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A Complete Redesign of CS1 for Engineering Students

Abstract

Introductory computer science (CS) courses, also referred to as CS1, are essential for equipping
computer science and other engineering students alike with foundational programming skills.
However, traditional CS1 courses are tailored for CS majors, leaving engineering students without
the specialized programming knowledge needed for their disciplines. This paper presents a
complete redesign of the CS 101 course at the University of Illinois Urbana-Champaign to meet
the specific needs of fundamental programming for engineering students. The new curriculum
prioritizes teaching foundational programming concepts in lectures while providing
engineering-focused applications in lab activities and mini-projects. New topics, such as
pseudocode and debugging, were introduced in lectures to deepen engineering students’
understanding of programming fundamentals and enhance adaptability to new programming
languages. Homework and exams were restructured into computer-based assessments featuring
auto-grading and randomized problem variations to encourage mastery learning. Bi-weekly
mini-projects were designed to connect programming concepts and skills with practical
engineering applications. To evaluate the impact of the redesigned CS 101 course, a CS1
assessment was developed to measure students’ understanding of programming fundamentals,
pseudocode interpretation, and Python-specific skills. Future work will focus on incorporating
group activities into lab sessions, expanding mini-project offerings, and refining the assessment
tools to further align with the needs of engineering students.

1 Introduction

Introductory computer science (CS) courses, commonly known as CS1 [1], serve a critical role in
equipping students with important computational skills, including error handling strategies [2, 3],
code-writing proficiency and syntactic accuracy [4, 5], and the development of viable mental
models for problem-solving [6, 7, 8]. While traditionally designed for CS majors, CS1 courses
are witnessing a surge in enrollment from non-CS students [9], as computational tools and
methods are expanding to a wider range of fields outside CS. In response, researchers have
explored approaches to creating or redesigning CS1 courses to fit the needs of non-CS major
students [10].

At the University of Illinois Urbana-Champaign, CS 101 is required by most non-CS engineering
students and has historically equipped these students with Python and MATLAB programming
skills essential for solving engineering problems in their respective fields. However, over time,
this course has struggled to maintain its relevance and effectiveness. Older teaching methods,



confusion between two programming languages, and an overemphasis on diverse engineering
applications and Python libraries within lectures have diluted its focus on programming
fundamentals. As a result, many engineering students lack the foundational programming
knowledge needed to effectively apply computational tools in more advanced engineering
courses. Moreover, this deficiency leaves students underprepared to meet the programming and
computational demands of many engineering careers upon graduation. Recognizing these
challenges, we seek to redesign CS 101 to better align with the needs of engineering
students.

Previous research provides valuable insights into CS1 redesign. Efforts to redesign CS1 courses
for non-CS major students have introduced specialized approaches tailored to different student
interests. Some redesigns have focused on media computation [11, 12]. Others took a data-centric
approach, emphasizing more on database management and data visualization [13, 14]. These
approaches are primarily designed for general non-CS students and are interest-based, making
them unsuitable for addressing the specific needs of engineering students.

Beyond interest-based approaches, some redesigns target specific student groups, such as those in
STEM disciplines [15], including engineering [16]. For example, Brown [17] describes a
systematic redesign of an engineering programming course using MATLAB using a Backward
Design framework [18]. Peteranetz et al. [19] applies Computational Creativity Exercises to
increase engineering students’ learning of fundamental programming. These studies show that
engineering-specific CS1 courses can be tailored to meet the unique needs of engineering
students; however, they are either still under development [17] or have been designed for specific
institutional contexts [19], making direct adoption challenging.

In this paper, we describe the complete redesign of the CS 101 for engineering students at the
University of Illinois Urbana-Champaign, focusing on restoring core programming fundamentals
in lectures while integrating diverse engineering applications into lab sections and bi-weekly
mini-projects. Based on feedback from interviews with 14 faculty members across the CS and
other engineering departments, we have developed a curriculum that balances CS1 programming
fundamentals with practical engineering applications. This study was reviewed by the university’s
Institutional Review Board and determined to be exempt from Human Subjects Research
(IRB24-1130).

