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Abstract 

 Earthquake prediction is an area of interest to researchers around the world as well as 
anyone who has experienced a major earthquake. Major earthquakes often cause loss of lives and 
property, as well as injuries and destruction. Large investments of time and money are required to 
build communities back to near where they were before disasters such as earthquakes. For decades, 
scientists have considered different methods for earthquake prediction. Machine learning (ML) 
applications have been used in seismology for at least a decade but ML applications in seismology 
have increasingly grown during the past few years. In this study, deep learning models will be 
applied to three different earthquake datasets, with the goal of predicting earthquake magnitude. 
A specific type of recurrent neural network, Long Short-Term Memory (LSTM), with memory 
cells that allow for utilizing information form recent past steps, will be applied to earthquake 
datasets. These datasets vary in size and are in the form of time-series where earthquake 
magnitudes, in Richter scale, are recorded across the time axis. Dataset II is the largest dataset, 
containing 50 years of seismic data from 1973/01/02 to 2023/12/31, in a large region that covers 
the state of California with a minimum longitude of -133, maximum longitude of -107, minimum 
latitude of 24 and maximum latitude of 50. Dataset I is of medium size, covering 3 years of seismic 
data from 1970/01/02 to 1973/01/02, in the same region. Dataset III is the smallest dataset which 
contains seismic data for 30 days from 2024/05/05 to 2024/06/04. Different sizes of datasets have 
been used to study the effect of different timescales. LSTM architectures will be proposed and 
tested on three different datasets that are acquired from the United States Geological Survey 
Website and their performance will be evaluated and compared. Since earthquakes are natural 
phenomena that happen at arbitrary points in time, these time-series are irregular time-series, 
meaning the time intervals in between consecutive observations vary in size. To address the 
irregularity of the time-series, interpolation will be applied to datasets. It is observed that 
interpolation considerably improves the model performance. 
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Introduction 

Earthquakes are catastrophic natural disasters that are caused by sudden changes in earth’s 
crust. According to United States Geological Survey (USGS), an earthquake happens when two 
blocks of earth suddenly slip past one another [2]. The Encyclopedia Britannica defines an 
earthquake as any sudden shaking of the ground by the passage of seismic waves through earth’s 
rocks [3]. 
 
Earthquake Prediction Background  

Earthquake prediction has been an interesting subject for researchers for over 100 years 
[4], but it is still not a mature field yet [5]. There are references about unusual animal behavior 
before a significant earthquake as early as 373 B.C. [6]. There are research papers on earthquake 
prediction as early as 1939. Wood & Gutenberg (1939), Macelwane (1946) and Allen (1976) are 
some of the early examples [4]. There exist two main approaches to earthquake prediction, 
precursors based, and trend based. Precursor based prediction relies on anomalous phenomena that 
may be a sign of a forthcoming earthquake such as [7] localized changes in magnetic and electric 
fields, radon gas emissions from earth [8], variations in humidity, patterns of cloud formation, soil 
temperature, and crustal change near the site of the epicenter of a forthcoming earthquake [9]. 
Trend based earthquake prediction methods try to find patterns in the seismic data that lead to 
occurrence of an earthquake [7]. Earthquakes are catastrophic natural disasters that are caused by 
sudden changes in earth’s crust. According to United States Geological Survey (USGS), an 
earthquake happens when two blocks of earth suddenly slip past one another [2].  
 
Machine Learning Background 

Machine learning (ML) is a subfield of artificial intelligence that learns or finds patterns in 
the data that it is presented to and uses that knowledge to make predictions on data that it has never 
seen before. With machine learning, computers do not need to be explicitly programmed to solve 
a problem. Machine learning utilizes data and algorithms and statistical models to solve a problem 
using inference instead of instructions. A simplified machine learning flow is shown in Figure 1.  
 
 
 
 
 

 
 
Figure 1: Machine learning flow. Algorithm is trained on training and makes predictions on test data. 
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Machine Learning Types 

Machine learning has three main categories, supervised learning, unsupervised learning 
and reinforcement learning (Figure 2). Supervised machine learning is a type of machine learning 
that uses labeled data with known input and output to train an algorithm. The trained algorithm 
can then make predictions on the data it has never seen before. In unsupervised learning, model is 
not presented with labeled data and finds patterns in the data on its own. In reinforcement learning, 
an algorithm is in interaction with its environment and makes decisions with the goal of 
maximizing its total reward. 

 
 

 
 

Figure 2. Three main categories of machine learning. 

 
 
Deep Learning 

Deep learning is an Artificial Intelligence (AI) method and a sub-category of machine 
learning [10]. Deep learning models are Artificial Neural Networks (ANN) that are inspired by 
human brain. Artificial Neural Networks have an input layer, output layer and several hidden layers 
in between them. Each layer consists of several Artificial Neurons (AN). Input layer is a layer of 
neurons that receive the input data. Hidden layers receive the data from the input layer and process 
it in various forms. Output layer nodes provide the output data. Neural Networks also consist of 
synapses, weights, biases and activation functions [1]. 
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Figure 3. Typical Neural Network (NN) architecture used in Deep Learning [11]. 
 
 

Regression Problem 
Machine learning can solve classification problems and regression problems. A 

classification problem is where an input needs to be mapped to one of the two (binary classification 
problem) or more (multi-class classification problem) defined categories. Accuracy of a 
classification model can be evaluated by calculating sensitivity (rate of true positives or correct 
predictions of positive cases) or specificity (rate of true negatives or correct predictions of negative 
cases). A regression problem, however, is where an input is mapped to a continuous value, such 
as an integer. Examples of regression problem include weather forecast or housing market forecast. 
One approach to evaluating a regression predictive model is to calculate and compare the Mean 
Squared Error (MSE) for different models. MSE is defined as the average of the squares of the 
errors, where error is the difference of the observed (xo), and predicted value (xp). 
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Machine Learning in Earthquake Prediction 

