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Scaling Mentoring for Graduate School: An Algorithm to Streamline the 

Formation of Mentoring Circles for the GradTrack Scholars Program 
 

Abstract 

 

The GradTrack Scholars program prepares undergraduate students for graduate school while 

building a community of students excited to pursue advanced study. GradTrack uses mentoring 

circles – a proven model for supporting individuals pursuing graduate school [1], postdoctoral 

roles [2, 3], and faculty careers [4]. In GradTrack, each mentoring circle unit consists of two 

graduate student mentors and 6–8 undergraduate mentees, where each unit is part of a scalable 

mentoring system. In 2024, GradTrack included 26 mentors and 100 mentees. Currently, the 

manual process of matching mentors and mentees is time-consuming, requiring 4–8 hours of 

administrator-assigned matching per program. While tools exist for grouping students into teams 

for class projects [5], most widely used tools are commercial, fee-based, and/or are more complex 

than needed. Therefore, we identified a need for a simple, open-source solution specifically for 

mentoring structures. 

 

The purpose of this research project was to develop a streamlined method for the formation of 

mentoring circles as GradTrack continues to grow, specifically by leveraging widely used 

statistical algorithms such as k-means clustering. Using data from three years of manually created 

mentoring circles, we developed a python algorithm which uses groups of mentor pairs as seeds 

for clustering mentees. To do this, k-means clustering and one-hot encoding were used to create 

balanced groups of mentors and mentees based on similarities of interests and a specified number 

of groups.  The output of this python algorithm is a list of mentees grouped by similar interests 

and mentor group number. 

 

This study evaluates the benefits and limitations of using a computer-based and automated method 

to assign mentees to mentoring circles, and shares the process of development as well as a protocol 

for use. The key implication is a more efficient process for creating mentoring groups with a 

reduction in human time and subjectivity, which will support the continued growth of 

the GradTrack Scholars program and other mentoring circle program structures. To the author’s 

knowledge, this is the first study to develop a k-means clustering algorithm applied to mentoring 

purposes. Future study should evaluate the comparison between manual and algorithm based 

mentoring group formation in connection to assessment of mentoring group success. 

 

Introduction and Literature Review 

 

Background on the GradTrack program and mentoring circles 

The GradTrack Scholars program focuses on preparing undergraduate students for graduate 

school, with a specific focus on increasing access to graduate education and broadening 

participation in engineering. The program was established in 2020 and works by developing small 

mentoring circles that are units in a scalable network. The mentoring circles are one part of the 

GradTrack program structure, which includes scheduled meetings in the fall semester with set 

curriculum and deliverables related to graduate school preparation [6]. Pre- and post- program 

surveys of participants show that a) GradTrack mentees feel more prepared for graduate school, 

b) GradTrack increases mentees’ feelings of belonging with graduate students and to the 



engineering community at large, and c) GradTrack increases professional development for 

graduate student mentors [1]. The goal of GradTrack is to build community and prepare the next 

generation of graduate students from all backgrounds – the mentoring circle structure is an integral 

component for success.  

 

However, the process of assigning and developing mentoring circles takes time and can be biased. 

First, applications are received from both mentors and mentees to the program. The application 

includes questions about the applicant's interest in being part of the GradTrack program. Once 

mentors and mentees are reviewed and accepted, an email is sent to each participant requesting 

that they provide additional demographic information that is not requested in the application, but 

will be helpful for mentoring circle creation. Applications are reviewed independently from the 

mentoring circles creation process. 

 

Once all relevant information is gathered from participants, the current process of forming 

mentoring circle groups consists of pairing up mentors so that there is a balance of genders in each 

circle (one man and one woman, whenever possible). Graduate majors are also taken into 

consideration, especially if there are many undergraduate mentees requesting a specific graduate 

major (and not enough mentors in this area). When this happens, and we have more mentees than 

mentors in a given discipline, then graduate student mentors of similar majors might be split up 

between mentoring circle groups to expand reach. Once mentors are paired, then comes the lengthy 

process where an administrator goes through and manually adds the admitted mentees to these 

newly made mentor groups.  

 

To make circles, student information is compiled from application data and the post-acceptance 

demographic survey. A number of factors are systematically used to group mentees with mentors, 

including undergraduate university, undergraduate major, gender, race/ethnicity, parents’ 

education level (first generation college student status), and prior research experience. Additional 

factors were typically given priority for group formation, including using similarities based on 

graduation date, level of interest in graduate school, and graduate degree being considered. Circles 

are complete when the administrator decides that the best possible combination of 6–8 mentees 

and 2 mentors has been achieved. This process typically can take 4–8 hours in order to get even 

and well-balanced circles. 