The redesign process replaced library-specific lectures with new content aligned with CS1
learning objectives. This updated content includes topics such as pseudocode, computational
thinking, and debugging skills – areas previously absent from the course but essential for
engineering students to master [20, 21]. Engineering applications were moved from lectures to
weekly lab sections. Additionally, we created three longer programming assignments, or
mini-projects, that apply CS1 content and libraries to solve engineering problems in areas such as
aerospace applications, structural analysis, and environmental data modeling. New homework
assignments, aligned with the revised lecture content, were developed in PrairieLearn [22], an
online platform designed to support mastery learning through randomized problem variants,
auto-grading, and immediate feedback. We also incorporated frequent testing [23, 24, 25], with
students completing bi-weekly quizzes in a secure and controlled testing environment.

We explored various methods that could help us evaluate the effectiveness of the redesigned CS



101 course and identified Concept Inventories (CIs) as a useful approach [26]. A CI is a
standardized assessment tool designed to measure students’ understanding of fundamental
concepts within a particular domain. Initially introduced in physics [27], CIs have since been
developed for use in various disciplines, including engineering [28, 29, 30, 31], mathematics [32],
and CS [33, 34, 35]. Within CS1 specifically, the Foundational CS1 Assessment (FCS1) and its
isomorphic successor, the Second CS1 Assessment (SCS1), were designed to evaluate students’
CS1 programming knowledge using pseudocode [36, 37]. We initially sought to use existing CS1
CIs; however, since FCS1 and SCS1 were not publicly available, we developed our own CS1
assessment in PrairieLearn to evaluate fundamental programming knowledge among upper-level
engineering students. While this assessment has not yet undergone the rigorous development
process required to qualify as a validated Concept Inventory, we are actively refining it to meet
these standards. Our goal is to establish a robust CS1 Concept Inventory capable of evaluating
student understanding and guiding future course improvements.

The remainder of this paper is organized as follows. In the next section, we describe the methods
used in the redesign of the CS 101 course. Section 3 focuses on measuring the impact of the
redesigned course. In Section 4, we discuss the details of balancing the curriculum to align with
engineering needs, and promoting adaptability to new programming languages through
pseudocode. We address the limitations of our approach and outline directions for future work in
Section 5.

2 Methods

The CS 101 course redesign was based on feedback from faculty in engineering and the CS
department. Key changes included restructuring lecture content to focus on core programming
concepts, introducing computer-based assessments to promote mastery learning [38], and
incorporating mini-projects designed to connect programming principles with practical
engineering applications.

2.1 Changes via a Community of Practice

This project aims to promote the sustainable adoption of evidence-based pedagogies through
Communities of Practice (CoPs) [39, 40, 41, 42]. These CoPs consist of instructors dedicated to
reform efforts and must include senior faculty to secure departmental commitment for sustaining
innovations. While any number of enthusiastic lecturers and junior faculty can participate, senior
faculty play a critical role in advocating for and embedding changes within the department. CoPs
are encouraged to meet weekly to foster collaboration.

This model supports faculty commitment, spreads effective practices, facilitates evaluation, and
provides just-in-time training. Following these principles, the initial project team included two
teaching professors from the CS department — one experienced in course redesign and the other
in teaching CS1 courses — and four engineering faculty who regularly teach courses requiring or
benefiting from introductory programming as a prerequisite.

We initiated the redesign process by conducting faculty interviews to gather insights on how
programming concepts, problem-solving skills, and pedagogical approaches could be designed to



address the unique needs of non-CS engineering undergraduate students. These interviews,
conducted in the Fall of 2023, had two primary objectives:

• To identify the specific programming knowledge and skills that engineering faculty deemed
essential for their students to succeed in both their courses and future professional practice,
and

• To gather input from CS faculty on the key components and best practices for designing and
delivering a robust CS1 introductory programming course.

We interviewed 10 faculty members from four engineering programs: Civil Engineering (CE),
Aerospace Engineering (AE), Mechanical Engineering (ME), and Bioengineering (BioE). Table 1
highlights their key insights, which were derived by identifying recurring themes.

Programs Expectations of Engineering Students
CE - Retain programming skills after the class

- Develop long-term adaptability to new programming languages
- Learn problem-solving skills and best programming practices
- Master foundational topics: file I/O, if-else statements, loops, lists/arrays

AE - Understand numerical methods, integration, and solving equations
- Familiarity with libraries: NumPy, SymPy, matplotlib, and pandas

ME - Understand numerical methods, regression, and differential equations
- Learn best programming practices and debugging skills
- Use Jupyter Notebooks effectively
- Master foundational topics: loops, list slicing, functional programming
- Familiarity with libraries: NumPy, SymPy, matplotlib, SciPy, and pandas

BioE - Learn random numbers, image processing, and line fitting
- Understand how to handle high-dimensional data
- Familiarity with libraries: Simulink from MATLAB, and matplotlib

Table 1: Summary of engineering faculty feedback on the programming tools and skills expected
of students completing the CS1 course.