History of machine learning applications in seismology goes back to 1990s. (e.g., Turhan 
Taner et al. 1988, Dowla et al. 1990), but recently, the use of ML applications in seismology has 
grown rapidly with promising results. Predicting earthquakes with ML ae more accurate compared 
to conventional prediction techniques [12]. Machine learning research in seismology focuses on 
using different ML models and algorithms with historical seismic data or lab created datasets to 
predict large magnitude earthquakes. Some researchers have employed an Artificial Neural 
Network for earthquake prediction. Cheraghi and Chanbari for example, utilized an Artificial 
Neural Network to predict the time and magnitude of earthquakes based on seismotectonic survey 
and faults information. The maximum error of their model was 3.5% and the average error for 
magnitude prediction was 0.5%. [13]. Other researchers have studied the spatio-temporal 
relationship of earthquakes in different locations. One of these studies was conducted by Wang et 
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al. in 2017. They used an LSTM model on USGS datasets of different locations for their research. 
This study used a dataset with earthquakes with a magnitude of larger than 4.5 in Richter scale 
from 1966 to 2016. The accuracy of model in this research was 63.50% for one-dimensional input 
and 87.59% for two-dimensional input [14]. Vardan et. Al compared a Feed-Forward Neural 
Network (FFNN) with 2 hidden layers to an LSTM model with 2 hidden layers with the goal of 
forecasting the trend of an earthquake. Their research covered a large area including Indian 
subcontinent region, Afghanistan, Tajikistan, Thailand, Laos, Vietnam, Malay Peninsula, and 
several provinces in China. They concluded that LSTM results were significantly superior 
compared to FFNN [7].  

 
Related Work 

Machine learning applications in seismology include event discrimination, earthquake signal 
detection, seismic phase picking, Polarity determination, phase association, earthquake source 
parameterization, seismogram simulation, ground motion characterization, direct investigation of 
seismic waveforms, and earthquake forecasting [1]. Making prediction about magnitude, time or 
location of an earthquake is a challenging task. Earthquakes are natural phenomena that follow 
no apparent well understood pattern. During recent years, machine learning techniques have been 
used in variety of studies to discover possible patterns within seismic data. Al Banna et al. (2020) 
categorized earthquake prediction methods to rule-based approaches, shallow machine learning 
algorithms and deep learning (DL). They mention Fuzzy Logic and Fuzzy Neural Network as 
examples of rule-based approaches. Support Vector Machine (SVM), Support Vector Regression 
(SVR), K-Nearest Neighbor (KNN) algorithm, Random Forest (RF) algorithm and K-Means 
clustering are amongst the shallow machine learning methods discussed by Al Banna et al. 
(2020) Deep Learning has been used in earthquake characteristics studies and earthquake 
prediction [15]. An example of earthquake characteristic studies is Seismic Electric Signals 
(SES) anomaly prediction. In a 2017 study, Karabachos et.al. proposed a hybrid algorithm for 
predicting anomaly in SES time series data [15] [16]. There are numerous examples of deep 
learning applications in earthquake studies. Supervised learning methods have shown to be very 
effective for event discrimination [1] In 2019, Mousavi et al. employed an unsupervised deep 
learning method for feature learning and dimensionality reduction to distinguish waveforms [17]. 
Other applications of deep learning in earthquake seismology include signal detection, seismic 
phase picking, polarity determination, phase association, ground motion characterization and 
forecasting earthquakes [1]. 

 
Time-Series 
 
 A time-series dataset is a collection of observations sequenced in time [18]. Time-series 
data is usually a sequence taken at regular time intervals. Time-series have applications in finance, 
weather forecasting, earthquake prediction and biological sciences, where patterns in data are used 
to predict future values. Examples of time-series data include maximum daily temperature 
readings, stock prices or heart rate readings of a monitoring device. Time-series forecasting is 
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concerned with predicting future values based on previously observed datapoints. Time-series 
forecasting can be formulated as a supervised machine learning problem. Large datasets are 
essential to ensure successful training and testing of a machine learning model to forecast time-
series. Due to availability of compressive earthquake catalogues, seismic time-series are a suitable 
candidate for time-series forecasting. 
 
Irregular Time Series 
 
 Time-series are often a sequence of datapoints taken at equally spaced intervals. A 
sequence of datapoints recorded at unevenly spaced time intervals is an irregular time-series 
dataset. Examples of irregular time-series include natural disasters such as earthquakes, where data 
is received unpredictably. Earthquakes naturally occur at arbitrary times, therefore the intervals 
between consecutive occurrences are irregular. One way of approaching irregular time-series is 
interpolation. Interpolation is a method of mathematical estimation, where new data points are 
created based on the known data points. Utilizing interpolation was indirectly mentioned in [19], 
however the interpolation sampling interval is one month. In this study, a much more refined 
resampling interval will be used to achieve more accuracy. 
 
Deep Neural Networks  
 
 Deep Learning is a sub-category of machine learning that is based on utilizing neural 
networks. Deep Neural Networks (DNN) have input layer, output layer and multiple layers in 
between, hence the name “deep”. Each layer consists of artificial neurons that are interconnected.  
There are variants of neural networks, but regardless of the type, all NNs consist of neurons, 
synapses (connections between neurons), weights, activation functions and biases. Based on the 
direction of the flow of data in model, DNNs can be categorized into two main types of 
Feedforward Neural Networks and Recurrent Neural Networks. 
 
Feedforward Networks 
 
 In a Feedforward deep network, data flows only in one direction. Data flow starts at input 
layer, moving forward to possible hidden layers and ends at output layer. In feedforward networks, 
data flow does not loop back.  
 
Recurrent Neural Networks (RNN) 
 

As humans, our thoughts have persistence. That means we process new information based 
on previous information that we have [21]. Traditional neural networks do not have this ability 
and perceive new information without the knowledge of what they have previously seen. Recurrent 
Neural Networks (RNN) however, are different in that their input at any time includes both new 
input and output from the previous step. In LSTM, previous steps impact how future outputs are 
calculated, therefore, they can be said to have a memory. At every step of training RNNs with 
gradient descent, the gradient will diminish and eventually disappear, therefore it faces the 
vanishing gradient issue. As a result, RNNs are not as successful if they must go back to more than 
a couple of steps to gather the information they need to calculate the output for the current step 
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[21]. Data flow is bi-directional in Recurrent Neural Networks. As it is depicted in figure 4, block 
A of neural networks receives input xt, and outputs value ht. This loop allows information to flow 
forward and loop back and flow backward, allowing output of a node affect the input of the same 
node. 
 
