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‭Tapping into Student Behavior Insights to detect‬
‭struggle in CS programming assignments‬

‭Abstract‬
‭Over the past decade, academic integrity has been an important consideration for‬
‭computer science courses. Although there is vast research on mitigating cheating,‬
‭tapping into student behavior that leads to cheating provides the opportunity to‬
‭intervene early and has a positive impact on student learning. To further‬
‭complicate this, AI is transforming the learning landscape, raising more concerns‬
‭about academic integrity. With free access to tools that can easily generate‬
‭solutions for programming assignments, struggling students turning to AI has‬
‭become more prevalent, and detecting cheating has become even more‬
‭challenging. Traditional similarity detectors are no longer sufficient, as‬
‭AI-generated content can bypass these systems.‬

‭To address this, we are introducing Student Behavior Insights, a new beta feature‬
‭for programming assignments in an online interactive textbook that supports‬
‭autograding. This feature helps instructors identify students who may need‬
‭additional support focusing on key behavior metrics. The feature provides‬
‭valuable behavior data on the number of submissions, time spent, program runs,‬
‭and the amount of code pasted during program development. These metrics offer‬
‭a deeper understanding of how students engage with their assignments, making it‬
‭easier to identify irregular behavior and struggling students so instructors can‬
‭provide targeted interventions.‬

‭This paper explores various approaches to effectively utilize the Student Behavior‬
‭Insights feature, providing early use cases and recommendations. It is important‬
‭to note that Student Behavior Insights is not a "plug-and-play" solution for‬
‭detecting cheating but is intended for use at the instructor's discretion.‬
‭Additionally, this feature can serve as a predictor of student struggles. We will‬
‭present examples of how to use the feature to gain insights into: 1) a student who‬
‭works earnestly, 2) a student who is utilizing an outside source for their work, 3) a‬
‭student who is struggling and resorts to outside assistance to complete the work.‬

‭Introduction‬
‭Student cheating on programming homework assignments in introductory‬
‭computer science courses is a long standing trend [1-4], a problem that‬
‭widespread access to large language models has substantially exacerbated such as‬
‭ChatGPT. A survey from 2023 found that 30% of students frequently used GenAI‬
‭tools for completing assignments [5]. Many academics are expressing concern‬
‭that this may largely undermine learning processes and decrease academic‬
‭integrity [6].‬



‭Now that advanced LLMs can generate content that is relatively indistinguishable‬
‭from human created content [7-11], cheating detection has become much more‬
‭difficult. Research investigating LLMs used for completing CS programming‬
‭assignments shows high performance resembling human completion [12-16].‬
‭Detection methods relying on similarity detection that once proved effective‬
‭[17-20] are not enough to detect use of complex LLMs. While webcam and‬
‭screen-recording detection methods have proven successful [21], these are quite‬
‭invasive and are likely to be perceived by students as indicative of low trust and‬
‭shift their focus away from genuine learning and more towards avoiding getting‬
‭caught cheating [22,23].‬

‭Detection methods based on behavioral analysis such as response patterns and‬
‭timing have proven effective [24-26]. In this paper, we introduce a tool that looks‬
‭at students' behavioral patterns in programming homework assignments, flagging‬
‭particular instances of suspicious behavior and instances of student struggle to‬
‭enable early intervention.‬

‭Online interactive textbook and labs system‬
‭In‬ ‭this‬ ‭study,‬‭we‬‭collected‬‭data‬‭for‬‭an‬‭Introductory‬‭Programming‬‭in‬‭Java‬‭course,‬
‭which‬‭comprises‬‭73‬‭students.‬‭The‬‭textbook‬‭being‬‭used‬‭in‬‭this‬‭course‬‭is‬‭an‬‭online‬
‭interactive‬ ‭textbook‬ ‭in‬ ‭which‬ ‭topics‬ ‭are‬ ‭taught‬ ‭using‬ ‭minimal‬ ‭text‬ ‭content‬
‭combined‬ ‭with‬ ‭animations‬ ‭and‬ ‭learning‬ ‭questions‬ ‭[27].‬ ‭The‬ ‭textbook‬ ‭also‬
‭includes‬ ‭integrated‬ ‭programming‬ ‭homework‬ ‭problems.‬ ‭In‬ ‭these‬ ‭problems,‬
‭students‬ ‭enter‬ ‭snippets‬ ‭of‬ ‭code‬ ‭in‬ ‭a‬ ‭coding‬ ‭window‬ ‭or‬ ‭indicate‬ ‭the‬ ‭output‬ ‭of‬ ‭a‬
‭given‬ ‭piece‬ ‭of‬ ‭code.‬ ‭Each‬ ‭submission‬ ‭of‬ ‭a‬ ‭problem‬ ‭is‬ ‭immediately‬ ‭graded‬
‭automatically.‬

