Robotics education is often constrained by the high cost and limited accessibility of physical robots, which can hinder the learning experience for many students. To address this challenge, the Fundamentals of Robotics Education (FORE) project, part of a larger NSF-funded collaborative work, was developed to create an accessible and comprehensive online learning platform. FORE provides a student-centered approach to robotics education, featuring a robust code editor, real-time simulation, and interactive lessons.
This paper presents the architecture and implementation of the FORE platform, highlighting its key components, including the backend simulation using Gazebo and ROS2, a frontend visualizer built with Three.js, and the integration of a Python-based coding environment. We discuss the development process, the contributions of the student team, and the challenges encountered during the project.
The results demonstrate the platform's effectiveness in making robotics education more easily available. These findings originate from software testing and utilization by senior computer science students, as well as feedback from participants at the University of Nevada, Reno College of Engineering's annual Capstone Course Innovation Day. The platform allows students to gain hands-on experience without the need for physical hardware. Its adaptability enables it to serve a broad audience of undergraduate students, offering an encompassing and accessible solution for modern robotics education.
The full paper will be available to logged in and registered conference attendees once the conference starts on June 22, 2025, and to all visitors after the conference ends on July 31, 2025