 

 
  
 
Figure 4. Loop in a Recurrent Neural Network 
 
 
Some areas that have benefited from RNN applications include speech recognition, image 
captioning and language modeling. RNNs are very useful where the gap between previous 
information and output is not large. When the model needs to look further back for information to 
generate the output, RNNs become less efficient. Long Short-Term Memory Networks are a 
solution to these long-term dependency problems [22]. 
 
Long Short-Term Memory (LSTM) Model 
  
 Long Short-Term Memory networks are RNNs that can learn long-term dependencies. The 
goal of LSTM is to add short-term memory to a recurrent neural network, that is capable of going 
back in time-steps at least a couple of thousand steps [22]. LSTM is designed to avoid the 
traditional RNNs vanishing gradient problem. LSTM consists of a component that can learn when 
to remember and when to forget the information based on its decision on whether that information 
may or may not be needed [23]. A review of literature was done to understand the current 
applications of LSTM in seismology. Wang et al. (2017) [14] used LSTM to predict earthquakes 
by learning the spatio-temporal relationship. Wang et al. reported accuracy of % 87.59 for two-
dimensional input [9]. Vardaan et al. (2019) compared LSTM with FFNN to study the trend of 
earthquakes. This study used R2 to evaluate the model performance [7]. Cao et al. (2021) modelled 
a LSTM network to create a catalogue for earthquakes with a reported MSE of 0.08 [24]. Bhargava 
and Pasari proposed an LSTM architecture to predict earthquakes and reported an MSE of 0.2048 
[25]. AL Banna et all. (2021) created an LSTM network to predict location of earthquake epicenter 
with MSE of 1.5579 [12]. In 2021, Kavianpour et al. reported MSE of 0.1824, when they used 
LSTM to predict the mean magnitude of a forthcoming earthquake in one month timeframe [19]. 
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Cao et al. modelled an LSTM network to make predictions on synthetic data and reported 0.08 for 
MSE [26]. 
 

Method 

 Here we discuss the process of data collection and data preparation, as well as the machine 
learning models considered and used for this work.  
 
Data  
 

Earthquake datasets have a natural temporal ordering. This characteristic is what makes 
earthquake datasets time-series datasets. Time-series is defined as sequence of relevant values that 
are ordered by time. Often, time-series data points are recorded at equally spaced points in time 
[24]. There is an abundance of time-series data in the field seismology. First earthquake recorded 
happened in 1831 B.C. in China. According to USGS, several million earthquakes occur in the 
world annually. Many of these shakes are not detected due to occurring in remote areas or having 
a very small magnitude [27]. Currently, USGS records about 50 earthquakes each day, 20,000 per 
year. There are many organizations around the world that monitor seismic activity and provide 
datasets for researchers. USGS is a reliable source that monitors and reports accurate earthquake 
catalogues.  
 
Data Collection 
 
 USGS provides an Application Programming Interface (API) for the Federation of Digital 
Seismograph Networks (FDSN) that allows custom searches for earthquake information using a 
variety of parameters [28]. This data is freely available and highly accurate and reliable because 
almost all recordings are reviewed by a human. Query method was used to collect earthquake data 
for this research. 3 different datasets were acquired for this paper. These datasets have extensive 
information about each recorded earthquake, also referred to as event in this text. Earthquake 
dataset I targets earthquakes with a magnitude larger than 2 in Richter scale that occurred in the 3-
year period from 1970 to 1973. This dataset is in Comma-separated Values (CSV) format and has 
2387 rows and 17 columns. CSV is a text file format which uses commas to separate values and 
newlines for separating records. Each line of CSV file represents one data record [29]. Each row 
associates with a recorded event/ earthquake and each column represents a feature of that event 
such as magnitude, longitude, latitude, depth and time of occurrence. The method used for data 
extraction and time-series dataset creation is based on the work in [30]. Earthquake dataset I, II 
and III were directly extracted from the USGS API for the same location. Dataset II is capturing 
the same region during the next 50 years, from 1973 to 2023. This dataset targets earthquakes with 
a magnitude of greater than 2 in Richter scale. Python [31] with Anaconda-Navigator [30] was 
utilized for pulling earthquake data directly from USGS API. The libraries used for data collection 
include Pandas [33], NumPy [34] and Matplotlib [35]. The USGS API web services limits the 
queries to 20000, and any that exceed this limit will generate a HTTP response code “400 Bad 
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Request” [36]. Therefore, each year was divided to four quarters and the raw data was saved 
individually for each quarter of each year. A snippet of the code for data collection is shown in 
Data is extracted for earthquakes with magnitude between 2-10 in Richter scale. This data is 
limited to 20,000 rows and ordered by time. Data is collected from a large region that covers the 
state of California with a minimum longitude of -133, maximum longitude of -107, minimum 
latitude of 24 and maximum latitude of 50. 
Dataset II is in CSV format, has 330,812 recorded earthquakes/ rows of data and 17 attributes/ data 
columns that describe features of each recorded event. The most notable features are magnitude, 
longitude, latitude, depth and time of occurrence. Earthquake dataset III is directly extracted from 
USGS Earthquake Hazards Program website [37]. This web service allows for searching 
earthquake catalogs. Earthquakes in Dataset III have a magnitude of larger than 1 in Richter scale 
and for an area smaller and within the region that is covered by dataset I and dataset II. Dataset III 
covers a 30-day period from 2024/05/05 to 2024/06/04. Dataset III is in CSV format, has 309 
records of earthquake events/ rows and 22 features/ columns including magnitude, longitude, 
latitude, depth and time of occurrence. This dataset is much smaller compared to dataset I and 
dataset II and was downloaded in batch. Having a smaller size dataset with a lower threshold for 
magnitude allows for much more accelerated testing of different models. 
 
