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Tapping into Student Behavior Insights to detect
struggle in CS programming assignments

Abstract

Over the past decade, academic integrity has been an important consideration for
computer science courses. Although there is vast research on mitigating cheating,
tapping into student behavior that leads to cheating provides the opportunity to
intervene early and has a positive impact on student learning. To further
complicate this, Al is transforming the learning landscape, raising more concerns
about academic integrity. With free access to tools that can easily generate
solutions for programming assignments, struggling students turning to Al has
become more prevalent, and detecting cheating has become even more
challenging. Traditional similarity detectors are no longer sufficient, as
Al-generated content can bypass these systems.

To address this, we are introducing Student Behavior Insights, a new beta feature
for programming assignments in an online interactive textbook that supports
autograding. This feature helps instructors identify students who may need
additional support focusing on key behavior metrics. The feature provides
valuable behavior data on the number of submissions, time spent, program runs,
and the amount of code pasted during program development. These metrics offer
a deeper understanding of how students engage with their assignments, making it
easier to identify irregular behavior and struggling students so instructors can
provide targeted interventions.

This paper explores various approaches to effectively utilize the Student Behavior
Insights feature, providing early use cases and recommendations. It is important
to note that Student Behavior Insights is not a "plug-and-play" solution for
detecting cheating but is intended for use at the instructor's discretion.
Additionally, this feature can serve as a predictor of student struggles. We will
present examples of how to use the feature to gain insights into: 1) a student who
works earnestly, 2) a student who is utilizing an outside source for their work, 3) a
student who is struggling and resorts to outside assistance to complete the work.

Introduction

Student cheating on programming homework assignments in introductory
computer science courses is a long standing trend [1-4], a problem that
widespread access to large language models has substantially exacerbated such as
ChatGPT. A survey from 2023 found that 30% of students frequently used GenAl
tools for completing assignments [5]. Many academics are expressing concern
that this may largely undermine learning processes and decrease academic
integrity [6].



Now that advanced LLMs can generate content that is relatively indistinguishable
from human created content [7-11], cheating detection has become much more
difficult. Research investigating LLMs used for completing CS programming
assignments shows high performance resembling human completion [12-16].
Detection methods relying on similarity detection that once proved effective
[17-20] are not enough to detect use of complex LLMs. While webcam and
screen-recording detection methods have proven successful [21], these are quite
invasive and are likely to be perceived by students as indicative of low trust and
shift their focus away from genuine learning and more towards avoiding getting
caught cheating [22,23].

Detection methods based on behavioral analysis such as response patterns and
timing have proven effective [24-26]. In this paper, we introduce a tool that looks
at students' behavioral patterns in programming homework assignments, flagging
particular instances of suspicious behavior and instances of student struggle to
enable early intervention.

Online interactive textbook and labs system

In this study, we collected data for an Introductory Programming in Java course,
which comprises 73 students. The textbook being used in this course is an online
interactive textbook in which topics are taught using minimal text content
combined with animations and learning questions [27]. The textbook also
includes integrated programming homework problems. In these problems,
students enter snippets of code in a coding window or indicate the output of a
given piece of code. Each submission of a problem is immediately graded
automatically.

In addition to the textbook and homework features mentioned above, the textbook
provides a programming labs system that supports the lab component of the
course [28]. This labs system supports over 50 programming language
configurations, a professional-grade Linux development environment, powerful
instructor tools, and advanced autograding capabilities. Student Behavior Insights
is a newly added feature to the labs system.

Besides allowing instructors to author their own lab assignments, the labs system
comes with over 200 pre-built lab assignments across various topics and in
different difficulty levels. The Student Behavior Insights data was collected from
44 pre-built lab assignments. Each assignment assesses a student's mastery of a
concept and is designed such that a novice student can complete it in between 15
and 30 minutes.



Student Behavioral Insights Beta

Student behavior insights (SBI) is a new beta feature for instructors to use on
students' programming assignment data. This feature is enabled in the labs system
and to date has been used in 1,472 online interactive textbooks. The feature has
provided a holistic overview of student programming metrics that help instructors
identify student behaviors and students who may need additional support or
warrant additional investigation.