‭In addition to the textbook and homework features mentioned above, the textbook‬
‭provides a programming labs system that supports the lab component of the‬
‭course [28]. This labs system supports over 50 programming language‬
‭configurations, a professional-grade Linux development environment, powerful‬
‭instructor tools, and advanced autograding capabilities. Student Behavior Insights‬
‭is a newly added feature to the labs system.‬

‭Besides allowing instructors to author their own lab assignments, the labs system‬
‭comes with over 200 pre-built lab assignments across various topics and in‬
‭different difficulty levels. The Student Behavior Insights data was collected from‬
‭44 pre-built lab assignments. Each assignment assesses a student's mastery of a‬
‭concept and is designed such that a novice student can complete it in between 15‬
‭and 30 minutes.‬



‭Student Behavioral Insights Beta‬
‭Student behavior insights (SBI) is a new beta feature for instructors to use on‬
‭students' programming assignment data.‬‭This feature is enabled in the labs system‬
‭and to date has been used in 1,472 online interactive textbooks. The feature has‬
‭provided a holistic overview of student programming metrics that help instructors‬
‭identify student behaviors and students who may need additional support or‬
‭warrant additional investigation.‬
‭The feature highlights the following metrics, identifying students who deviate‬
‭significantly from the class average as outliers worth investigation:‬

‭-‬ ‭Submissions: Number of student submissions made to the autograder.‬
‭-‬ ‭Explore runs: Number of code runs as students develop their code.‬
‭-‬ ‭Time‬ ‭spent:‬ ‭Total‬ ‭time‬ ‭spent‬ ‭by‬ ‭the‬ ‭student‬ ‭in‬ ‭the‬ ‭lab.‬ ‭The‬ ‭interquartile‬

‭range method is used to identify upper and lower time spent outliers.‬
‭-‬ ‭Pasted code: The percentage of pasted characters input from when the lab‬

‭was first opened to now. This gives instructors an idea of how much code‬
‭was pasted throughout the time the student worked on the lab. The‬
‭qualifier to be an outlier is a ratio greater than 50%.‬

‭-‬ ‭Pasted‬‭code‬‭at‬‭“first‬‭highest”‬‭submission:‬‭Percentage‬‭of‬‭characters‬‭pasted‬
‭into‬ ‭the‬‭lab‬‭at‬‭the‬‭earliest‬‭submission‬‭with‬‭the‬‭best‬‭score.‬‭Outliers‬‭have‬‭a‬
‭paste‬ ‭ratio‬ ‭greater‬ ‭than‬ ‭50%.‬ ‭This‬ ‭metric‬ ‭accounts‬ ‭for‬ ‭cases‬ ‭where‬
‭students modify their code after achieving full points.‬

‭-‬ ‭Abnormal‬ ‭development:‬ ‭A‬ ‭beta‬ ‭feature‬ ‭designed‬ ‭to‬ ‭detect‬ ‭potentially‬
‭unnatural‬ ‭code‬ ‭development‬ ‭behaviors,‬ ‭especially‬ ‭manual‬ ‭copying‬ ‭from‬
‭external‬‭sources.‬‭It‬‭is‬‭a‬‭0‬‭(no‬‭abnormal‬‭behavior)‬‭to‬‭1‬‭(abnormal‬‭behavior)‬
‭score calculated using:‬