Data Preparation 
 
 The USGS API limits datasets to 20,000 records per download. For this reason, data for 
dataset II was downloaded for each quarter of each year from 1973 to 2024. These files were 
concatenated and created a combined earthquake time-series data frame. Same method was used 
for Dataset I and Dataset III.  
Google Colab [38] was used for cleaning the dataset and used TensorFlow [39], Pandas and 
NumPy libraries. Using Pandas.DataFrame.info () method on this data frame provides detailed 
information on this dataset. 
 
 

 
 
 
Figure 5. Dataset II information reveals the count and data type for each column. 
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Model Selection 
  
 Most traditional machine learning and deep learning methods are compromised when 
applied to irregular time series and fail to properly model the temporal irregularity of time-series 
where datasets have unequal intervals in between observations and possible missing data. Gated 
Recurrent Neural Networks (RNN) such as Long Short-Term Memory (LSTM) have shown great 
success in modeling sequential data [40]. Based on literature review, LSTM was selected for 
earthquake time-series prediction in this study. Different LSTM model architectures were 
proposed and tested with different activation functions, optimizers and learning rates to find the 
best model for dataset I, II and III.  
 
Interpolation 
 
 Machine learning tasks require suitable datasets to perform well but datasets created from 
observational data are far from perfect. Collecting data from natural phenomena that occur 
randomly is even more problematic. In the case of seismic data, the randomness of occurrence, 
causes irregularity in the dataset. Irregularity and missing data points can reduce the efficiency of 
machine learning models. Specifically, LSTM has become a promising tool in modeling irregular 
time-series [40]. One solution to address the irregular time-series is interpolation. With 
interpolation, dataset is transformed into a new dataset with fixed intervals in between the 
datapoints. Due to randomness of the earthquake occurrence, there will be missing values in some 
areas. These missing datapoints can be filled with interpolation. Current literature that addresses 
this issue,  have utilized interpolation [41] with larger intervals such as monthly [19] or daily 
intervals. In this study, much smaller apertures will be tested to observe the performance of the 
model and test the hypothesis. 
 
 
Implementation 

The programming language used for this is Python 3.10. For data collection and data 
preparation for datasets, Python was used within Jupyter Notebook through Anaconda-Navigator 
[42]. The remaining of the scripts for this work is implemented using Google Colab. Google Colab 
is a hosted Jupyter Notebook service with access to accelerated hardware such as Graphics 
Processing Unit (GPU) [43] and Tensor Processing Units (TPU) [44]. This service is provided at 
no cost for a basic user. 
 
Long Short-Term memory (LSTM) 
 
 In this section, different LSTM architectures will be proposed, trained and tested. These 
different architectures will be tested with different activation functions, look-back windows, 
learning rates and optimizers to achieve the best result. Desired goal is to achieve the smallest 
Mean Squared Error for the unseen data. LSTM expects input to be a 3-D tensor in the form of 
[batch size, look-back window size, dimension of output feature]. Batch size determines the 
number of readings available which is exactly the number of the rows in the dataset. Look-back 
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window is the number of steps, or values that the model will consider when computing the next 
output value. Dimension of output feature demonstrates the shape of the value we are considering 
against time. We are trying to predict earthquake magnitude against time, so in this case our output 
is “mag”, and the dimension of the output feature is 1. 
 
64-unit LSTM layer - RELU Activation Function - 50 step Look-Back Window  

 
The snippets of code from the initial attempt with LSTM is shown in this section. Dataset 

II was used for this implementation. As a first step, initial libraries are imported. 
At the next step, dataset II is read into pandas data frame to make reading and further inspecting 
the data frame possible. 
Index column has been replaced with column time to make data visualization more convenient. 
In order to create the time series representing earthquake magnitude over time, Column mag, which 
represents the earthquake magnitude in this data frame, is read into a separate data frame. The 
result is a new data frame with first column as time and second column as magnitude. There are 
330802 data readings, and the object type is float 64.   
A plot of magnitude distribution over time is shown in Figure 6. It is seen that magnitude of 
earthquakes range from 2 in Richter scale to greater than 7. 
 
 

 
 
 
Figure 6. Distribution of magnitude from 1973 to 2024. 
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Next step is to define the input and output data and determine the size of the look back window. 
This number represents the number of steps that the LSTM model will go back and consider in 
computing the output at current step. In this case, a window size of 50 is selected, meaning that 
magnitude of the last 50 earthquakes will be considered when computing the output value for the 
next earthquake in the time series. Dimensions of the input and output arrays can be demonstrated 
by using the .shape command. The input tensor, X, is of size (330752, 50, 1) and output array, y, 
dimensions are (330752, 1). 
A closer look at the input and output arrays reveals a more detailed picture of what these data 
elements actually look like. As it is seen, X is a tensor comprised of 330752 elements, each having 
mags for the previous 50 earthquakes. y is the output, representing the magnitude computed for 
the next earthquake. Next, input and output data are divided into training, validation and test 
datasets. Training data set comprises 70 percent of the dataset and is used to train this model. 20 
percent of the data is specified to validation data and the remaining 10 percent is the testing data. 
At the final stage, the trained and validated model will be tested on the test data, which it has never 
seen before, to evaluate the performance of the model. 
Next step is to design the architecture of the LSTM model. Here it can be seen in Figure 7. That a 
sequential model is chosen with an LSTM layer with 64.  
 
 

 
 
Figure 7. LSTM model summary.  
 
 
Next, loss is defined as Mean Squared Error, and “Adam” is chosen as the optimizer. Learning 
rate is set to 0.0001 and a check point is added to save the best model. This model is trained for 10 
epochs, and the Mean Squared Error (MSE) is 0.2379 for training. Next, the results of applying 
best model to training, validation and test datasets ae shown. Actual values can be seen against 
predicted values at each level, and data is visualized at each step for better understanding of the 
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model performance. Actual values for earthquake magnitude and predicted magnitudes are 
provided in a data frame below. 
 
 

 
 
 
Figure 8. Predicted mag values against actual mag values for training data. 
 
 
This plot is showing 1000 readings for better visualization. 
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Figure 9. Earthquake magnitude prediction vs actual magnitude values for training dataset.  
 