The feature highlights the following metrics, identifying students who deviate
significantly from the class average as outliers worth investigation:

Submissions: Number of student submissions made to the autograder.
Explore runs: Number of code runs as students develop their code.
Time spent: Total time spent by the student in the lab. The interquartile
range method is used to identify upper and lower time spent outliers.
Pasted code: The percentage of pasted characters input from when the lab
was first opened to now. This gives instructors an idea of how much code
was pasted throughout the time the student worked on the lab. The
qualifier to be an outlier is a ratio greater than 50%.
Pasted code at “first highest” submission: Percentage of characters pasted
into the lab at the earliest submission with the best score. Outliers have a
paste ratio greater than 50%. This metric accounts for cases where
students modify their code after achieving full points.
Abnormal development: A beta feature designed to detect potentially
unnatural code development behaviors, especially manual copying from
external sources. It is a 0 (no abnormal behavior) to 1 (abnormal behavior)
score calculated using:
- Thinking pauses: Gaps in activity while working on the
assignment.
- Switching frequency: How often students alternate between new
code development and modifying existing code.
- Linear development rate: The extent of continuous linear coding
without revisions.
Max score: The max score achieved by the student in the lab.



Student behavior insights (beta)
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Figure 1: Example of the Student Behavior Insights feature.

Examples of outlier students' behavioral data

In this section, we describe real examples of using Student Behavior Insights to
detect students who appear to be (1) completing assignments as intended, (2)
using an external source, such as ChatGPT to complete their assignments, and (3)
struggling on the assignments and resorting to an external source. We also
highlight patterns of student behavior that we observed.

Example student 1, who earnestly completed the programming assignments.

When an individual earnestly writes code, it is an iterative and dynamic process.
Students progressively develop their code by frequently running and testing it to



ensure functionality. This involves running code multiple times before submitting
their work to an autograding system throughout the development cycle, often
fine-tuning their code after each run and submission. Unlike mere copying and
pasting from external sources — where a student may submit to the autograder
immediately after pasting a new solution — normal code writing requires a
non-linear approach. Students routinely revisit and modify various parts of their
codebase, reflecting on and revising previous work as they discover and address
new challenges. This reflective approach is characteristic of normal development
when students do not copy from external sources, such as a peer’s work or
Al-generated code.

Student 1 was a student that we identified as working in earnest on each lab in the
courses. Fibonacci sequence is a classic computer science problem used as an
exercise in many classes for many years. It is a problem that has many solutions
online and easy for Al to generate code for. The Fibonacci sequence lab is a great
example to analyze when looking for students working in earnest versus using
external aids like peers, online solutions, and generative Al.

First, we have Student 1’s Coding Trail, a textual visualization of the student
working on the lab. They started work on Wednesday, November 6th and spent 37
minutes working on the lab from start to finish. Each dash is an explore run the
student performed and numeric value is each time the student submitted their code
to the autograder with the value representing what the autograder gave them out
of a max of 10 points.

Coding Trail:
11/6 W- 6-4,6 8,2,8-8,2-8----10 min:37

The coding trail shows Student 1 checked their code’s behavior frequently,
running their code and submitting to the autograder for feedback. Furthermore,
with the code playback history feature we can see that between each run the
student made logical changes to their code before testing again. The playback
history timeline also shows code runs and submissions but includes large
deletions and insertions (pastes). The student only pasted code once, and that was
to move a return statement to another part in a condition. That type of pasting
activity is considered normal in earnest development of code.

¢ ogop e o § oolye

® < 11/6/24,12:35 PM D>

Figure 2: An example of workspace history for Student 1.



The submission table of Student 1’s submission history shows the type of iterative
development modifying code based on the feedback provided by the autograder
you would expect from a student working on a programming activity in earnest.