A key consensus among the engineering faculty was to adopt Python as the primary programming
language for the redesigned CS 101 course. MATLAB would be included only as an optional
component in mini-projects tailored for BioE students who need it for future coursework. The
previous course design attempted to teach both MATLAB and Python simultaneously. However,
we learned from the interviews that engineering students entering subsequent courses often
lacked programming proficiency and were unable to program independently, despite exposure to
both programming languages. We believe that attempting to teach both languages led to
confusion and insufficient mastery of either language. Establishing Python as the primary
language for core lectures and labs aims to address this issue, providing a unified and focused
learning experience for all students.

In parallel, we interviewed four CS faculty members, each with at least five years of experience
teaching CS1 courses, to ensure the redesigned curriculum aligns with best practices in



introductory programming education. Their feedback provided valuable insights into structuring
CS 101 to effectively teach fundamental programming concepts while cultivating strong
problem-solving and critical thinking skills. Key suggestions from their feedback are summarized
in Table 2.

Topics - Basic programming: variables, data types, conditions, loops, functions, file I/O
- Advanced skills: pseudocode, debugging, recursion, computational algorithms
- Data structures: lists, arrays, dictionaries, classes
- Libraries: pandas for data manipulation, NetworkX for graph-based computations

Goals - Recognize programming patterns and form good learning habits
- Develop debugging skills and learn to decompose complex problems
- Achieve mastery of the basic programming topics (listed above)
- Understand similarities and differences between programming languages

Methods - Provide retakes/additional resources to help students recover from missed content
- Streamline course content to prioritize depth over breadth
- Reinforce learning by repeating a concept in different contexts
- Encourage collaboration through structured group exercises
- Provide real-world problems with scaffolded instructions to enhance motivation
- Ensure consistency in topics, flow, and structure if multiple languages are taught

Table 2: Faculty feedback summary on CS1 foundational concepts, essential programming skills
and teaching methodologies for an effective CS1 course.

The CS faculty highlighted the importance of foundational programming skills — such as
understanding variables, data types (e.g. integers, floats, strings, booleans), loops, and functions
— as essential building blocks for developing computational thinking. They also highlighted
teaching advanced skills, including writing and interpreting pseudocode and breaking down
complex problems into smaller, manageable components. Regarding teaching methodologies,
they suggested providing opportunities for students who are falling behind to recover from missed
content through retakes or additional resources, helping them stay on track. They recommended
reducing the amount of content covered in lectures to focus on in-depth exploration of key
concepts to prioritize mastery over broad coverage. They also suggested the idea of revisiting
concepts in various contexts to reinforce learning, and encouraged structured group exercises.
Both engineering and CS faculty emphasized the importance of problem-solving skills and
cultivating best programming practices, reinforcing the priorities of the redesigned CS 101
curriculum.

2.2 Redesign of Lecture Content and Delivery Method

The previous lecture component of CS 101 attempted to combine engineering applications with
foundational programming concepts, which seemed to result in a curriculum that appeared
fragmented and less effective than intended. To address this, the lecture content was extensively
restructured during Spring 2024, informed by faculty feedback, to focus exclusively on CS1
programming fundamentals. This shift aims to help students build a strong foundation in core
programming skills.



The redesigned lecture topics are outlined in Table 3, organized into two weekly sessions. The
curriculum begins with fundamental Python constructs, including Python data types, Boolean
operations, and loops, and gradually introduces advanced concepts such as pseudocode and
debugging. Later in the semester, students are introduced to widely used Python libraries like
NumPy and pandas and learn to apply these libraries to solve engineering problems through
mini-projects. From Week 3 onward, lab sessions reinforce lecture material through retrieval
practice and hands-on exercises. The course concludes with review sessions to prepare students
thoroughly for final assessments.