 
Same process is done for the validation dataset. Predicted values for earthquake magnitude are 
compared with actual magnitude values. Mean Squared Error (MSE) obtained for validation is 
0.2617. 
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Figure 10. Earthquake magnitude prediction vs actual magnitude values for validation dataset. 
 
 
Finally, the predicted values for earthquake magnitude are compared with actual magnitude values 
for the test data. Next, the performance of the saved model is shown on test data in a plot in Figure 11. As 
it is seen in the plot, the model has successfully predicted the trend of the earthquake time series and peaks 
are detected. MSE for the test set is equal to 0.2297. 



 

16 

 
 
 
Figure 11. Earthquake magnitude prediction vs actual magnitude values for test dataset. 
 
 
Now, this trained model will be tested on the other datasets to evaluate the performance of the 
model. First, this initial model is tested on the entirety of dataset I. Test results for dataset I are 
shown in Figure 12. As it is seen in the plot, the model has achieved success in testing with dataset 
I and predicting the trend and peaks for dataset I. In this case, MSE for the Dataset I is equal to 0.3875. 
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Figure 12. LSTM initial attempt with Dataset I. 
 
 
Model is tested with dataset III, which is a smaller dataset, covering only 1 month, and successfully 
recognized the data peaks. MSE for this case was 0.7120. 
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Figure 13. LSTM initial attempt with Dataset III 
 
 
64-unit LSTM layer - RELU Activation Function - 200 step Look-Back Window 
 
 Next, the look back window size was increased from 50 to 200 to study the effect of a 
larger window on different datasets. This change means each output magnitude is computed with 
the consideration of the last 200 earthquakes. The LSTM model was trained on Dataset II and 
tested on Dataset I, II and III to observe the changes from previous results. This change decreased 
the MSE for Dataset I and II, and slightly increased MSE for Dataset III.  
 
The model architecture is same as the architecture in previous section. Model was trained on the 
training set of dataset II, and the training MSE for best model was equal to 0.2374. Best model is 
then loaded to inspect and visualize performance on training data and validation data and to make 
predictions on test data. 
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Figure 14. Comparison in between the predicted and actual values for earthquake magnitudes over time. 
 
 
Next step is to read the actual values of earthquake magnitude from the validation set within dataset 
II and the values that the model predicted into pandas data frame for comparison. These time series 
are then plotted next to each other to compare the performance of the model on validation data. 
MSE for validation was equal to 0.2627. 
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Figure 15. Comparison of actual vs predicted magnitude values within Validation set of Dataset II. 
 
 
Actual values of earthquake magnitude from the test set within dataset II and the values that the 
model predicted are read into pandas data frame for comparison. MSE for the test set was equal to 
0.2287. 
 
Chart below shows the actual magnitude values versus model prediction on test set of dataset II. 
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Figure 16. Comparison of actual vs predicted magnitude values within the test set of Dataset II. 
 
 
Next model was tested on the entirety of dataset I to compare the performance with the other 
datasets in this section and previous results. MSE for testing on Dataset I is equal to 0.3735. 
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Figure 17. Actual versus predicted magnitude values for dataset I. 
 
 
Next, the trained model is tested on the entire dataset III to compare the actual and model predicted 
earthquake magnitude values over time. Below, the actual values from dataset III are shown 
besides the predicted values by trained model. MSE for this case was 1.0762. 
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Figure 18. Actual versus predicted magnitude values for dataset III. 
 
 
128-unit LSTM layer - RELU Activation Function - 200 step Look-Back Window  
 
 In this section, LSTM units were increased from 64 to 128 to study the effects of the 
architecture on the results. Look-back window size was set to 200. This change slightly increased 
the MSE for Dataset I, but results improved slightly for Dataset II. The results significantly 
improved for Dataset III. 
 
The LSTM layer was updated to include 128 neurons and RELU was used as the activation 
function, which is similar to the previous tests. Mean Squared Error is used as loss function. 
This architecture was trained on Dataset II, and tested on Dataset I, II and III. MSE for the best 
model with the new architecture for training was 0.2372 which is slightly better than the previous 
cases. 
 
The plot below shows the predicted and actual values for magnitude over time in training set of 
Dataset II. 
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Figure 19. Training results on Dataset II 
 
 
Prediction and actual values for the validation set of dataset II can be seen side by side in a 
dataframe in Figure 20. MSE for validation was 0.2620. 
 
 



 

25 

 
 
 
Figure 20. Validation results on Dataset II. 
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Figure 21. Validation results on Dataset II. 
 
 
The best model is then tested on test set of dataset II. MSE in this case was equal to 0.2279. 
Plotting actual and predicted magnitude values show that the trend of the time-series as well as the 
peaks are successfully identified.   
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Figure 22. Test results on Dataset II 
 
 
This model is then tested on the entire dataset III. MSE in this case was equal to 0.9049. 
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Figure 23. Test results on Dataset III 
 
 
Lastly, the model is tested on dataset I and the predicted and actual values are shown in a dataframe 
below. MSE in this case was equal to 0.3737. This plot is showing the actual and predicted 
magnitude for dataset I. It is seen that the model is successfully predicting the trend and peaks of 
the time-series data. 
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Figure 24. Test results on Dataset I 
 
 
64-unit LSTM layer - Sigmoid Activation Function - 50 step Look-Back Window 
  

In this attempt, a new activation function, Sigmoid is used to study how activation function 
might affect the results. In this case, the look-back window size is set to 50. The results show that 
Sigmoid increased MSE for all datasets and decreased the Model performance. 
 
The LSTM model architecture is same as what was used in the first experiment. The activation 
function is changed from RELU to Sigmoid to better understand the effects of activation functions 
on LSTM model performance. At this step, the model metrics, the loss function, optimizer and 
learning rate are set. 
This model is run on the training set of Dataset II for 10 epochs and the best model is saved with 
training MSE of 0.2401. Best model is loaded to inspect and visualize performance on training 
data and validation data and to make predictions on test data. Below the predicted and actual values 
of magnitude for training set of Dataset II are read into a dataframe for better comparison. 
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In the following plot, it is shown that the trained model with Sigmoid activation function can 
successfully predict the trend and identify data peaks within training set for dataset II. 
 