‭-‬ ‭Thinking‬ ‭pauses:‬ ‭Gaps‬ ‭in‬ ‭activity‬ ‭while‬ ‭working‬ ‭on‬ ‭the‬
‭assignment.‬

‭-‬ ‭Switching‬ ‭frequency:‬ ‭How‬ ‭often‬ ‭students‬ ‭alternate‬ ‭between‬ ‭new‬
‭code development and modifying existing code.‬

‭-‬ ‭Linear‬ ‭development‬ ‭rate:‬ ‭The‬ ‭extent‬ ‭of‬ ‭continuous‬ ‭linear‬ ‭coding‬
‭without revisions.‬

‭-‬ ‭Max score: The max score achieved by the student in the lab.‬



‭Figure 1: Example of the Student Behavior Insights feature.‬

‭Examples of outlier students' behavioral data‬
‭In this section, we describe real examples of using Student Behavior Insights to‬
‭detect students who appear to be (1) completing assignments as intended, (2)‬
‭using an external sour‬‭ce, such as ChatGPT to complete‬‭their assignments, and (3)‬
‭struggling on the assignments and resorting to an external source. We also‬
‭highlight patterns of student behavior that we observed.‬

‭Example student 1, who earnestly completed the programming assignments.‬
‭When an individual earnestly writes code, it is an iterative and dynamic process.‬
‭Students progressively develop their code by frequently running and testing it to‬



‭ensure functionality. This involves running code multiple times before submitting‬
‭their work to an autograding system throughout the development cycle, often‬
‭fine-tuning their code after each run and submission. Unlike mere copying and‬
‭pasting from external sources – where a student may submit to the autograder‬
‭immediately after pasting a new solution – normal code writing requires a‬
‭non-linear approach. Students routinely revisit and modify various parts of their‬
‭codebase, reflecting on and revising previous work as they discover and address‬
‭new challenges. This reflective approach is characteristic of normal development‬
‭when students do not copy from external sources, such as a peer’s work or‬
‭AI-generated code.‬

‭Student 1 was a student that we identified as working in earnest on each lab in the‬
‭courses. Fibonacci sequence is a classic computer science problem used as an‬
‭exercise in many classes for many years. It is a problem that has many solutions‬
‭online and easy for AI to generate code for. The Fibonacci sequence lab is a great‬
‭example to analyze when looking for students working in earnest versus using‬
‭external aids like peers, online solutions, and generative AI.‬

‭First, we have Student 1’s Coding Trail, a textual visualization of the student‬
‭working on the lab. They started work on Wednesday, November 6th and spent 37‬
‭minutes working on the lab from start to finish. Each dash is an explore run the‬
‭student performed and numeric value is each time the student submitted their code‬
‭to the autograder with the value representing what the autograder gave them out‬
‭of a max of 10 points.‬

‭Coding Trail:‬
‭11/6 W------6-4,6---------------------------------------------8,2,8-8,2-8----10 min:37‬

‭The coding trail shows Student 1 checked their code’s behavior frequently,‬
‭running their code and submitting to the autograder for feedback. Furthermore,‬
‭with the code playback history feature we can see that between each run the‬
‭student made logical changes to their code before testing again. The playback‬
‭history timeline also shows code runs and submissions but includes large‬
‭deletions and insertions (pastes). The student only pasted code once, and that was‬
‭to move a return statement to another part in a condition. That type of pasting‬
‭activity is considered normal in earnest development of code.‬

‭Figure 2: An example of workspace history for Student 1.‬



‭The submission table of Student 1’s submission history shows the type of iterative‬
‭development modifying code based on the feedback provided by the autograder‬
‭you would expect from a student working on a programming activity in earnest.‬

‭Figure 3: Student 1’s submission results.‬

‭Our Student Behavior Insights feature did flag Student 1 as an outlier. However,‬
‭there are no warnings from this that indicate Student 1 cheated or used external‬
‭sources. Instead, they were flagged for having higher than the standard deviation‬
‭of submissions, explore runs, and time spent. They had little to no paste activity‬
‭and zero abnormal development behavior was detected. It is our hypothesis that‬
‭the student was flagged for submissions, explore runs, and time spent because‬
‭most of the class used external sources to complete their code, reducing the‬
‭number of runs and submissions they needed and of course time spent on the‬
‭activity.‬