Week Lecture 1 Lecture 2 Lab
1 Python Intro Python Data Types
2 Boolean Operations Loops
3 Functions I Functions II Lab Intro
4 Files Dictionaries Variables and Expressions
5 Pseudocode Debugging Loops and Range
6 Exceptions Classes I Mathematical Equations
7 Classes II Inheritance DNA Sequencing
8 Unit Testing Libraries Debugging Skills
9 Memory matplotlib Encoding and Decoding

10 NumPy I pandas I Probabilistic Prediction
11 NumPy II pandas II Censorship
12 Applications I Applications II SymPy, SciPy, other libraries
13 Review Review

Table 3: Weekly lecture topics and corresponding lab sections for the redesigned CS 101

The lectures now adopt an interactive coding approach, with lecture content integrated into a
JupyterLab environment. Key points that were traditionally delivered via slides are now presented
in Markdown-formatted cells, while executable code blocks illustrate the concepts being
discussed. The instructor executes approximately half of the code blocks as part of the lesson,
while students attempt the remaining blocks during class.

These Jupyter notebooks are hosted within a PrairieLearn workspace, allowing each student to
access their own copy during class. Students are encouraged to replicate the instructor’s work and
engage with the in-class coding problems. For each problem, they are given three to five minutes
to work and are encouraged to collaborate in pairs. This interactive setup fosters an environment
where students can ask questions and quickly address minor issues, such as forgetting to import
NumPy, that might otherwise slow their progress if working independently.

Each lecture typically includes three to four of these coding problems. After the allotted time, the
instructor either demonstrates the solution or invites a volunteer to share and explain their
approach, reinforcing understanding and encouraging active participation.

After class, students retain their own Jupyter notebooks, which include the instructor’s code and



their attempts at the in-class coding problems. The instructor’s version is also uploaded to a
separate workspace on PrairieLearn, making it accessible to students for review. This resource
helps students revisit the material covered in class, which is especially beneficial for those who
were unable to take complete notes or solve all the problems during class time. It also provides
valuable support for students who miss class. Although the class is currently conducted entirely in
person, the increasing demand suggests that an online section may be needed in the future. We
believe the interactive coding approach, combined with the availability of the instructor’s
notebook as an interactive Jupyter resource, can help online students engage with the materials in
a way that is comparable to their in-person peers [43].

In addition to the in-class activities, each lecture typically includes three or four auto-graded
problems outside the Jupyter notebook. These problems are slight variations of the examples
presented in class and serve as formative assessments. Students are allowed unlimited attempts to
complete them, and the problems contribute a small number of points to their overall grade.
Beyond providing additional practice, these practice problems can provide an indication of how
actively students are engaging with the course material.

2.3 Computer-based Assessments for Mastery Learning

The homework and exams from the previous CS 101 course were revised to align with the
redesigned curriculum. New homework problems were created to address content gaps and ensure
coverage of CS1 programming fundamentals. All formative assessments are now auto-graded,
providing immediate feedback and allowing students unlimited attempts to achieve mastery.

For homework, students are provided with computer-based problems that generate randomized
variations each time they are attempted. This allows students to practice solving different versions
of the same type of problem repeatedly, enabling iterative improvement and a deeper
understanding of the material — an option not available in the previous homework questions. To
enhance engagement and learning, innovative problem formats were introduced beyond
traditional multiple-choice and coding questions. One example, shown in Figure 1, features a
pseudocode-based question inspired by the Rainfall Problem [44]. In this activity, students select
and sort dragable blocks with proper indentation to construct pseudocode. This interactive
approach, modeled after Parsons problems [45], addresses the limitations of traditional
handwritten pseudocode assessments, which are time-consuming and difficult to grade due to
syntax ambiguity [46], making the learning process more engaging and effective.

The exam structure has been redesigned to incorporate principles of frequent testing and mastery
learning. Instead of relying on two high-stakes exams, the course now includes six quizzes
administered every two or three weeks. During the final exam period, students have the option to
retake one or more of these quizzes as “second-chance” quizzes. If a student’s second-chance
score improves upon their original score, the new score replaces the old one. If the second-chance
score is lower, the original score is replaced with the average of the two. This approach
effectively makes the final exam optional for students who are satisfied with their grades by the
end of the semester.

Quiz scores account for 65% of the course grade. Given the rise of large language models
(LLMs), a strong homework average is no longer a reliable indicator of student learning [47].



Figure 1: An example question from the pseudocode topic. Students drag and order blocks with
proper indentation to create correct pseudocode that matches with the question prompt.