 
 
 
Figure 25. Comparison of predicted and actual values within training set of dataset II 
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Figure 26. Validation results on Dataset II 
 
 
The next step in machine learning flow is to test the model on the unseen test data. Here, the best 
model is making predictions on test set of Dataset II. MSE in this case was equal to 0.2338. 
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Figure 27. Test results on Dataset II 
 
 
Model was then tested on the entire Dataset III to observe the effects of Sigmoid activation function 
on a smaller Dataset.  Test results on Dataset III are visualized in the plot below. MSE in this case 
was equal to 1.1266. 
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Figure 28. Test results on Dataset III 
 
 
A similar test was performed on Dataset I to observe the model performance. Model has 
successfully predicted the trend and peaks on a different medium size Dataset. MSE in this case 
was equal to 0.4121. 
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Figure 29. Visualization of test results on Dataset I with Sigmoid activation function. 
 
 
64-unit LSTM layer - Tanh Activation Function - 50 step Look-Back Window 
 
 In this section, the activation function is changed from Sigmoid to Tanh with the purpose 
of studying the effects of different activation functions on LSTM performance. Look-back window 
size is set to 50. It was observed that Tanh dropped the model performance when compared to Relu and 
Sigmoid. Best model with minimum MSE should be saved to be applied to test Datasets. 
In the case of LSTM with Tanh activation function, best model was trained with 0.2380 MSE. 
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Figure 30. Comparison of predicted and actual values within training set of Dataset II 
 
 
For the model with Tanh activation function on validation set of Dataset II, MSE was 0.2613. 
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Figure 31. Validation results on Dataset II 
 
 
The model was then tested on test set of Dataset II, and it is observed that the time-series trend is 
successfully determined, and peak data points are identified. MSE for this case is equal to 0.2299. 
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Figure 32. Test results on Dataset II 
 
 
Trained model with Tanh activation function was tested on Dataset III to observe the effects of 
utilizing Tanh activation function on a smaller Dataset. MSE for testing on Dataset III is equal to 
1.0608. 
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Figure 33. Test results on Dataset III 
 
 
The trained model was tested on Dataset I. MSE for testing on Dataset I is equal to 0.3938.  
The results are plotted against time in the plot below and the model performance can be compared 
with the actual values. Similar to previous cases, trend and data peaks are successfully predicted. 
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Figure 34. Visualization of test results on Dataset I with Tanh activation function. 
 
 
4.2 Interpolation 
 
 In this section, interpolation will be applied to Datasets to assess the effect of resampling 
data with different intervals on LSTM performance on irregular time-series Datasets. Due to the 
nature of earthquakes and studies of earthquake swarms, it is assumed that two consecutive 
magnitudes are closely correlated, and the nearest neighbor has been used to fill the missing values. 
In the case of single earthquake data, the earthquake magnitude measured exactly before the 
missing value has been used to represent the missing value for the magnitude. 
 
4.2.1 4-hour Interpolation Sampling Temporal Interval on Dataset II 
 

As an initial attempt of interpolation, Dataset II was resampled with a temporal interval of 
4 hours. The Dataset was resampled with a temporal interval of 4 hours. Column mag is read into 
a dataframe, and input and outputs are created. LSTM look-back window is set to 50, and new 
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dimensions of data is demonstrated. Dataset is divided into training (%70),  validation (%20) and 
test (%10) sets. 
 
 
LSTM sequential model is then created, trained and tested on Dataset II and Dataset III. 
This model was run for 10 epochs and trained on resampled data from Dataset II. It was tested on 
Dataset II and III. MSE for the best model with interpolation with 4-hour interval was 0.2460 for 
training. Comparison of actual values and results are shown below. 
 
 

 
 
 
Figure 35. Visualization of training results on Dataset II. 
 
 
After training the LSTM network on training set with interpolation with 4-hour interval, model 
was applied to validation set of Dataset II and the resulting MSE for the best model was 0.2442. 
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Figure 36. Visualization of validation results on Dataset II. 
 
 
Finally, the trained LSTM network was tested on the test set of Dataset II and the obtained MSE 
was equal to 0.2303. 
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Figure 37. Visualization of test results on Dataset II. 
 
 
This model was then tested on Dataset III to study effects of testing a model trained with 
interpolated data on seismic data that was not interpolated. MSE for this case was 0.5695. We 
realize that interpolation significantly improved the results and decreased the MSE on Dataset II, 
while it did not yield to the best results for Dataset III. 
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Figure 38. Visualization of test results on Dataset III. 
 
 
1-hour Interpolation Sampling Temporal Interval on Dataset II 
 

At second attempt of interpolation, Dataset II was resampled with a temporal interval of 1 
hour. 
Column mag is read into a dataframe, and input and outputs are created. LSTM look-back window 
is set to 50, and new dimensions of data is demonstrated. Dataset is divided into training (%70),  
validation (%20) and test (%10) sets. 
LSTM sequential model is then created, trained and tested on Dataset II and Dataset III. 
This model was run for 10 epochs and trained on resampled data from Dataset II. It was tested on 
Dataset II and Dataset III. MSE for the best model with interpolation with 1-hour interval was 
0.1848 for training set of Dataset II. Comparison of actual values and results are shown below. 
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Figure 39. Visualization of Training results on Dataset II.  
 
 
This model was then used on the validation set of Dataset II and the MSE for validation data was 
equal to 0.1708.  
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Figure 40. Visualization of validation results on Dataset II. 
 
 
Next, the trained model was tested on the test set of Dataset II. The result MSE for test set was 
equal to 0.1565. 
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Figure 41. Visualization of test results on Dataset II. 
 
 
This model was then tested on Dataset III to study effects of testing a model trained with 
interpolated data on seismic data that was not interpolated. In this case, where a model that was 
trained on interpolated data, was tested on a Dataset that was not interpolated, the resulting MSE 
was equal to 0.2878. 
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Figure 42. Visualization of test results on Dataset III. 
 
