
Paper ID #47405

BOARD # 342: Collaboration Station: Opening up Single-User Software
Projects – I-TEST & CSforAll

Ryon Vinay Peddapalli, Clemson University

Ryon is currently a sophomore at Clemson University, and is pursuing a degree in Computer Science and
Math

Ella Kokinda, Clemson University

Ella Kokinda is a PhD student at Clemson University’s Zucker Family Graduate Center in Charleston,
South Carolina. Her research interests surround live streaming, software and game development, and
developer communities.

Dr. D. Matthew Boyer, Clemson University

Dr. Boyer is a Research Associate Professor in the Department of Engineering and Science Education and
an Educational Proposal Writer in the College of Engineering, Computing and Applied Sciences.

Andrew Begel, Carnegie Mellon University

Dr. Andrew Begel, PhD is an Associate Professor in the Software and Societal Systems Department at
Carnegie Mellon University. Prior to this, he spent over 16 years as a Principal Researcher at Microsoft
Research. Andrew’s goal is to create inclusive workplaces where all people, especially those with disabilities
and the neurodivergent, can be successful, without discrimination. His recent work has helped people on
the autism spectrum gain employment and facilitate social interaction, helped blind software developers
collaborate with their sighted colleagues, and used affective computing and biometrics to better understand
how software developers do their work.

Paige Rodeghero, Clemson University

©American Society for Engineering Education, 2025



Collaboration Station: Opening up Single-User Software
Projects — I-Test & CSforAll

Abstract
The need for collaborative software is more significant than ever in our modern world. Especially
in large software companies, it becomes imperative to work efficiently with co-workers to
complete large projects. Consider that nearly seven percent of Americans between ages six and
eleven have been diagnosed with neurodivergency [1]. Some of these individuals will end up
becoming software developers. The problem, though, is that many of these students will not have
the practice of effectively collaborating while coding. Scratch, one of the most ubiquitous
block-based software tools that aims to teach students basic programming practices, does not
support multi-user collaboration1. As such, reverse-engineering single-user web programming
applications to multi-user applications could help younger students–especially those with
neurodivergent social behaviors–learn good collaborative practices early. Moreover, the
development of this tool allows a unique case study into the implementation of multi-user features
in closed single-user systems and the challenges faced in implementing such a software.

In this paper, we demonstrate the process of developing the software that we built for a summer
camp related to teaching around 20 neurodivergent high school students programming concepts
under the funding of NSF’s Division Of Research On Learning and ITEST. We elaborate on the
challenges and potential issues of creating and making such software easily accessible. More
specifically, the synchronization problems that arise from turning a closed single-user system into
a multi-user system for a neurodivergent programming camp. Additionally, we discuss about the
iterative and real-time feedback development of our tool.

Introduction
The importance of collaborative tools in fostering an early software development experience is
undeniable. Exposing students to these tools is a great way to introduce these concepts at a stage
where many students make their most critical collaborative experiences [2]. However,
neurodivergent students often have social impediments that may make it difficult for them to be
receptive to working on code or other projects they may deem as personal with their peers [3].
The development of Collaboration Station aimed to create an easily accessible and navigable
website online where students are able to collaboratively program, much akin to an application
like Google Docs. Ashinof and Abu-Akel assert that the goal of good software should be to
minimize the excess “clutter” of the page [4]. Moreover, Kokinda et al. emphasize that providing
familiar modes of engagement can help promote collaboration and communication between
students [5]. Collaboration Station’s development strongly follows this principle.

Design Process
This philosophy of keeping Collaboration Station self-contained manifested in many ways. The
end product not only synchronized Scratch, but also contained a chat and video bar on the right to
1 https://scratch.mit.edu

1



mitigate the usage of other chat media. We wanted to also synchronize an art or music generating
tool. However, time did not permit this. The only real unique consideration outside of the main
“room” screen was determining how to allow students to join rooms. To simplify the process,
users can share a link, enabling collaborators to edit together in a specific room.

Figure 1: Collaboration Station Main Screen

Understandably, one of the largest barriers to building the collaboration portion of Collaboration
Station is synchronization. In this context, synchronization refers to the method where one person
may change the state of their project by dragging a block or changing the position of a character.
To approach the problem as a potential developer, the reverse engineering process of software
almost always begins with background research on existing modifications. Specifically, we
examined how other similar add-ons managed to “hack” the tool to synchronize Scratch. For
instance, a previous iteration of the camp utilized a Chrome extension called “Blocklive2,” which
added multi-user functionality to Scratch. The code for Blocklive is available directly on GitHub
as open-source material. While we did not want to rely on the exact same code—primarily due to
the overhead of requiring campers to download an extension and our preference to store
information on our servers—we aimed to adapt the overarching mechanisms of Blocklive’s
approach for own software.