While the use of LLMs is not prohibited, students are encouraged to use these tools to enhance
their understanding rather than rely on them as a substitute for learning. The weight of the quiz
scores ensures that passing the class requires students to perform reasonably well (at least 50%) in
a proctored and secured environment, maintaining the integrity of the assessment process.

2.4 Engineering Applications as Mini-Projects

While the lecture component of the redesigned CS 101 focuses exclusively on teaching CS1
programming fundamentals, the mini-projects bridge these foundational concepts with real-world
engineering applications. These projects provide students with hands-on opportunities to apply
their programming skills to solve practical problems relevant to various engineering fields.

Week Topic Library Field
5 Spring System - Finite Element Method NumPy, matplotlib ME
9 Rocket System Calculation SymPy, matplotlib AE

11 University Rainfall Analysis pandas, matplotlib CE

Table 4: Mini-projects for CS 101

Three mini-projects were developed in PrairieLearn during Fall 2024, each targeting a specific



engineering discipline. Table 4 summarizes these projects, which cover diverse topics to ensure
students from all engineering majors can engage with relevant real-world problems. Students are
required to do all three mini-projects. Each mini-project requires approximately 5 hours of work
and is completed over a two-week period. The mini-projects are distributed throughout the
semester to maintain a balanced workload, and the total time commitment remains within the
standard workload guidelines for the course. These mini-projects aim to motivate students by
highlighting the value of programming in tackling engineering challenges within their own field
as well as exposing them to applications in other engineering fields.

Each mini-project is divided into multiple parts, with each part being a fully developed task that
builds on the concepts introduced in the previous part. Shown in Figure 2, progression locks are
implemented to ensure that students can only access the next part of the mini-project after
successfully completing the current one [38]. Students have unlimited attempts for each part,
allowing them to iteratively refine their understanding and master the material at their own pace.

Figure 2: An example of the first mini-project showcasing the progression locking mechanism.
Part 1 introduces a Python library NumPy. Sequential parts solve an engineering application using
the library.

Every mini-project begins with an introduction to a Python library, presented as “Part 1”
(Figure 3a). This in-depth library tutorial helps students quickly grasp the key features of the
library, allowing students to apply them to solve engineering-specific problems in subsequent
parts of the project (Figure 3b). This design allows students to learn about different Python
libraries, understand their applications in engineering contexts, and gain practical experience
simultaneously.

3 Measuring the Impact of the Redesigned Course

We developed a CS1 assessment during Summer 2024 to evaluate the effectiveness of the
redesigned CS 101 course. This assessment was designed to assess fundamental programming
knowledge among upper-level engineering students. It consists of 15 multiple-choice questions
focusing on conceptual understanding, pseudocode interpretation, and basic Python programming
topics. In Fall 2024, a total of 200 upper-level engineering students enrolled in structural analysis,
fluid mechanics, and computational mechanics courses completed the CS1 assessment in a time
slot of 50 minutes. Table 5 shows the gender distribution of these students. Note that these



(a) Part 1: NumPy (b) Part 3: InitializeEquation

Figure 3: Examples from Jupyter notebook sections of the first mini-project. Students start with
an introduction to NumPy and progress to creating arrays to support the assembly process in the
Finite Element Method.

students had not experienced the redesigned CS 101 course due to their academic progression;
they either took the previous version of CS 101 or completed an entirely different CS1 course.
This baseline dataset will be useful for future comparisons to evaluate the impact of the
redesigned course on CS1 programming knowledge for engineering students.

Course Male Female Non-Binary Total
Structural Analysis 80 17 1 98
Fluid Mechanics 44 9 0 53

Computational Mechanics 43 4 2 49
Total 167 30 3 200

Table 5: CS1 assessment student distribution

Figure 4 shows the types of questions and the corresponding student scores on the CS1
assessment. Certain questions are variants of each other, with students randomly assigned to only
one of the variants during the assessment. For example, a student might receive either the “If-Else
v1” or “If-Else v2” question, but not both. Similarly, each student answered only one of the three
“Function Parameters II” variants. These question variants were intentionally designed with
structural similarities, differing only slightly to test equivalent knowledge domains.

Current results from our CS1 assessment indicate that students had difficulty solving two of the
pseudocode interpretation questions, “List Summation” and “While Tracing”, achieving mean
scores of 0.475 and 0.381 respectively. The “List Summation” question requires students to
analyze pseudocode and select the best holistic description of its functionality. The “While



Figure 4: Mean scores of 200 upper-level engineering students who took the CS1 assessment,
categorized by question types. Related question variants are grouped in red dashed boxes, with
only one variant randomly assigned to each student during the assessment.