¢ Most recent highest scoring submission:

Date Time Score Test Results

O 1/624 12:36 PM 10/10 v
11/6/24 12:33 PM 8/10 ‘2‘2‘2‘0‘2‘ v
11/6/24 1232 PM 2/10 ‘0‘2‘0‘0‘0‘ v
11/6/24 1232 PM 8/10 ‘2‘2‘2‘0‘2‘ v
11/6/24 1230 PM 8/10 ‘2‘2‘2‘0‘2‘ v
11/6/24 1229 PM 2/10 ‘0‘0‘0‘2‘0‘ v
11/6/24 12:29 PM 8/10 ‘2‘2‘2‘0‘2‘ v
11/6/24 1203 PM 6/10 ‘2‘2‘0‘2‘0‘ v
11/6/24 12:02 PM 4/10 ‘2‘0‘0‘2‘0‘ v
11/6/24 1201 PM 6/10 ‘2‘2‘0‘2‘0‘ v

Figure 3: Student 1’°s submission results.

Our Student Behavior Insights feature did flag Student 1 as an outlier. However,
there are no warnings from this that indicate Student 1 cheated or used external
sources. Instead, they were flagged for having higher than the standard deviation
of submissions, explore runs, and time spent. They had little to no paste activity
and zero abnormal development behavior was detected. It is our hypothesis that
the student was flagged for submissions, explore runs, and time spent because
most of the class used external sources to complete their code, reducing the
number of runs and submissions they needed and of course time spent on the
activity.

Pasted code at Abnormal
submission Development

Figure 4: Student flagged in the Student Behavior Insights for excess submissions,
explore runs, and time spent.

Student Submissions  Explore runs Time spent Pasted code

Analysis of Student 1's metrics across 44 attempted labs revealed behavioral
patterns characteristic of earnest academic engagement. The student demonstrated
consistent effort with mean values of 14.77 minutes time spent per lab, 4.66
submissions, and 15.39 explore runs. Notably, their pasted code percentage
remained low at 14.09%. These metrics align with expected patterns for authentic
programming skill development, where students progressively build solutions
through iterative testing and refinement.



Metrics by Lab
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Figure 5. Bar chart showing Student 1’s metrics across the 44 attempted labs

Example student 2, who likely acquired solutions from external sources.

Student 2 caught our attention because of the abnormalities observed in the
student's behavior data. The time spent and completion data shows that Student 2
received full credit for all but two lab assignments. While the average time spent
on a lab was 5.23 mins, 22 out of the 44 attempted labs were completed in one
minute or less. The student was also flagged frequently as an outlier by Student
Behavior Insights.

Time spent toursminues:seconds) Average completion %
01:12:00 100
01:00:00
75
00:48:00
00:36:00 50
00:24:00
25
00:12:00
00:00:00 0
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Average time spent per chapter Average completion per chapter

Timeline of activity minutesseconds)

T T T T T T T T T T T T T
2 Sep 9 Sep 16 Sep 23 Sep 30 Sep 7 Oct 14 Oct 21 Oct 28 Oct 4 Nov 11 Nov 18 Nov 25 Nov

Average time per day per student

Figure 6. Time spent and completion data of Student 2.

Student 2 initially typed code manually and executed explore runs in the early

assignments (Chapter 1 and early Chapter 2), but we observed the change of their
behavior starting from Lab 2.20 in which they typed code manually but struggled
in using Scanner to read from input. The student then deleted the entire code and
pasted a complete code with comments (about creating a Scanner object, reading
from input, printing the division 3 times, and closing the scanner). The comments



were then removed before the explore runs and submissions. The submitted code
could be generated by Al because it printed the same division 3 times based on
the instruction "outputs userNum divided by divNum three times." The output
example shown in the instructions would have clarified what the statement meant.
The student also attempted to fix the code manually but was unsuccessful due to
the wrong interpretation of the problem. The student then deleted the entire code
again and pasted a new complete program with comments that were more detailed
("Output userNum divided by divNum three times, updating userNum each time",
"Add a space after each number except the last one", and "End with a new line").
Comments were removed before the explore run and submission. We also noticed
that the submitted code used both loops and branches to format the output, but
students were not expected to have learned those constructs until in later chapters.
The similar observations were also made, where the student might not have
learned the concepts used in the pasted solution. As a result, the student spent
more time on correcting errors originated by the pasted solution.

LAB

acrviry | 2-20.1: LAB: Divide input integers =~ [4 [3 0/10

Write a program that reads integers userNum and di wNum as input, and outputs userNum divided by diwium three timas. Note: End
with a newline

Ex: If the input is:

2000 2

the output is

1000 500 250

Note: In Java, integer division discards fractions. Ex: 6 / 4is 1 (the 0.5 is discarded).