Synchronization
There are numerous ways to mimic this synchronization functionality. For smaller projects, the
system can transmit the entire project state after each state change. While relatively easy to
implement, this approach requires storing the project in a minimal amount of space, as users can
frequently cause state changes, resulting in lots of transmissions and high network overhead.
Alternatively, similar to code-sharing services like Git, changes to the project’s current state can
be transmitted instead [6]. The program might broadcast signals called “events” to each connected
user. Each connected user can then parse each event and update the state of their program.
However, this method requires significantly more time to implement because it must broadcast
each event in a way that allows unpacking and conversion into any possible state change.

2 A browser extension for collaborating on Scratch. https://sites.google.com/view/blocklive/home

2



To implement synchronization in Collaboration Station, we had to consider the size of individual
Scratch projects. A base Scratch project with no sprites (images) requires roughly 1.5 kilobytes of
data, with every additional sprite adding an extra kilobyte. Code Blocks and custom images add
even more. Detailed in the following sections, the service we used to send data between
connected users, Ably3, would not be able to send packets over a few kilobytes. To keep the data
transmitted within the limit, Collaboration Station instead had to utilize an event-based approach
to its synchronization.

Blocklive served as a useful reference codebase. It cannot read internal code and instead uses an
event-based approach. It employs a “blackbox” system, intercepting events generated by the
application and modifying them before passing them to the rest of the program. A benefit of this
approach is that it allows for quick prototyping. Since most of the mechanics of Scratch are
already programmed in, we can simulate events and pass them off to the scratch renderer.
Reading Blocklive’s code is very beneficial in this circumstance as we rarely have to locate the
exact bits of code that may act but find the event Blocklive transmits to perform that action. This
is especially helpful in large codebases like that of Scratch, where bits of code can be buried deep
within files. Instead of finding the exact location of this code, we can simply pass an event to
Blocklive and trace its path.

A specific sector in which pathing became useful was the most critical component of this
development process: synchronizing the block code between users. Verifying this is important as
each user should have the same blocks in the same configurations; a misalignment in blocks or
block order would cause the program code to be different for each user. This would result in
different behaviors in users’ projects. Of special importance is the way Scratch blocks work –
code logic is dictated through a vertical “stack” of blocks, where each block has its next block and
previous block stored. This allows it to execute all blocks in order from top to bottom when the
user clicks the run project button.

However, it is essential in this instance that blocks attached to the end of another block chain
require the block ID of the blocks above it. This means that each “event” call must be sent at
precisely the same relative time as other messages – as if a message of an ending block referenced
a block chain that was not sent yet, it would not attach and the code would never reach that block.
Therefore, the project had to utilize a messaging system that could send messages at specific
times and in a queue.

A benefit of using Ably was that packet sizes were not of a significant concern. This allows us to
batch messages together. Of special note is that Scratch can treat certain events as separate
messages. For example, when a user drags a block from the block creation panel to their Scratch
workspace, two events are created: one for the block creation and one for the block move to the
end position. However, if we synchronize both events at the time they were respectively
generated, people connected to the room would see a block randomly appear at the workspace
origin and then snap into its end position a second later. There are a lot of small instances of this,
where the solution would be to “batch” messages by sending a list of events to be synchronized
simultaneously. This also controls how animations can get done; if we know the current position
and the following events that a block may end up going to, we can ease between them to reduce
jarring jumps in visuals.
3 https://ably.com/

3



Another key issue is project preservation. Unlike our model Git, each project state must be the
same for reasons described earlier regarding project flow. While this would not be an issue if each
synchronization event worked exactly perfectly, the camp was running under the assumption of
eventual bugs. Therefore, some users might have slightly different projects than others. So, our
goal was to have backups of different users so we could roll a project back to a specific user that
may have the least amount of bugs. The way Collaboration Station handled this is by cycling
through each camper of a given project and uploading a copy of their file to a central server every
minute if a change had been made. Since the central server kept all backups given to it, this
guarantees that there would be a copy of the project by each user every few minutes. That way, if
an error occurs (of which there were many) where a file becomes otherwise corrupted, a rollback
can occur to a different camper’s save file. Since a copy is uploaded every minute, a new user that
joins between the minute window may not have the most up-to-date project. In this instance, a
request to push the latest version is sent to the next queued user before the new user pulls the
saved file from the server. Essentially, this copies the save from the next queued user.

