the majority of homework problems, we provide template code that handles all the data clean-
ing steps and ask students to fill in the ML algorithms and data plotting steps. We also provide
links to code documentation and ask students to look up how to use library functions.



Figure 1: Example course schedule. Q## represent weekly review quizzes. These are low-stakes opportu-
nities for constructive feedback and automatically graded using a learning management system. Anecdotal
evidence suggests students find the hands-on activities particularly motivating and fun.

The next algorithm in the course is the k-means clustering algorithm, which naturally builds on the
distance and vector notation from kNN. K-means involves iterating between a centroid update step
(calling a mean function) and a class update step (a call to the kNN algorithm). This progression
lends itself to a conversation about the differences between system and sub-system design princi-



ples and how it is important to define the input-output specification for each block of a system;
these principles are shared with many other intro-level electrical engineering course.

In-class, we discuss the RGB representation of color and how we can include that feature informa-
tion in a vectorized image. Starting in-class and finishing as a homework problem, students apply
k-means to the problem of color compression for images. Fig. 2 shows an example result.

Figure 2: Original image and its color compressed version with k = 3 to demonstrate an application of the
k-means algorithm.

3.2 Part 2

Part 2 of the course covers linear regression, the basics of neural networks, and dictionaries. The
homeworks emphasize reading documentation and using existing libraries rather than coding algo-
rithms from scratch.

Many students have seen linear regression before in a variety of settings and they typically un-
derstand the mathematics behind simple linear regression reasonably well. It is easy to select
an electrical engineering application for homework problems, e.g., modeling the voltage-current
relationship of a MOSFET in a given region as linear. The experimental problem on the linear
regression homework looks at the impact of adding either a single outlier at varying distances or
adding a constant outlier but varying the number of other datapoints.

Given its familiarity, linear regression serves as a good starting point for introducing the perceptron.
We frame the perceptron as a linear regression operation followed by a non-linear function. From
here, we can define the multilayer perceptron.

There are many ML topics related to neural networks that we do not have time to fully cover in the
class but would like to expose students to. To do so efficiently, we have a neural network termi-
nology activity where students are split into groups of about 3 and we give each group 10 minutes
to look up and write a definition for an assigned concept on a chalkboard (or a paper taped to the
wall) spread around the room. Example concepts are: backpropagation, stochastic gradient de-
scent, momentum - in the context of gradient descent, early stopping for gradient descent, batches,
max pooling layer, tensor, active learning, autoencoder, fully connected layer, and validation data.
The groups then rotate and draw a picture for their new concept. After one more rotation, students
prepare to explain their new concept to the class, using only the information from the previous
groups. Once all groups present (1 minute each), the class discusses what made some definitions
and visualizations easier to understand and takeaways for their final project presentations.



Perhaps the most surprising topics we cover in the intro ML are sparsity and dictionaries. Dictio-
nary learning is mathematically advanced and even the general denoising problem is non-trivial for
an arbitrary dictionary. However, the underlying concepts are attainable for early undergraduate
students and the math is simple if you limit the discussion to an invertible dictionary. Conveniently,
electrical engineering has a very useful invertible dictionary: the Fourier transform. Although us-
ing the Fourier transform to denoise a signal is not ML, the concepts of data representation and
sparsity are key to many more advanced ML algorithms.

To build up to denoising a signal using the Fourier transform, the class defines the zero “norm” and
thresholding operations, then demonstrates denoising a sparse edge image. While most signals are
not sparse, they can often be represented in a domain where they are sparse, such as the frequency
domain. Many of our students are interested in music, and the idea of writing a chord as a sum of
frequencies is intuitive for them even if they have not taken a signals and systems course. Fig. 3
shows the motivating example for the sparse audio signal denoising.

For the dictionary music denoising experiment, the students gather their own audio file using tuning
forks to approximate pure tones and whatever noise they decide to add, then denoise it using
provided code functions for transforming between the time and frequency domains (the course
does not discuss phases, complex numbers, or negative frequencies and the provided code abstracts
these details away). Anecdotally, students are typically very surprised at how well the method
works when comparing their noisy and denoised audio signals.