Figure 7. Instructions of Lab 2.20.

Since Lab 2.20, the pattern of deleting the entire content of the template file and
pasting a new complete code with detailed comments persisted in the following
labs. The time spent on each of the following labs also became shorter. Perhaps
the student developed the solution in an external IDE, but the attempt of
troubleshooting the errors in the pasted code suggested that an external IDE was
not used to verify the correctness of the code before being pasted into our
platform. Also, deleting the detailed comments from the pasted code is
questionable if the student developed the solution individually. In some of the
later assignments, the student did not delete the template code and pasted a new
complete code for submissions. Instead, the student replaced each TODO
comment in the template code with a block of pasted code.



Trianglejava X TriangleAreajava X

4 public static void main(String[] args) {

5 Scanner scnr = new Scanner(System.in);

6

7 Triangle trianglel = new Triangle():

g Triangle triangle2 = new Triangle();

9
18
11
12
13
14
15 // TODO: Read and set base and height for triangle2 (use setBase() and setHeight())
16
17
18 System.out.println("Triangle with smaller area:");
19
28 A4 TODO: Determine smaller triangle (use getdrea())
21 s and output smaller triangle’s info (use printInfo())
22
23 }
24 1

Figure 8. A TODO comment was replaced with a block of pasted code.

We also observed some mistakes made by the student while pasting the solution.
In one lab, the student deleted the entire template code and pasted the lab
instructions, which were deleted immediately. The intention of having the lab
instructions saved in the computer's clipboard was questionable. Furthermore, the
student pasted a complete code with a different class name in one assignment
(PhotoFileRenamer vs the generic LabProgram used in most labs).

LabProgram.java

1 Write a program that reads a list of integers and outputs those integers in reverse. The input bég
2
3|

Figure 9. Instructions of the lab were pasted in the program file.



LabProgram.java
import java.io.File;
import java.io.FileMotFoundException;
import java.util.Scanner;

1
2
3
4
5 public class PhotoFileRenamer ﬂ

6 public static woid main(String[] args) {
7 Scanner scnr = new Scanner(System.in);
8 String fileName;

9

a

1

1 /¢4 Read the name of the file containing the List of photo file names
1 fileName = scnr.nextlLine();

12 scnr.close();

13

14 try {

15 // Open the specified file

16 File file = new File(fileName);

17 Scanner fileScanner = new Scanner(file);

18

14 /4 Rend enrh nhntn file name From the file

o]
i |

Figure 10. A program with a different class name was pasted.

Finally, we observed the student submit a series of labs in a short period of time.
Unless the solutions were developed externally at a different time, it would be
difficult to solve many programming problems within a short period on our
platform.

Comparative analysis of Student 2's metrics revealed behavioral patterns
consistent with external solution sourcing. The student averaged significantly
lower engagement metrics compared to Student 1, with mean values of 5.23
minutes time spent (64.6% lower), 2.80 submissions (39.9% lower), and 3.86
explore runs (74.9% lower). Most notably, their pasted code percentage averaged
74.11% (60.02 percentage points higher than Student 1), suggesting heavy
reliance on external code sources rather than original development. These metrics
align with patterns typically observed in cases where students primarily use
Al-generated or externally sourced solutions rather than engaging in authentic
programming practice.
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Figure 11. Bar chart showing Student 2’s metrics across the 44 attempted labs.
Note the extremely high pasted code on average coupled with minimal
engagement metrics.

Example student 3: student working on solution before turning to Al
Student 3 provides us with an example of a student who is struggling with the
assignment and eventually resorts to Al assistance in order to achieve full points

for the lab. Student Behavior Insights flagged Student 3 for both paste metrics and
this pattern of behavior is explored in the following section.

Pasted code at Abnormal
submission Development

B 2 2min -6 - 90% 045 @

Figure 12: Student Behavior Insights metrics for Student 3, note the paste metrics.

Student Submissions  Explore runs Time spent Pasted code

The student’s code showcases the workspace history tool where we can see the
period of work that the student did on their own without pasting in outside
content. The student worked for approximately twenty minutes reaching a
maximum score of 8 in a single day's worth of work completed on 10/9/24.