 

Characteristics to consider when making mentoring circle groups 

When developing mentoring groups, consideration must be made regarding how students will be 

grouped together. It has been shown that different individual characteristics will affect the success 

of a mentor-mentee relationship, including matching by shared experiential, surface level and 

deep-level characteristics [7]. Specifically, best practice from the literature suggests that mentoring 

matching should be based on deep-level characteristics. These deep-level characteristics include 

aspects that are not necessarily visible to the eye and include a student’s interests, values, 

personality, and more [8].  

 

It is worth noting in the literature that surface level characteristics used in mentor matching, such 

as those based on gender, race, or ethnicity, do not exhibit an enhanced mentorship quality 

experience [7] - [10], and also simultaneously emphasizes the importance of culturally aware 

mentoring. However, it is also shown that peer mentoring between women in engineering increases 



the belonging, confidence and retention of these same women in engineering over a multi-year 

study [11]. Taken together, this demonstrates that while mentor matching best practices depend on 

deep-level characteristics, representation is still an important factor in higher education and 

mentoring relationships [12] - [14]. 

 

For GradTrack, the decision-making process for selecting specific factors for grouping mentees 

and mentors includes those characteristics falling within the experiential, surface level, and deep-

level areas. This mentor matching paradigm is built upon the foundation of deep-level 

characteristics and the goals of the GradTrack program itself, which values students who want to 

learn more about pursuing a graduate education and have an interest in doing so.  

 

What is known about using algorithms for making teams? 

Due to time constraints and subjectivity, program administrators identified the need for an 

alternative form of matching mentees with mentors. Grouping students together using a computer-

aided support is not new; however much of the previous use includes teams and course-based 

applications. For example, team activities in courses have been shown to benefit from pre-

determining groups [15], however it is noted that this does not occur as often, as instructors may 

not have the time to work through all of the logistics to put students into groups [5], [16], [17]. 

Significant advances have been made to develop a computer-generated team maker for courses 

through the CATME project [18], which includes team maker [5] as well as ways for team 

members to complete peer evaluation [19] - [22]. 

  

While these resources are excellent, they require an institutional login in order to access and require 

much more information than is needed for development of mentoring circles. There is a 

demonstrated need for algorithmic clustering methods [23], [24], but previous methods focus on 

clustering only students into student-based groups or teams. With student only groups, all group 

members come from the same population. With mentoring groups, the groups consist of both 

mentors and mentees, which are two different and distinct populations. To the authors knowledge, 

there have been no studies that demonstrate the development of an algorithm or protocol for 

clustering students specifically for mentoring using k-means clustering. 

 

Types of algorithms known to be used in clustering 

The first step in developing the algorithm was selecting the clustering method to use. The two most 

likely candidates for clustering units in a large dimensional vector space include agglomerative 

hierarchical clustering and k-means clustering.  

 

Agglomerative hierarchical clustering is a technique that groups data points (students) into clusters 

(mentoring groups) by making a hierarchy of clusters based on their similarities. It continues to 

group data points by building tree-like structures, with similar data points grouped together. This 

is a natural fit for forming groups of similar students, since groups are formed by sequentially 

grouping students closest to each other in the defined vector space, and no initial group centroid is 

required. However, for mentoring circle creation we actually do want to start with a centroid 

(mentors) and hierarchical clustering cannot consider mentor pairs as part of the clustering 

algorithm. Therefore, it is not possible to use only hierarchical clustering for matching mentors 

and mentees. 

 



K-means clustering is a machine learning technique that groups data points (students) into a pre-

defined number (k) of clusters (mentoring circles) based on how close the data point is to the 

nearest centroid, or center of the cluster. The centroid is defined through different weights on 

specific mentor characteristics or categories. This allows for more adaptation, as a specific number 

of group centroids are required and defined, and then data points are moved into clusters with the 

closest group centroid.  

 

Previous work has joined these two approaches, using hierarchical clustering to create initial 

centroids that would then be used with k-means [16]. However, for creating mentor groups the 

mentor pair centroids are a natural choice for initial cluster centroids. The traditional weaknesses 

of k-means clustering, centroid number and centroid initialization, proved to be a strength for 

creating a pre-specified number of groups centered on mentor pairs. Both hierarchical clustering 

and k-means clustering were implemented initially in this study, but ultimately, k-means clustering 

was selected due to the compatibility of forming mentor groups around mentor pairs. 

 

Here, we seek to answer the following research questions: 

RQ1: Can we make an open access algorithm and protocol that can quickly and 

objectively cluster mentees into mentoring group circles? 

