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WIP: Evaluating Programming Skills in the Age of LLMs: A Hybrid 
Approach to Student Assessment 
 
Abstract 
 
The advent of large language models (LLMs), such as OpenAI’s ChatGPT, has augmented the 
challenge of assessing student understanding and ensuring academic integrity is maintained on 
homework assignments. In a course with a heavy focus on programming, it is common to have a 
significant portion of the grade be determined by such assignments. When an LLM is prompted 
with the instructions for a programming assignment, it can readily give a solution that required 
little to no thought from the student. This has made accurately assessing a student’s 
programming skills through homework assignments significantly more challenging. 
 
This work-in-progress paper investigates the student experience of the transition from solely 
at-home programming assignments to at-home programming assignments with the addition of 
three handwritten components in the form of in-class programming assessments. A key piece of 
this transition is being cautious to not add additional work to the professor’s workload by 
requiring additional assignments. To offset the addition of assignments, the at-home assignments 
were converted to automatically graded assignments using Gradescope. These changes were 
implemented in a pilot session in the 2024-2025 academic year. In the transition, the total 
programming grade remained at 20% of the course grade, however, three-fourths of this 
percentage is now determined by the in-class assessments, reducing the portion of the course 
grade that could potentially be determined through the students’ use of LLMs from 20% to 5%. 
 
To assess the effects of this change on student experiences, the students enrolled in the pilot 
course were surveyed on the clarity, difficulty, and effectiveness of the assignments, as well as 
the accuracy, fairness, and timeliness of the autograder. Instructors who taught the course were 
interviewed to assess the professor experience with the transition. The responses from the 
surveys, interviews, and student performance, provide a baseline for future adjustments to the 
three-course sequence to accurately assess students on their basic programming skills in a world 
where LLMs are becoming more prevalent.  

 



Introduction 
 
In recent years, large language models (LLMs) have rapidly developed [1] and have quickly 
become a daily resource for professionals and students alike [2]. LLMs are able to enhance the 
learning experience through rapid content generation [3]. One study that surveyed students to 
better understand their use of LLMs revealed that some utilized them to answer questions on 
homework and exams, write outlines and essays, and identify errors in code. They also identified 
what they felt were ethical uses of LLMs, which included helping to understand concepts, 
correcting grammar, and creating citations, among others. When pressed, students revealed 
stress, running out of time, and failing to find the answer for themselves pushed them to using 
LLMs in ways that may seem unethical [4].   
 
In a computer science course, LLMs can be used to both generate code and help a student 
understand it [5]. Depending on how the LLM is being leveraged, it could be perceived as a 
benefit or risk to the student [6]. During their first year, many computer science students learn 
the fundamentals of programming, which serves as a critical foundation for their future computer 
science courses. However, as they encounter difficult programming challenges on a homework 
assignment, students may be tempted to use LLMs to quickly generate a solution in order to turn 
the assignment in and get a grade. This approach can have a negative effect on the student, which 
could be exacerbated as they progress through their computer science curriculum. As students 
rely on LLMs to generate full code, they may not be learning the content effectively [6]. 
Additionally, from the instructor's perspective, distinguishing whether a student's submitted code 
was generated by an LLM or written by a human can be challenging. Furthermore, the reliability 
of the tools and programs designed to detect such cases remains uncertain. In courses where 
at-home programming assignments are a large portion of a student’s course grade, this leaves the 
possibility of poor assessment of a student’s skill as a programmer.  
 
To better assess students in a world with easily accessible LLMs, instructors are looking to find 
alternative ways to deliver and grade programming assessments. One such solution is to reduce 
the weight of at-home programming assignments. Another is to only do in-class programming 
assessments, whether it is on a locked-down device or on paper. In this work in progress, we 
investigate the student and faculty perspectives at Louisiana Tech University on the 
implementation of a hybrid of these two approaches in the 2024-2025 school year. More 
specifically, the approach involved a reduction of the percentage of the grade that is determined 
through at-home programming assignments along with the introduction of paper-based 
programming assessments. Overall, the percentage of the grade determined by programming 
assignments did not change. 
 
Course Background and Modifications 

At Louisiana Tech University, first-year computer science and cyber engineering students 
participate in a three-course series that emphasizes programming fundamentals, computer 
architecture, algorithms, and data structures. To evaluate their programming skills, each course 
includes several at-home programming assignments that collectively account for 20% of the final 
grade. Alongside these assignments, students take three paper-based, in-class exams per course, 
which make up 50% of the overall grade. These exams are designed to assess the material 



covered in the units leading up to the exam and are scheduled to be completed within a single 
class period. 

While the courses heavily focus on programming, they also cover broader topics that may not 
directly involve coding. For instance, an exam might omit programming content if the preceding 
material focused on theoretical or conceptual topics, such as Introduction to Computer 
Architecture. Despite this, students are expected to continuously practice and improve their 
programming skills throughout the term. To this end, they are assigned frequent programming 
tasks of increasing difficulty, ensuring steady progression. 

The grading structure for these courses comprises the aforementioned exams and programming 
assignments, as well as additional components such as puzzles designed to sharpen 
problem-solving skills and larger programming projects. These projects not only challenge 
students technically but also foster collaboration and the development of soft skills critical for 
their future careers. 

This study was designed with minimal disruption to existing courses in mind. Our primary goal 
was to ensure that the number of assignments and their weight toward a student’s grade remained 
largely unchanged. This consistency allowed for uniform grading and facilitated a 
straightforward comparison between sections implementing the modified structure and those 
following the original format. 