Restore File Exit History

LabProgram.java

1 import java.util.Scanner;

3 public class LabProgram {

4 public static void main(String[] args) {

5 Scanner scnr = new Scanner(System.in);

6 int[] userValues = new int[9]; // Set of data specified by the user
7

8 int 1 = ©;

9 int input = scnr.nextInt();

10

11 while(input >= @ && i < userValues.ength){

12 userValues[il = input;

13 i++;

14 input = scnr.nextInt();

15 ¥

16 if(i > userValues.length){

17 System.out.println("Too many numbers");

18 Yelse{

19 int middleIndex = (i - 1) / 2;

20 if(middleIndex >= @ && middleIndex < userValues.length){
21 System.out.println("Middle item: " + userValues[middleIndex]);
22 Yelse{

23 System.out.println("Index out of bounds");

24 b

25 ¥

26 b

27 r

?

® < 10/9/24, 2:59 PM P> >

i

Figure 13: State of workspace from Student 3’s work with no pasted content.

The student returned to the lab two weeks later and resorted to pasting in a
solution that included three indications of an Al source: (1) the class name was
changed from LabProgram to Middlelnteger, (2) the code was filled with many
verbose comments, which we described earlier as common in Al-generated
solutions, and (3) the solution's approach to the problem differed completely from
the previous one.



Restore File

LabProgram.java

1 |1mport java.util.Scanner;

2

3 public class MiddleInteger {

4

5 public static void main(String[] args) {

6 Scanner scanner = new Scanner(System.in);

7

8 // Initialize an array to hold the integers (maximum size of 9)
9 int[] numbers = new int[9];

10 int count = 0;

11

12 // Read integers until a negative number 1is encountered
13 while (true) {

14 int input = scanner.nextTnt();

15

16 // Check for termination condition

17 if (input < 0) {

18 break; // Exit loop on negative input

19 ¥

20

21 // Check if the array size exceeds the maximum allowed
22 if (count >= 9) {

23 System.out.println("Too many numbers");

£V catirne 77 Cuit i€ Fan manu nom hare

Exit History

| i,

® < 10/24/24,7:26 PM P> >

Figure 14: State of Student 3’s workspace immediately following the paste with a

new class name and excess comments.

Restore File

LabProgram.java

1 I’impnrt java.util.Scanner;

2

3 public class LabProgram {

q

5 public static void main(String[] args) {
6 Scanner scanner = new Scanner(System.in);
7

8 int[] numbers = new int[9];

9 int count = 0;

10

11 while (true) {

12 int input = scanner.nextInt();
13

14 if (input < 0) {

15 break;

16 ¥

17

18 if (count == 9) {

19 System.out.println("Too many numbers");
20 return;

21 ¥

22

23 numberslcount]l = input;

o At

Exit History

. &
T

©) < 10/24/24,7:27 PM P> >

Figure 15: State of Student 3’s workspace at submission with original class name

and comments removed.

Analysis of Student 3's metrics revealed an intermediate engagement pattern, with
mean values of 8.18 minutes time spent, 3.86 submissions, and 3.43 explore runs.

Their code paste metrics averaged 44.86% overall, with 48.00% at final

submission. The concerning aspect as seen in the graph below is that this behavior
of resorting to Al usage as seen in the earlier labs transitions to behavior we saw



with Student 2 in later assignments. This pattern suggests that insufficient mastery
of fundamental concepts in earlier labs may have compromised the student's
ability to tackle more advanced material independently, leading to increased
reliance on external solutions.

This finding highlights a critical consideration for early intervention: identifying
and addressing knowledge gaps during foundational coursework may prevent
cascading difficulties as course material increases in complexity.

Metrics by Lab
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Figure 16. Bar chart showing Student 3’°s metrics across the 44 attempted labs.
Note the trend of 100% paste metrics in the later labs.