RQ2: How much faster is the algorithm method compared to the manual method? 

RQ3: What are the benefits and limitations of using a computer-based and automated 

method to assign mentees to mentoring circles?  

 

Methods 

 

Developing the Algorithm 

The algorithm was designed to replicate the manual group formation process as much as possible, 

while drastically reducing the time required. To do this, the same factors were used and weights 

were assigned to match administrator grouping preference. This code was developed based on 

previous cohort years of mentee and mentor data (2021-2023) with weights refined to create 

groups similar to what would have been created manually. In the final product, the factors and 

weights can be changed for each use.  

 

The input data is in the form of three csv files, one containing the groups as defined by manually 

paired mentors, another containing a subset of student data to be used in group formation, and a 

larger student file containing all student data. The student data was intentionally split into two files 

so that the group formation process would only run on a subset without any identifying or sensitive 

information, potentially allowing the group formation code to be prepared by an employee or 

assistant without access to personal data. 

 

The Python script takes these three csv files as input and returns one as output. The input files are 

a manually paired list of numbered mentors with data cleaned and coded for the algorithm, a 

numbered list of students with a subset of data cleaned and coded for the algorithm, and uncoded 

student data with a column of student numbers matching the previous file. The Python code itself 

is written using cell structure for ease of debugging in Spyder or Jupyter and is thoroughly 

commented on for use in the .py file. A workflow diagram visualizing the flow of data from the 

computer hard drive to computer memory via the algorithm is shown in Figure 1. 



 

The first two cells import packages required for code completion and contain definitions for the 

functions used internally. The third cell imports the csv files of coded mentor pairs and coded 

student data as pandas DataFrame objects with the data as strings. This cell requires the file paths 

of the first two input csv files, the sample code assumes these are in the same directory as the .py 

file. This cell also contains debugging code which can be uncommented to check that the csv files 

were read correctly. 

 

The fourth cell uses one-hot encoding to match the coded data in the DataFrame objects to the 

predefined categories. This returns DataFrame objects with the data as binary integers. This cell 

requires a list of the categories being evaluated, which must match the first row of each input csv 

file. After this step the size of the DataFrame will increase significantly. Each column is a category 

in the input file, and after one-hot encoding each column is an encoding. A single category will be 

mapped to multiple encodings. For example, in the sample data, the Gender category was encoded 

with the options of Man, Woman, and More. Thus, after one-hot encoding, the Gender category 

column will be expanded into three encoding columns: Gender_Man, Gender_Woman, and 

Gender_More. The University category column in the sample data set contains 62 unique entries 

and is thus expanded to 62 encoding columns. 

 

The fifth cell assigns weights to each category to define the relative importance of each category. 

This returns DataFrame objects with the data as numbers. The weights in this cell can be entered 

differently for mentors and mentees and can be customized for different encodings within a single 

category. A data category can be weighted equally across all encodings by using the 

assign_weights function defined in the code or different encodings within a single category can be 

weighted manually. See the .py file for examples of weighting all universities equally, across all 

62 columns, and for examples of treating the three gender encodings differently. Gender encodings 

Figure 1. A workflow diagram visualizing the flow of data from the computer hard drive to 

computer memory via the algorithm. The top bar indicates files stored on the computer hard 

drive, the bottom bar indicates data stored in computer memory, and the middle bar indicates 

sequential cells of the algorithm. The sequential cells are labelled with numbers in circles and 

actions performed by those cells are labelled with numbers in arrows. 



may be treated differently if the user is interested in having a random mix of genders in each 

mentoring circle, as opposed to clumping the same gender encoding into the same group. Higher 

weights increase the chances of students with the same encoding being placed in the same group 

and with a mentor with the same encoding. 

 

The sixth cell creates mentoring groups from the mentor pairs by calculating the average centroid 

of each mentor pairing. The seventh cell assigns students to mentor groups. The user will set the 

number of mentor pairs in the code. The code will assign students to mentor groups by first 

calculating the centroid of all encodings for each student and then finding the nearest mentor group 

centroid.  This cell also contains commented out debugging code, which when activated will print 

out the initial mentor groups and the size of each group. These initial groups are often of vastly 

different size and some groups may contain no mentees at all.  

 

The eighth cell balances the groups. For each group over the target size, the code identifies the 

student furthest from the group centroid and assigns them to the closest group that is not above the 

target size. This cell also contains code which prints out the balanced mentor groups and the size 

of each group. In testing, the groups are typically as balanced as numerically possible.  

 

The final ninth cell sorts the uncoded student data (input csv 3) into the balanced mentor groups 

and creates the output file. This output file contains header rows for each group and all data from 

the uncoded student data with the rows rearranged into the mentor groups. For an example see the 

sample output file. 