A secondary goal was to minimize the additional workload for instructors adopting the revised 
course structure. Instructor workload was measured by the time required to grade programming 
assignments over a 10-week term. In the traditional structure, instructors typically graded 15–20 
assignments per term for each of the 30–40 students in a single class section. Maintaining a 
manageable grading workload was, therefore, a critical consideration in the design of our 
modifications. 

To achieve these goals, we introduced two key adjustments to the course structure: 

1.​ The addition of paper-based programming quizzes. 
2.​ The conversion of existing programming assignments into automatically graded 

assignments 

 
Paper-based programming quizzes 

Three paper-based programming quizzes were introduced to evaluate students’ understanding of 
the programming concepts covered in their assignments. Each quiz was designed to be 
completed in under 10 minutes and focused on the material students had encountered in the 
programming assignments up to that point in the term. 

The number of quizzes was chosen to align with the number of exams in the original course 
structure. By pairing a quiz with each exam, we were able to administer both during the same 
class period, ensuring that the original schedule remained unchanged. 



To integrate the quizzes into the grading system, we redistributed the weight of the programming 
component from the original structure. Previously, programming assignments accounted for 20% 
of the total grade. In the revised structure, programming quizzes comprised 15% of the grade, 
with each quiz contributing 5%. 

 
Autograded programming assignments 

To address the increased workload created by the programming quizzes, we adapted the existing 
programming assignments to be automatically graded using Gradescope [7], web-based software 
that integrates with our institution's Learning Management System (LMS). 

The use of automatically graded assignments offered two key benefits: 

1.​ Improved Feedback Loop: Students were able to submit multiple versions of their 
assignments and receive frequent, tailored feedback at any time while the assignment was 
open. 

2.​ Reduced Grading Effort: By eliminating the need for instructors to set up and test each 
student’s submission, the time spent on grading was significantly reduced. This allowed 
instructors to focus on providing more personalized feedback on programming quizzes 
and other aspects of the course. 

In the revised structure, the autograded programming assignments accounted for 5% of the 
overall grade. Combined with the 15% allocated to the programming quizzes, the original 20% 
contribution from programming assignments remained unchanged. 

While the autograded assignments were still potentially vulnerable to cheating, including the use 
of large language models (LLMs), this risk was mitigated by their limited grade weight (5%) and 
the requirement for students to create programmatic solutions by hand during the programming 
quizzes. This ensured that students spent more time engaging with the underlying concepts the 
programming assignments were designed to teach rather than relying solely on external tools or 
shortcuts. 

 
Data Collection 
 
The primary goal of this paper is to present both student and instructor perspectives on the 
implementation of the programming assignment assessment approach. As this is a 
work-in-progress, data collection has only been conducted during one term at the time of writing. 
The group surveyed consists of 26 honors students enrolled in the first course of a three-course 
sequence. The students are primarily in Computer Science and Cyber Engineering, with two 
students from other disciplines. 
 
To gather student perspectives, surveys were administered at two points during the term: once 
after the first programming assignment and again after the final assignment. The first survey 
asked general questions about the assignment, including its difficulty, the time required, and its 
appropriateness. Additionally, it contained questions focused on the autograder tool, assessing 



students’ views on its ease of use, accuracy, and the quality of feedback it provided during the 
assignment. The survey also included questions about the quality of the instructions included in 
the programming assignment on the use of the autograder. 
 
The final survey, administered at the end of the term, included similar questions, but they were 
rephrased to capture students’ opinions on all programming assignments throughout the course. 
This survey also asked students to identify the most and least difficult assignments, as well as 
which assignments were easiest or hardest to use with the autograder. 
 
Both surveys included a combination of Likert scale and open-ended questions. 
 
Preliminary Results and Discussion 
 
All students in the section participated in the post-assignment survey. Of these, 92% felt that the 
autograded assignments were appropriately aligned with the material covered in class and the 
concepts they were expected to master by that point in the term. However, only 69% shared the 
same view regarding the paper programming quiz, while 29% were neutral about its 
appropriateness. Although both results were largely positive, this discrepancy highlights a gap in 
content coverage between the autograded assignments and the programming quizzes, which will 
be addressed in future classes. 
 
When asked about the scheduling of the programming quiz and exams, 76% of students 
preferred having both during the same class period, rather than separating them into different 
days. As one student put it, “I’m already in test-taking mode and ready for it. It would just add 
extra stress to have two separate days of testing.” 
 
Regarding the difficulty of adjusting their code for compatibility with the Gradescope 
autograding suite, 73% of students did not find it challenging, while 19% did. The remaining 
students were neutral in their responses. 

However, only 42% of students found the autograder feedback helpful, indicating that more 
attention should be given to designing programming tests that accommodate the variety of 
student submissions. 

Despite this, 80% of students felt that the autograder graded their submissions accurately. 

Overall, most students expressed appreciation for the ability to use the autograder for their 
assignments and valued the quick feedback, which allowed them to see their grades promptly. 

Future Work 
 
This study provided preliminary insights into the student perspectives of the programming 
assignments and the assessment approach for a first-year computer science course. Further 
analysis could provide a more concrete understanding of the impact of the autograder tool on the 
students' overall course experience. Looking at each programming assignment in depth and 
evaluating the student experience could yield more insights. Analyzing the survey results further 
through statistical analysis can provide valuable insights into the impacts of the various changes 



to the course discussed in this study. Additionally, looking at the students’ performance in future 
classes where the fundamental content from this course is a prerequisite could illustrate the 
benefits and impacts of the autograder. This study will continue through additional phases of 
implementation in subsequent courses as well as expanding to include multiple instructors.   
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