Pattern of behavior: students working on solution before turning to Al

With the identification of Student 3 we wanted to see how many students in the
class exhibited similar behavior. With Student Behavior Insights identifying these
students was done with relative ease. From our sample set, we could identify 104
student cases across 38 of the 44 attempted labs. Of these 104 cases there were 39
unique students identified out of a class of 73 students, 53% of the class. The
general pattern of behavior was individual work for 5-15 min wherein the student
would run their code and likely submit as well for less than full points. This
would be followed by one or several pastes of code coming from an outside
source. The code was either a cleaned up and corrected version of their own work
or a completely new solution. The primary indicator of Al sourced code was an
abundance of verbose comments throughout the pasted code that were then
usually deleted by the student.



From our sample set we can see a clear pattern to identify students who exhibit
this behavior. Moderate submissions (4.14 on average), explore runs (12.41 on
average), and time spent (16.12 min on average) indicate that the student attempts
to solve the problem on their own for a portion of time. The two most important
factors are overall pasted code (71.19% on average) and pasted content at time of
submission (95.5% on average), which indicate that much of the work done came
from the student; however, the work submitted at the end almost entirely came
from a pasted outside source.

Explore Time Spent Overall Pasted Content Pasted Content % at time of
Runs (min) % Submission

Submissions

104.000000 104.000000 104.000000 104.000000 104.000000
4144231 12.413462 16.115385 71.192308 95.509615
3.473669 13.189147 10.628143 12.107189 6.954771
1.000000 0.000000 5.000000 36.000000 71.000000
2.000000 4.000000 9.000000 61.000000 94.750000
3.000000 9.000000 14.000000 71.000000 99.500000
6.000000 15.000000 20.250000 80.250000 100.000000

17.000000 75.000000 58.000000 93.000000 100.000000

Figure 17: Summary of Student Behavior Insight metrics from identified student
cases.

We believe these students are ones who would benefit from a structured Al
assistant that does not provide the complete answer but instead hints towards the
solution as they have shown the desire to solve the problem on their own before
resorting to outside assistance. These students would also benefit from early
intervention to ensure fundamental skills are learned prior to more advanced
subjects that rely on a strong foundation of learning. Without that foundation
students tend to turn towards external sources as seen in figure 18.

Discussion

One of the key skills emphasized in a computer science education is the ability to
persist through challenging problems, known as productive struggle. This
essential aspect of problem-solving is now often bypassed because of the
widespread availability of Al assistance. When students encounter obstacles in
their development process, they can easily find answers online, a convenience that
wasn't always guaranteed before Al became prevalent. Given the pressures of
deadlines, other coursework, and grades, it's understandable that some students
turn to Al for help. However, this reliance on Al may impede their ability to
tackle more complex coursework or real-world problems where Al solutions
aren't always readily available. This trend is evident in the increased amount of
copied content as lab assignments become more difficult as shown in Figure 18.



Average Pasted Code Percentage by Lab
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Figure 18. A chart showing the general increase in pasted code across the
attempted labs in increasing difficulty.

When using plagiarism detection tools, communicating about the use and purpose
of the tools is important for maintaining a positive learning environment [29],
supplementing discussion about academic integrity in general [30]. Students are
more likely to comply with Al use policies when instructors clearly indicate
acceptable usage and declaration of Al, as well as consequences of non accepted
use [8, 31-32].

Over-emphasis on punishment and overly harsh penalties should be avoided, as
research shows that this leads to more students not declaring Al use and
plagiarizing [32], while undermining a conducive, positive learning environment
[21, 33]. On the other hand, overly lenient policies lead to normalized non
accepted Al use without declaration [34]. Stone [35] suggests fostering shared
responsibility for academic integrity with students, employing an approach where
Al is showcased as a learning enhancement tool, with proper use made clear
through examples and assignments.

With the information we are getting from Student Behavior Insights we want to
begin to see if broader patterns across the class can be identified. Currently we
only display the “Outliers” to the instructor but in the future we would like the
same metrics to be available across the entire class. With this we can begin to try
and 1dentify trends that span across multiple labs.

Future Work

Moving forward we plan to expand our behavioral insights into other sections of
the interactive textbook. This would include monitoring behavior within smaller
activities that the students are expected to complete during their reading. The
primary goal for our long term work is to identify and report to instructors
whether classes are struggling with learning objectives before it reaches a point
where the students are expected to use that knowledge to complete more difficult



assignments or tests. Instructors could use that knowledge to modify their
teaching plans before it becomes too disruptive to go back and review
foundational learning.
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