 

Sample Data 

For this publication, sample data was generated to demonstrate the algorithm and is available 

alongside the code on Github. Sample mentee data was generated from previous mentee data by 

de-identifying mentees and randomly sorting each column independently to create a random but 

representative set of mentees. The mentees were then manually paired to create the seeds for 

mentoring groups. Sample student data was generated using a combination of generative AI 

(ChatGPT) and previous student data. Random student names were generated in ChatGPT by 

asking for a list of 100 random names from all ethnicities in the US with likely ethnicity and gender 

for each name (ChatGPT only returned 98 entries). Gender was classified as Man or Woman with 

2% of the list being randomly classified with a gender of More to account for transgender and non-

binary students. Sample student ethnicity was classified as one of: African American/Black, East 

Asian/Asian American (e.g., Korean, Chinese), South Asian/Asian American (e.g., Indian, 

Pakistani), Southeast Asian/Asian American (e.g., Vietnamese, Thai), Hispanic/Latino/a/e, Middle 

Eastern/North African, Native American/American Indian/Alaska Native, Native Hawaiian 

Pacific Islander, White/European American, or Not Listed. Sample student university affiliation 

was randomly assigned from a list of the top 50 engineering schools in the US (as determined by 

ChatGPT) plus the following target schools added to the list: University of Texas, El Paso (UTEP); 

University of Puerto Rico, Mayaguez; Morgan State University; Tuskegee University; North 

Carolina A&T University; Howard University; Chicago State University; University of California, 

Irvine; University of Houston; University of Texas at Arlington; Florida A&M University; and 

Florida International University. All other sample student data was randomized from a 

representative data set. All names were randomly generated and no actual previous mentee or 

mentor names were used in these sample data sets. 



Results and Discussion 

 

RQ1: Can we make an open access algorithm and protocol that can quickly and objectively 

cluster mentees into mentoring group circles? 

Since we have demonstrated the methods of developing an algorithm to make mentoring circle 

groups, we next established a detailed protocol for its implementation. These results are a step-by-

step guide that is meant to be used as a protocol for implementation, whether the user has previous 

coding experience or not. 

 

This algorithm code, templates, sample data and a link to this paper is also shared on Github 

(github.com/tompkinn/mentoring-circle-group-formation). This is an excellent step for 

automation of developing mentoring circles, but it is always advised to check outputs to ensure 

that students are grouped accordingly. 

 

1. Download the code that has been deposited on Github. All required Python packages 

(NumPy, Pandas, CSV, etc…)  are available via PIP (Package Installer for Python), and 

the code is written in cell structure, which allows for debugging in Spyder or Jupyter. 

 

2. Compile and clean up all student information. In our study, student information that is 

used in the algorithm is compiled from the application itself and from a survey when 

students accept participation in the program. Therefore, it is important to identify your 

grouping categories and then compile all relevant student information before starting. This 

SampleStudentData.csv file will be used in step 4. Student information also will need to be 

cleaned up, and the following rules should be applied: 

a. Replace special characters in names and universities (accents, etc…) with English 

alphanumeric characters 
b. Recode graduation month and year (which can be variable in an application) to 

something more standard. For this study, we coded month and year to one of three 

options: “Senior” “Younger” or “Dec Senior”. Note that it is not advised to only 

put the year (or only numbers) as Python may not interpret this as a string. 
c. Recode Gender to “Man”, “Woman” or “More”. The “More” category is developed 

to combine any students who identify as transgender, non-binary, or non-

conforming into one encoding. 
d. Ensure that all universities are spelled out identically, and update any universities 

spelled out in shorthand. 
e. Ensure encodings are using the same values for both Mentors and Mentee 

spreadsheet. An example of this is if your Mentee csv file lists “Man”, “Woman” 

or “More” under the gender category, then your Mentor csv file cannot use “Male” 

or “Female” and therefore these encodings should match exactly. 
f. If your form has any open response forms or requests to “Please Specify” then make 

sure these are updated. A helpful tip is that ideally, you would have a drop-down 

box for responses and reduce as much text entry as possible (to ensure consistency 

when using the code). 
 

3. Manually sort and pair mentors. These mentor pairs will be used as the seeds to define 

the centroid of the mentee small groups clusters. For mentors, we do not necessarily want 

https://github.com/tompkinn/mentoring-circle-group-formation


mentors to be paired or clustered based on similarities, since we want to ensure that there 

is a balance of graduate majors, genders and backgrounds in each circle. For example, 

sometimes we will have a lack of mentors in a given graduate major, and we must 

strategically distribute mentors with similar majors across groups. This is in opposition to 

what this algorithm does, which is clustered by similarities. Therefore, mentors are 

manually paired for the SampleMentorData.csv file to ensure that there is a balance of these 

categories in mentoring circles. Best practices include:  

a. Pairing mentors based on categories such as gender, citizenship status and major. 