 
This Model was then tested on Dataset III after interpolation with 1-hour temporal intervals. MSE 
for this case was equal to 0.1754. 
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Figure 43. Visualization of test results on interpolated Dataset III. 
 
 
This Model was then tested on Dataset I with and without interpolation with 1-hour temporal 
intervals. When model was tested on Dataset I without interpolation, the resulting MSE was equal 
to 0.4675. 
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Figure 44. Visualization of test results on Dataset I without interpolation. 
 
 
To better understand how this model performs on interpolated data, it was tested on Dataset I with 
interpolation with 1-hour temporal intervals. MSE in this case was equal to 0.0884. Below figures 
show the comparison of actual values versus predicted values.  
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Figure 45. Visualization of test results on Dataset I with interpolation. 
 
 
1-hour Interpolation Sampling Temporal Interval on Dataset III  
 

Finally, LSTM was run for 100 epochs on interpolated Dataset III. Dataset III was 
resampled with a temporal interval of 1 hour and column mag is read into a dataframe, and input 
and outputs are created. LSTM look-back window is set to 50, and new dimensions of data is 
demonstrated. Dataset is divided into training (%70),  validation (%20) and test (%10) sets. 
 
LSTM sequential model is then created, trained and tested on Dataset III, Dataset II and Dataset I. 
This model ran for 100 epochs and trained on resampled data from Dataset III. It was tested on 
Dataset III, II and I. MSE for the best model with interpolation with 1-hour interval for training 
set was equal to was 0.0952. Comparison of actual values and results are shown below. 
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Figure 46. Visualization of training results on Dataset III. 
 
 
For the next step, this model was applied to the validation set of Dataset III. Validation MSE for 
this case was equal to 0.0838. A comparison of the actual values versus predicted values can be 
seen in the table below. 
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Figure 47. Visualization of validation results on Dataset III. 
 
 
At this step, trained model was applied to the test set of Dataset III with an MSE of 0.1804. 



 

53 

 
 
 
Figure 48. Visualization of Test results on Dataset III. 
 
 
This model was then tested on Dataset II to study effects of testing a model trained with 
interpolated data on seismic data that was not interpolated. After that, Dataset II was interpolated 
for testing with the model trained on interpolated data. When model was tested on Dataset II 
without interpolation, it resulted in an MSE of 0.4953. 
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Figure 49. Visualization of test results on Dataset II. Model trained on interpolated Dataset III. 
 
 
Dataset II was interpolated with 1-hour temporal interval. Results of testing the model trained on 
interpolated data on resampled Dataset II are represented below. In this case MSE was equal to 
0.4194. 
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Figure 50. Visualization of test results on interpolated Dataset II. Model trained on interpolated Dataset III 
 
 
Best model was tested on Dataset I to study effects of testing a model trained with interpolated 
data on seismic data that was not interpolated. After that, Dataset I was interpolated for testing 
with the model trained on interpolated data. In the case of testing. The model on Dataset I without 
interpolation, the MSE was equal to 0.8647. 
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Figure 51. Visualization of test results on Dataset I. Model trained on interpolated Dataset III 
 
 
After Dataset I was interpolated with 1-hour temporal interval, the obtained MSE was equal to 
0.5857. Results of testing the model trained on interpolated data on resampled Dataset I are 
represented below. 
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Figure 52. Visualization of test results on interpolated Dataset I. Model trained on interpolated Dataset III 
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Evaluation 

A comparison of different scenarios is provided in the Tables below. Table 1 shows the 
Mean Squared Error for different model architecture with no interpolation on data. In all cases, 
learning rate was set to 0.0001 and Adam optimizer was utilized. These selections were made after 
trial and error with different learning rates and optimizers. All models were trained on Dataset II, 
which covers a 50-year period, and in each case, model was trained for 10 epochs. As it is 
demonstrated in Table 1, 128-unit LSTM with RELU activation function and 200 step Look-Back 
Window had the best performance on training data with MSE of 0.2372. Mean Squared Errors are 
also provided for test set of Dataset II, and for testing on entire Dataset II and Dataset I. For test 
sets that were part of Dataset II, 128-unit LSTM with RELU activation function and 200 step 
Look-Back Window had the best performance. In the case where trained model was tested on a 
completely new and unknown dataset, 128-unit LSTM with RELU activation function and 200 
step Look-Back Window had the best performance when tested on the medium size dataset, 
Dataset I. When tested on the smallest dataset, dataset III, 64-unit LSTM with Tanh activation 
function and 500 step Look-Back Window had the best performance. The next best performance 
in this case was 64-unit LSTM with RELU activation function and 50 step Look-Back Window 
had the best performance. This result implies that due to the smaller size of the test dataset, Dataset 
III, which is equal to 30 days, a smaller look-back window is associated with better performance. 

Table 1: Model Performance evaluation. 
 

LSTM 
Nodes 

Activation 
Function 

Look-
Back 

Window 

Training 
MSE 

Validation 
MSE 

Dataset 
II test 
MSE 

Dataset 
I test 
MSE 

Dataset 
III test 
MSE 

64 RELU 50 0.2379 0.2617 0.2297 0.3875 0.7120 
64 RELU 200 0.2374 0.2627 0.2287 0.3735 1.0762 
128 RELU 200 0.2372 0.2620 0.2279 0.3737 0.9049 
64 Sigmoid 50 0.2401 0.2623 0.2338 0.4121 1.1266 
64 Tanh 50 0.2380 0.2613 0.2299 0.3938 1.0608 

 
 
The following tables demonstrate the Mean Squared Errors for varying resampling intervals and 
training epochs when training dataset was interpolated. Additional test sets were used both with 
and without interpolation. Similar to experiments with data without interpolation, learning rate 
was set to 0.0001 and Adam optimizer was utilized in all instances. These selections were made 
after trial and error with different learning rates and optimizers. All instances used a 64-unit LSTM 
with RELU activation function and 50 step Look-Back Window model. Next 3 tables list the 
models used on each dataset based on performance in decreasing order (increasing MSE). 
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Table 2: Model Performance evaluation for Dataset I 
 
 