‭Figure 4: Student flagged in the Student Behavior Insights for excess submissions,‬
‭explore runs, and time spent.‬

‭Analysis of Student 1's metrics across 44 attempted labs revealed behavioral‬
‭patterns characteristic of earnest academic engagement. The student demonstrated‬
‭consistent effort with mean values of 14.77 minutes time spent per lab, 4.66‬
‭submissions, and 15.39 explore runs. Notably, their pasted code percentage‬
‭remained low at 14.09%. These metrics align with expected patterns for authentic‬
‭programming skill development, where students progressively build solutions‬
‭through iterative testing and refinement.‬



‭Figure 5. Bar chart showing Student 1’s metrics across the 44 attempted labs‬

‭Example student 2, who likely acquired solutions from external sources.‬
‭Student 2 caught our attention because of the abnormalities observed in the‬
‭student's behavior data. The time spent and completion data shows that Student 2‬
‭received full credit for all but two lab assignments. While the average time spent‬
‭on a lab was 5.23 mins, 22 out of the 44 attempted labs were completed in one‬
‭minute or less. The student was also flagged frequently as an outlier by Student‬
‭Behavior Insights.‬

‭Figure 6. Time spent and completion data of Student 2.‬

‭Student 2 initially typed code manually and executed explore runs in the early‬
‭assignments (Chapter 1 and early Chapter 2), but we observed the change of their‬
‭behavior starting from Lab 2.20 in which they typed code manually but struggled‬
‭in using Scanner to read from input. The student then deleted the entire code and‬
‭pasted a complete code with comments (about creating a Scanner object, reading‬
‭from input, printing the division 3 times, and closing the scanner). The comments‬



‭were then removed before the explore runs and submissions. The submitted code‬
‭could be generated by AI because it printed the same division 3 times based on‬
‭the instruction "outputs userNum divided by divNum three times." The output‬
‭example shown in the instructions would have clarified what the statement meant.‬
‭The student also attempted to fix the code manually but was unsuccessful due to‬
‭the wrong interpretation of the problem. The student then deleted the entire code‬
‭again and pasted a new complete program with comments that were more detailed‬
‭("Output userNum divided by divNum three times, updating userNum each time",‬
‭"Add a space after each number except the last one",  and "End with a new line").‬
‭Comments were removed before the explore run and submission. We also noticed‬
‭that the submitted code used both loops and branches to format the output, but‬
‭students were not expected to have learned those constructs until in later chapters.‬
‭The similar observations were also made, where the student might not have‬
‭learned the concepts used in the pasted solution. As a result, the student spent‬
‭more time on correcting errors originated by the pasted solution.‬

‭Figure 7. Instructions of Lab 2.20.‬

‭Since Lab 2.20, the pattern of deleting the entire content of the template file and‬
‭pasting a new complete code with detailed comments persisted in the following‬
‭labs. The time spent on each of the following labs also became shorter. Perhaps‬
‭the student developed the solution in an external IDE, but the attempt of‬
‭troubleshooting the errors in the pasted code suggested that an external IDE was‬
‭not used to verify the correctness of the code before being pasted into our‬
‭platform. Also, deleting the detailed comments from the pasted code is‬
‭questionable if the student developed the solution individually. In some of the‬
‭later assignments, the student did not delete the template code and pasted a new‬
‭complete code for submissions. Instead, the student replaced each TODO‬
‭comment in the template code with a block of pasted code.‬



‭Figure 8. A TODO comment was replaced with a block of pasted code.‬

‭We also observed some mistakes made by the student while pasting the solution.‬
‭In one lab, the student deleted the entire template code and pasted the lab‬
‭instructions, which were deleted immediately. The intention of having the lab‬
‭instructions saved in the computer's clipboard was questionable. Furthermore, the‬
‭student pasted a complete code with a different class name in one assignment‬
‭(PhotoFileRenamer vs the generic LabProgram used in most labs).‬