Tracing” question tests students’ ability to trace the execution of a pseudocode while-loop step by
step. These findings indicate that engineering students face challenges in both abstracting the
overall purpose of code and accurately following its procedural logic. The “Logical Operators”
conceptual question also received a significantly low mean score (0.084); however, we believe
this is due to the level of difficulty of the question itself, which will be further explained in the
next section.

We observed significant differences in students’ performance on the Python programming
questions with variants. A Mann-Whitney U test indicated a statistically significant difference on
scores between “Function Parameters I v1” and “Function Parameters I v2” (p < 0.01). Similarly,
pairwise comparisons using the Mann-Whitney U test among the three ‘Function Parameters II”
variants revealed statistically significant differences between each pair (p < 0.0033,
Bonferroni-adjusted). These findings were unexpected, as the question variants were structurally
similar and designed to assess the same knowledge domains.

4 Discussion

4.1 Balanced Course Curriculum

During the course redesign process, we conducted interviews with faculty members from the
engineering and CS departments to identify the programming knowledge and skills engineering
students needed to succeed in their coursework and future professional practice. However, it was



not feasible to incorporate all the suggestions from both groups. For example, CS faculty
recommended including recursion as a topic in CS1 lectures (Table 2). After careful
consideration, we decided not to include recursion in the initial offering, as it is a rather
complicated CS concept that would require significant lecture time, potentially taking focus away
from other fundamental programming concepts. We may introduce basic recursion in future
course iterations if curriculum adjustments allow. Similarly, engineering faculty recommended
teaching numerical methods, such as interpolation, integration, regression, and solving
differential equations (Table 1). These are critical skills for engineering practice, but we believe
they are beyond the scope of CS1. To address this, we introduced tasks in mini-projects where
students could begin exploring numerical methods, such as learning and solving differential
equations in an engineering application context. We made sure to provide sufficient guidance and
simplified the code implementation process in these tasks. We informed students that numerical
methods are covered in subsequent courses. The redesigned CS 101 curriculum should remain
relevant without overloading engineering students with advanced topics; otherwise, it risks
developing the same issues faced by the old CS 101.

4.2 Adaptability to New Programming Languages

Faculty from engineering and CS departments all shared valuable perspectives on teaching
different programming languages. As previously mentioned, engineering faculty recommended
only teaching Python in CS 101 as the primary programming language, but they expressed the
importance of equipping students with the ability to adapt to new programming languages, as
engineering fields frequently utilize different programming language tools like MATLAB, R, and
SQL. Without the ability to adapt, students risk being stuck to Python, not having structural
understanding of programming required to learn new languages with relative ease. During the
interviews, CS faculty stated that understanding the similarities and differences between different
programming languages is essential for developing transferable skills. Some CS faculty have
experience in teaching multiple languages at the same time in their courses, and explained that
maintaining consistency in concept topics and structure flow for the different languages was
important.

Due to the scope of CS 101 focusing on a single language to avoid overwhelming engineering
students, we recognized that we could not create scenarios of direct comparisons between
different programming languages to guide students. This was one of the reasons we introduced
pseudocode as a key component of the curriculum. By removing the unique syntax of specific
programming languages, pseudocode allows students to focus on the underlying logic and
structure of programming. We believe that emphasizing abstract concepts through pseudocode
provides students with a deeper understanding of programming principles [48, 49]. We hope that
this approach would encourage students to approach new languages with confidence in future
courses.

5 Limitations and Future Work

We recognize the limitations of the current CS1 assessment and are taking steps to refine it for
improved effectiveness and clarity. As mentioned in Section 3, the “Logical Operators”



conceptual question had the lowest mean score (0.084) among upper-level engineering students
who recently took the assessment. After careful analysis and feedback from the course’s teaching
assistants, we believe the issue lies not in the students’ understanding but in the question’s
difficulty level.

We also acknowledge an imbalance in the distribution of conceptual, pseudocode, and
Python-specific questions in the original assessment. To address this, we will develop additional
conceptual and pseudocode questions to achieve a more balanced distribution. We believe this
adjustment will lead to a more comprehensive evaluation of students’ skills across the three
different question types.