LSTM 
Nodes 

Activation 
Function 

Look-
Back 

Window 

Dataset 
I test 
MSE 

64 RELU 200 0.3735 
128 RELU 200 0.3737 
64 RELU 50 0.3875 
64 Sigmoid 50 0.4121 
64 Tanh 50 1.0608 

 
 

Table 3: Model Performance evaluation for Dataset II 
 
 

LSTM 
Nodes 

Activation 
Function 

Look-
Back 

Window 

Dataset 
II test 
MSE 

128 RELU 200 0.2279 
64 RELU 200 0.2287 
64 RELU 50 0.2297 
64 Tanh 50 0.2299 
64 Sigmoid 50 0.2338 

 
 

Table 4: Model Performance evaluation for Dataset III 
 
 

LSTM 
Nodes 

Activation 
Function 

Look-
Back 

Window 

Dataset 
III test 
MSE 

64 Tanh 50 0.3938 
64 RELU 50 0.7120 
128 RELU 200 0.9049 
64 RELU 200 1.0762 
64 Sigmoid 50 1.1266 

 
   
For the second experiment, the model with 64-unit LSTM with RELU activation function and 50 
step Look-Back Window was trained on Dataset II with interpolation with 4-hour resampling 
window. This model was then tested on the entire Dataset III as an additional test set. Results show 
that this model performed better on Dataset III, when it was trained on Dataset II with interpolation 
(MSE = 0.5695) compared to when it was trained on Dataset II without interpolation (MSE = 
0.7120) 
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Table 5: Model Performance evaluation with Interpolation  

 
 

 Train 
Dataset 

Train 
Dataset 
length 

Resampling 
Interval 

# of 
Epochs 

Train 
II 

MSE 

Val 
II 

MSE 

Test 
II 

MSE 

Test 
III 

MSE 
With 

Interpolation 
Dataset 

II 
50 years 4-hour 10 0.2460 0.2442 0.2303  

Without 
Interpolation 

       0.5695 

 
 
In the second experiment, the model with 64-unit LSTM with RELU activation function and 50 
step Look-Back Window was trained on Dataset II with interpolation with 1-hour resampling 
window. This model was then tested on the entire Dataset I with no interpolation, Dataset I with 
interpolation with 1-hour resampling interval, Dataset III with no interpolation and Dataset III with 
interpolation with 1-hour resampling interval as additional test sets.  
 
 

Table 6: Model Performance evaluation with Interpolation  
 
 
 Train 

Dataset 
Train 

Dataset 
length 

Resampling 
Interval 

# of 
Epochs 

Train/ 
Val II 
MSE 

Test 
II 

MSE 

Test 
I 

MSE 

Test 
III 
MSE 

With 
Interpolation 

Dataset 
II 

50 years 1-hour 10 0.1848
/ 

0.1708 

0.1565 0.0884 0.1754 

Without 
Interpolation 

      0.4675 0.2878 

 
 
For the third experiment, the model with 64-unit LSTM with RELU activation function and 50 
step Look-Back Window was trained on Dataset III with interpolation with 1-hour resampling 
window. Smaller size of Dataset III (30-day period) allows for increasing the number of epochs to 
100. This model was then tested on the entire Dataset I with no interpolation, Dataset I with 
interpolation with 1-hour resampling interval, Dataset II with no interpolation and Dataset II with 
interpolation with 1-hour resampling interval as additional test sets. Results are shown in Table 7 
below. As it is seen, Dataset III has the smallest MSE in this case. Dataset II and Dataset I have 
better results where interpolated. It can be seen that performance of model declines when trained 
on the smallest dataset. 
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Table 7: Model Performance evaluation with Interpolation  

 
 
 Train 

Dataset 
Train 

Dataset 
length 

Resampling 
Interval 

# of 
Epochs 

Train/ 
Val 
III 

MSE 

Test 
III 

MSE 

Test 
I 

MSE 

Test 
II 
MSE 

With 
Interpolation 

Dataset 
III 

30 days 1-hour 100 0.0952 
/ 

0.0838 

0.1804 0.5857 0.4194 

Without 
Interpolation 

      0.8647 0.4953 
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Conclusion 

This work was initiated with 3 objectives: 

Objective 1 was to collect and prepare observational data to create the suitable time-series dataset 
for this research. 

This objective was achieved by creating 3 different time-series from seismic data collected from 
the USGS, Dataset I, Dataset II, and Dataset III.  

Objective 2 was to propose Long Short-Term Memory (LSTM) architectures to predict the 
earthquake magnitude in seismic time-series. 
 
Different LSTM models with different architectures and parameters were created and tested in 
experiment 1 through 5. Mean Squared Error for best model was 0.2372 
 for training and 0.2279 for testing. 
 
Objective 3 was to find a solution to address the irregularity of the time-series used in this study. 
Hypothesis was that LSTM model performance will be improved with interpolation, and that 
smaller resampling intervals improve the model performance. 
 
To address this objective, Dataset I, Dataset II and Dataset III were interpolated with different 
intervals and tested with the LSTM model in experiments 1 through 3. It was observed that 
interpolation improved model performance compared to where there was no interpolation. It was 
also observed that smaller resampling intervals result in model performance improvement and 
reduction of Mean Squared Error. Mean Squared Error for the best case with interpolation was 
0.0884. Mean Squared Error with interpolation was % 61 smaller than Mean Squared Error without 
interpolation. 
 
It is observed that large datasets can be used with Long Short-Term Memory deep learning models 
to effectively predict the magnitude of earthquakes. This study can be perceived as an 
informational tool for awareness about the possibility of large forthcoming earthquakes.  
 
For future studies, historic datasets for individual seismic faults can be used for training LSTM 
models to gain predictive information not only for the magnitude but also for the location of the 
future earthquakes. This can contribute to saving lives and property, as well as reducing or 
eliminating injuries and destruction.  
 
Different sizes of datasets, different activation functions and different sizes of LSTM look-back 
windows were used in this study to observe how they impact the results. The impact of 
interpolation was studied to understand whether it can change the results significantly. Therefore, 
this project can also be used as an instructional example to teach utilizing Long Short-Term 
Memory deep learning models for time-series analysis.  
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