Figure 3: Example of denoising an audio signal by sparsifying its frequency representation using the Fourier
transform. The clean signal is the sum of three pure tones.

3.3 Part 3

In the final few weeks of the semester, the students primarily work on a group project. In-class
time is split between lectures introducing advanced topics and group work time. The lectures are
high-level only and do not present the full “how it works” behind these algorithms.

Due to student interest in the topic, the course includes one day on hyperparameter optimization.
We define the common brute force, grid search, and random search methods. We also discuss
Figure 1 from [7] showing that random sampling explores more distinct values than grid search and
thus often discovers a better hyperparameter. Students are often surprised (and even disappointed)



at the simplicity of these common methods. When there are many hyperparameters or when the
cost of trying a hyperparameter is expensive, a designer might instead opt for a more complex
strategy such as Bayesian optimization [8] or gradient descent for hyperparameter optimization
[9]. We briefly present these two strategies at a high level, using pictures of a 1D cost function for
illustration. Although the details of both are outside the scope of an introductory course, students
quickly relate to the exploitation-exploration trade-off inherent in Bayesian optimization when
presented with an example such as them being more likely to try new restaurants as a first-year and
go to a favorite restaurant in their last semester.

The course includes two class periods on ethics in ML. In the first class, to highlight student
perspectives, students form groups, research a topic, and present to the class (this is all done in
a single class). Suggested topics are the energy use of ML, training data for speech recognition,
auto grading of student exams, predicting repeat criminal behavior [10], and phantom braking in
self-driving cars [11], but students are also invited to pick their own topic. The second class is
based around ethical considerations in ML research and covers publication bias, hypothesizing
after the results are known [12], [13], biased training data, the reproducibility crisis [14], “grad
student” descent [12], confusing explanation and speculation in papers [15], excess “mathiness”
[15], and inaccurate language [15]. Students hypothesize about the root causes of these ethical
issues and possible solutions then compare their answers to those presented in [16]. This lecture
has been well received, with many students citing the ethics week as one of their favorite topics in
the course.

4 Conclusion

More engineering departments are offering a variety of ML courses to meet the interests of stu-
dents, in response to the needs of industry, and to prepare future engineers to design and use
ML tools. ML is inherently interdisciplinary, requiring programming and computer science back-
ground, mathematical knowledge, and concepts from signal and image processing, traditionally
taught in electrical engineering. Courses in ML are thus unsurprisingly varied in how they ap-
proach the topic. For example, some courses focus more on using ML as a tool and expect students
to be able to read documentation from common ML libraries such as pytorch. Other courses re-
quire a strong mathematical background and focus on the theoretical underpinnings of algorithms
such as gradient descent and linear regression.

The introduction to ML course presented in this paper was designed to fit in an electrical engineer-
ing curriculum where we want students to understand some ML concepts from first principles, but
without requiring upper-level mathematical prerequisites. The only expectation of students coming
into the course is an introductory course in Python. We have carefully chosen the course content
to expose students to exciting areas of ML and a variety of applications.

One avenue for future work is assessing the effectiveness of the intro to ML course at meeting
its goals. In an informal survey at the end of the first course offering, most students agreed that
the course improved their understanding of math expressions, their coding ability, and their un-
derstanding of ML concepts. In addition to collecting further student survey data on their per-
ceptions of learning, a tool such as the Engineering Computational Thinking Diagnostic (ECTD)
[17] would be useful to more rigorously evaluate whether students’ improved their computational



thinking skills.

Another avenue of future work is comparing the intro to ML course to ML courses at other uni-
versities by looking at types of assignments, opportunities for project-based learning, course pre-
requisites, mode of instruction, major department, class size, typical year of enrolled students, and
whether the course is required for any degree program, and the learning platforms utilized. This
could take the form of a systematic review, inspired by the work of Marques et al. [18] at the
K-12 level on systematically reviewing 30 ML instructional units. Given the quickly changing
landscape of ML courses, any survey of ML courses requires contacting instructors rather than
relying on information from departmental websites. We expect a wide range of approaches, each
with their own advantages and disadvantages. Seeing the different direction of ML courses can
aid instructors and curriculum developers select the correct learning goals and activities for their
specific student population.
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