Design Reflection
We utilized the first iteration of the camp to act as a debugging and information-gathering tool to
test Collaboration Station while it was still in development. This process led to interesting design
choices and information gathered. For instance, when users accessed the webpage, they would
input solely an email with no password and then proceed to log in. While this was part of our
minimalistic-focused approach, we also wanted to test whether this would cause problems with
campers logging in to other accounts and whether this was feasible more generally. In the end, no
apparent problems stemmed from this addition. While future camps and implementations will
certainly have passwords, it is still interesting to note that this camp did not need them. There
were also other common bugs that arose from a large group of students utilizing the page at the
same time, such as slowdowns and missed synchronizations. However, other bugs gave more
insight into how campers themselves think differently from developers. For instance, a few
campers were unaware they could move a sprite, object, or character in a project by dragging it on
the virtual screen. So instead, they dragged a “move 10 step” block and repeatedly clicked it until
the sprite trudged to where the user wanted it to be. If another user modified a block during these
sustained synchronizations, it would cause data loss in block order.

The default Scratch Graphical User Interface (GUI) previously had extensive research done into
creating software that is easily accessible. We opted then to maintain a similar design to keep
accessibility features and prevent mapping mismatches from students who may have used Scratch
previously. However, we did make minor changes, such as improving the ease of pressing specific
menus and buttons, including the newly added “Save Project” button. Interestingly, though, we
noticed some repercussions arise from this. Namely, there was an incident where a camper was
trying to import their art to Collaboration Station. However, thinking the rest of the pre-existing
art was unnecessary, the camper swiftly deleted all the other sprites. In this case, the camper
seemed to “hyperfocus” on the creation of the art, as some neurodivergent people often do when
presented with a task that interests them [7]. The camper was nearly entirely focused on their
individual contribution to the project and did not consider the implications for everyone else
working. For instance, adding hurdles to reduce misclicks like these could be beneficial in this
case. As a quick fix, we restricted the deletion ability of sprites to the person who created the

4



sprite. While it does not remove this problem entirely, it reduces the impact and probability of it
occurring by someone who does not directly contribute to the specific sprite.

Discussion & Conclusion
There are certain aspects of Collaboration Station that, given time, should probably have been
changed. Implementing a collaborative drawing tool to draw sprites inside of Collaboration
Station as well as a music tool would significantly negate the need to use the outside internet
during camp. The internet could then primarily be used as references for campers. Another
consideration is implementing more features focused on including more neurodivergent-safe
compatibilities. For instance, running a possible case study on whether ”disabling” recently
moved blocks for campers other than the original creator of the block might aid in reducing
accidental deletes or moves that could annoy certain campers.

Overall, Collaboration Station’s development represents a step forward to creating accessible,
collaborative programming environments for neurodivergent students. The case study in opening
up Scratch is an interesting guide to more broadly reverse-engineering software and establishing
synchronization tactics. As programming continues to become increasingly collaborative, easily
accessible applications like Collaboration Station could play a potential role in helping
neurodivergent students develop both technical and social skills that will be essential for their
future careers in software development.

Acknowledgements
The authors thank NSF’s Divison of Research on Learning in its effort of promoting for its role in
fostering this research under NSF Grant #2148720: ”Preparing High School Students with
Autism for the Future of Remote Software Development Work.” under NSF programs I-Test and
CSforAll.

References
[1] T. Armstrong, Neurodiversity: Discovering the extraordinary gifts of autism, ADHD,

dyslexia, and other brain differences. ReadHowYouWant.com, 2010.

[2] C. Crook, “Children as computer users: The case of collaborative learning,” Computers &
Education, vol. 30, no. 3-4, pp. 237–247, 1998.

[3] M. R. SASPORTES, “Challenges and opportunities for neurodivergent software engineers,”
2024.

[4] A. A. D. BIA, “A creativity based goal modeling approach for accessibility of neurodivergent
individuals,” 2023.

[5] E. Kokinda, M. Moster, P. Rodeghero, and D. M. Boyer, “Informal learning opportunities:
Neurodiversity, self-efficacy, motivation for programming interest.,” in CSEDU (2),
pp. 413–426, 2024.

[6] C. Bourke, “Introduction to git,” 2015.

[7] B. K. Ashinoff and A. Abu-Akel, “Hyperfocus: The forgotten frontier of attention,”
Psychological research, vol. 85, no. 1, pp. 1–19, 2021.

5