‭Figure 9. Instructions of the lab were pasted in the program file.‬



‭Figure 10. A program with a different class name was pasted.‬

‭Finally, we observed the student submit a series of labs in a short period of time.‬
‭Unless the solutions were developed externally at a different time, it would be‬
‭difficult to solve many programming problems within a short period on our‬
‭platform.‬

‭Comparative analysis of Student 2's metrics revealed behavioral patterns‬
‭consistent with external solution sourcing. The student averaged significantly‬
‭lower engagement metrics compared to Student 1, with mean values of 5.23‬
‭minutes time spent (64.6% lower), 2.80 submissions (39.9% lower), and 3.86‬
‭explore runs (74.9% lower). Most notably, their pasted code percentage averaged‬
‭74.11% (60.02 percentage points higher than Student 1), suggesting heavy‬
‭reliance on external code sources rather than original development. These metrics‬
‭align with patterns typically observed in cases where students primarily use‬
‭AI-generated or externally sourced solutions rather than engaging in authentic‬
‭programming practice.‬



‭Figure 11. Bar chart showing  Student 2’s metrics across the 44 attempted labs.‬
‭Note the extremely high pasted code on average coupled with minimal‬

‭engagement metrics.‬

‭Example student 3: student working on solution before turning to AI‬
‭Student 3 provides us with an example of a student who is struggling with the‬
‭assignment and eventually resorts to AI assistance in order to achieve full points‬
‭for the lab. Student Behavior Insights flagged Student 3 for both paste metrics and‬
‭this pattern of behavior is explored in the following section.‬

‭Figure 12: Student Behavior Insights metrics for Student 3, note the paste metrics.‬

‭The student’s code showcases the workspace history tool where we can see the‬
‭period of work that the student did on their own without pasting in outside‬
‭content. The student worked for approximately twenty minutes reaching a‬
‭maximum score of 8 in a single day's worth of work completed on 10/9/24.‬



‭Figure 13: State of workspace from Student 3’s work with no pasted content.‬

‭The student returned to the lab two weeks later and resorted to pasting in a‬
‭solution that included three indications of an AI source: (1) the class name was‬
‭changed from LabProgram to MiddleInteger, (2) the code was filled with many‬
‭verbose comments, which we described earlier as common in AI-generated‬
‭solutions, and (3) the solution's approach to the problem differed completely from‬
‭the previous one.‬



‭Figure 14: State of Student 3’s workspace immediately following the paste with a‬
‭new class name and excess comments.‬

‭Figure 15: State of Student 3’s workspace at submission with original class name‬
‭and comments removed.‬

‭Analysis of Student 3's metrics revealed an intermediate engagement pattern, with‬
‭mean values of 8.18 minutes time spent, 3.86 submissions, and 3.43 explore runs.‬
‭Their code paste metrics averaged 44.86% overall, with 48.00% at final‬
‭submission. The concerning aspect as seen in the graph below is that this behavior‬
‭of resorting to AI usage as seen in the earlier labs transitions to behavior we saw‬



‭with Student 2 in later assignments. This pattern suggests that insufficient mastery‬
‭of fundamental concepts in earlier labs may have compromised the student's‬
‭ability to tackle more advanced material independently, leading to increased‬
‭reliance on external solutions.‬

‭This finding highlights a critical consideration for early intervention: identifying‬
‭and addressing knowledge gaps during foundational coursework may prevent‬
‭cascading difficulties as course material increases in complexity.‬

‭Figure 16. Bar chart showing Student 3’s metrics across the 44 attempted labs.‬
‭Note the trend of 100% paste metrics in the later labs.‬

‭Pattern of behavior: students working on solution before turning to AI‬
‭With the identification of Student 3 we wanted to see how many students in the‬
‭class exhibited similar behavior. With Student Behavior Insights identifying these‬
‭students was done with relative ease. From our sample set, we could identify 104‬
‭student cases across 38 of the 44 attempted labs. Of these 104 cases there were 39‬
‭unique students identified out of a class of 73 students, 53% of the class. The‬
‭general pattern of behavior was individual work for 5-15 min wherein the student‬
‭would run their code and likely submit as well for less than full points. This‬
‭would be followed by one or several pastes of code coming from an outside‬
‭source. The code was either a cleaned up and corrected version of their own work‬
‭or a completely new solution. The primary indicator of AI sourced code was an‬
‭abundance of verbose comments throughout the pasted code that were then‬
‭usually deleted by the student.‬