Students enrolled in the redesigned CS 101 course may require several semesters to progress to
the mid-level or upper-level courses recruited for the CS1 assessment. As they do, we will collect
comparison data between these students and those who completed the previous version of the
course. We will recruit students from eight additional engineering courses to pilot the updated
CS1 assessment in Spring 2025, anticipating at least 500 participants. Over the next two years,
we will continue data collection as part of our longitudinal study to measure the long-term effects
of the CS1 redesign on engineering students’ ability to apply computational tools in their
respective fields.

We plan to revise the existing labs and incorporate group activities using the Process-Oriented
Guided Inquiry Learning (POGIL) framework [50, 51]. POGIL is an instructional approach in
which students work in structured groups with assigned roles, actively exploring concepts and
constructing their own understanding rather than passively receiving information [52]. By
integrating POGIL, we aim to create a more engaging and student-centered learning environment
for CS 101 students.

Additionally, we will expand the scope of mini-projects in CS 101 by developing two new
projects focused on real-world applications across different fields. The five mini-projects will be
strategically distributed across weeks 3, 5, 7, 9, and 11 of the course schedule. To accommodate
the needs of students in programs requiring MATLAB proficiency, we will create MATLAB
versions of all mini-projects and lab activities. Students enrolled in programs that require
MATLAB knowledge will be assigned to designated lab sections where they will receive targeted
MATLAB support.

6 Conclusion

In this paper, we presented a complete redesign of the CS 101 course at the University of Illinois
Urbana-Champaign to better support non-CS engineering students in developing fundamental
programming skills. The revised curriculum emphasizes core programming concepts in lectures
while integrating engineering-based applications through labs and mini-projects. Pseudocode was
introduced in lectures to enhance adaptability to new programming languages. A CS1 assessment
was developed to evaluate the impact of the course redesign. A longitudinal study will be
conducted to assess the long-term effects of the redesign and guide future improvements.
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A systematic literature review,” in 2021 XLVII Latin American Computing Conference (CLEI), 2021, pp. 1–10.

[47] A. Padiyath, X. Hou, A. Pang, D. Viramontes Vargas, X. Gu, T. Nelson-Fromm, Z. Wu, M. Guzdial, and
B. Ericson, “Insights from social shaping theory: The appropriation of large language models in an
undergraduate programming course,” in Proceedings of the 2024 ACM Conference on International Computing
Education Research - Volume 1, ser. ICER ’24. New York, NY, USA: Association for Computing Machinery,
2024, p. 114–130. [Online]. Available: https://doi.org/10.1145/3632620.3671098

[48] J. Kramer, “Is abstraction the key to computing?” Commun. ACM, vol. 50, no. 4, p. 36–42, Apr. 2007. [Online].
Available: https://doi.org/10.1145/1232743.1232745

[49] B. Yulianto, H. Prabowo, R. Kosala, and M. Hapsara, “Novice Programmer = (Sourcecode) (Pseudocode)
Algorithm,” Journal of Computer Science, vol. 14, no. 4, pp. 477–484, Apr 2018. [Online]. Available:
https://thescipub.com/abstract/jcssp.2018.477.484

[50] S. R. Simonson, POGIL: An Introduction to Process Oriented Guided Inquiry Learning for Those Who Wish to
Empower Learners. Sterling, VA: Stylus Publishing, 2019.

[51] C. Kussmaul, “Process Oriented Guided Inquiry Learning ( POGIL ) for Computer Science,” pp. 373–378,
2012.

[52] H. H. Hu and T. D. Shepherd, “Using POGIL to help students learn to program,” ACM Trans. Comput. Educ.,
vol. 13, no. 3, Aug. 2013. [Online]. Available: https://doi.org/10.1145/2499947.2499950

https://doi.org/10.1145/6592.6594
https://doi.org/10.1145/3632620.3671098
https://doi.org/10.1145/1232743.1232745
https://thescipub.com/abstract/jcssp.2018.477.484
https://doi.org/10.1145/2499947.2499950

	Introduction
	Methods
	Changes via a Community of Practice
	Redesign of Lecture Content and Delivery Method
	Computer-based Assessments for Mastery Learning
	Engineering Applications as Mini-Projects

	Measuring the Impact of the Redesigned Course
	Discussion
	Balanced Course Curriculum
	Adaptability to New Programming Languages

	Limitations and Future Work
	Conclusion