‭From our sample set we can see a clear pattern to identify students who exhibit‬
‭this behavior. Moderate submissions (4.14 on average), explore runs (12.41 on‬
‭average), and time spent (16.12 min on average) indicate that the student attempts‬
‭to solve the problem on their own for a portion of time. The two most important‬
‭factors are overall pasted code (71.19% on average) and pasted content at time of‬
‭submission (95.5% on average), which indicate that much of the work done came‬
‭from the student; however, the work submitted at the end almost entirely came‬
‭from a pasted outside source.‬

‭Figure 17: Summary of Student Behavior Insight metrics from identified student‬
‭cases.‬

‭We believe these students are ones who would benefit from a structured AI‬
‭assistant that does not provide the complete answer but instead hints towards the‬
‭solution as they have shown the desire to solve the problem on their own before‬
‭resorting to outside assistance. These students would also benefit from early‬
‭intervention to ensure fundamental skills are learned prior to more advanced‬
‭subjects that rely on a strong foundation of learning. Without that foundation‬
‭students tend to turn towards external sources as seen in figure 18.‬

‭Discussion‬
‭One of the key skills emphasized in a computer science education is the ability to‬
‭persist through challenging problems, known as productive struggle. This‬
‭essential aspect of problem-solving is now often bypassed because of the‬
‭widespread availability of AI assistance. When students encounter obstacles in‬
‭their development process, they can easily find answers online, a convenience that‬
‭wasn't always guaranteed before AI became prevalent. Given the pressures of‬
‭deadlines, other coursework, and grades, it's understandable that some students‬
‭turn to AI for help. However, this reliance on AI may impede their ability to‬
‭tackle more complex coursework or real-world problems where AI solutions‬
‭aren't always readily available. This trend is evident in the increased amount of‬
‭copied content as lab assignments become more difficult as shown in Figure 18.‬



‭Figure 18. A chart showing the general increase in pasted code across the‬
‭attempted labs in increasing difficulty.‬

‭When using plagiarism detection tools, communicating about the use and purpose‬
‭of the tools is important for maintaining a positive learning environment [29],‬
‭supplementing discussion about academic integrity in general [30]. Students are‬
‭more likely to comply with AI use policies when instructors clearly indicate‬
‭acceptable usage and declaration of AI, as well as consequences of non accepted‬
‭use [8, 31-32].‬

‭Over-emphasis on punishment and overly harsh penalties should be avoided, as‬
‭research shows that this leads to more students not declaring AI use and‬
‭plagiarizing [32], while undermining a conducive, positive learning environment‬
‭[21, 33]. On the other hand, overly lenient policies lead to normalized non‬
‭accepted AI use without declaration [34]. Stone [35] suggests fostering shared‬
‭responsibility for academic integrity with students, employing an approach where‬
‭AI is showcased as a learning enhancement tool, with proper use made clear‬
‭through examples and assignments.‬

‭With the information we are getting from Student Behavior Insights we want to‬
‭begin to see if broader patterns across the class can be identified. Currently we‬
‭only display the “Outliers” to the instructor but in the future we would like the‬
‭same metrics to be available across the entire class. With this we can begin to try‬
‭and identify trends that span across multiple labs.‬

‭Future Work‬
‭Moving forward we plan to expand our behavioral insights into other sections of‬
‭the interactive textbook. This would include monitoring behavior within smaller‬
‭activities that the students are expected to complete during their reading. The‬
‭primary goal for our long term work is to identify and report to instructors‬
‭whether classes are struggling with learning objectives before it reaches a point‬
‭where the students are expected to use that knowledge to complete more difficult‬



‭assignments or tests. Instructors could use that knowledge to modify their‬
‭teaching plans before it becomes too disruptive to go back and review‬
‭foundational learning.‬
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