For an optimized mentoring experience, it is important to make sure that there is 

representation spread out across circles. Best practice dictates that there be one man 

and one woman in each circle, when possible, and that if you have mentors with 

different citizenship statuses, that there is at least one U.S. citizen in each mentoring 

pair. This can be helpful for discussions about federal grants and fellowships for 

U.S. Citizens and Permanent Residents only. 
b. Code mentors with their mentor groupings. Code and save them in the 

SampleMentorData.csv file with the naming of m1a and m1b for the first two 

mentors in mentoring circle one, m2a and m2b for the second mentoring circle, 

etc… 
 

4. Save student information in the appropriate file format. After student data is cleaned 

up, this information should be saved as usable csv files. Give mentees and mentors a 

student number to de-identify student names and protect privacy. Student data should be 

included for the following categories, as the code will weight these categories for matching. 

The code requires three input csv files and outputs mentoring circle groups as a csv file. 

The following headings are listed below for each input file. 

a. SampleStudentData.csv | Input 3) Student source data for the output file (Input 2 is 

a subset of Input 3) All of the columns from Input 2 and any additional columns in 

source data. This file has student’s first and last names and randomly assigned 

student numbers. 
b. SampleStudentDataSubset.csv | Input 2) Student data subset for grouping with the 

following category columns: ['Student Number', 'Graduation', 'University', 'Major', 

'Gender', 'Race', 'Firstgen', 'Interest', 'Degree', 'Research']. This file does not have 

student’s first and last names, and uses only the assigned student numbers. 
c. SampleMentorData.csv | Input 1) Mentor pairs with the following columns: 

['Mentor Number', 'University', 'Major', 'Gender', 'Race', 'Firstgen']. More 

information about mentor information can be found in Step 3. 
d. Save csv files and GroupFormation.py algorithm in the same folder. All file names 

should be identical to the files names above to run properly. This is case sensitive. 

 
5. Open the GroupFormation.py file in either Jupyter or Spyder. For our particular use, 

Spyder was opened using the Anaconda Navigator. After you open the GroupFormation.py 

file in Spyder, you will need to make sure that Python is running in the local directory (or 

specific folder). The easiest way to check this is to run the entire script in Spyder, by 

clicking the large “Run File” or play icon button at the top. If you do not receive a line 

error, then you have successfully run the code and created your groups in under 5 seconds 

with the preset category weights. 



6. If your input file names are not identical to those in step 4, then enter these into the 

GroupFormation.py file. While the .py file and csv files are not strictly required to be in 

the same directory or folder to run the code, the code is written with the assumption that 

they are. If your files are in different folders, then the full file path needs to be manually 

entered into the code. 

 

The first two inputs, mentee data and 

student data subset, are in cell 3 (Fig. 

2) and the full student data is in cell 9 

(Fig. 3). The code is defaulted to the 

file names shown in Step 4 above. 

The desired name for the output file 

should also be entered into cell 9, the 

default name is 

“SampleStudentGroups_” appended 

with time the script was run as “year-

month-day_hour-minute-second” 

ending with .csv as required (Fig. 2). 

 

7. Check for python package dependencies. Run the first cell of the code, or copy the first 

cell to run in a standalone python script, to check for the installation of required packages. 

Any missing packages can be installed via pip. 

 

 

8. Check data imports. Run the script up through the third 

cell with the debugging code uncommented. The 

terminal should display a sampling of the import data. An 

example of the import debugging code after successfully 

importing the sample data is shown here (Fig. 4). 

 

9. Encode data and apply weights. Run the fourth and 

fifth cells, no output is expected. 

a. In the fourth cell the column names for the 

mentor data (input 1) and student data subset 

(input 2) need to be manually entered as lists of 

strings. The sample code contains lists of the 

sample data column names which can be easily 

modified (Fig. 5). 
 

 

Figure 2. The .py code showing where to enter file 

names for Input 1 and Input 2 into Cell 3. 

 

Figure 3. The .py code showing where to enter file names for Input 3 and 

Output into Cell 9. 

Figure 4. The terminal 
output for Cell 3 of the .py 
code successfully importing 
the sample data. 



b. In the fifth cell the desired weighting for each category is applied. These weights 

must be entered manually (Fig. 6). 
 

 

 

10. Update the number of mentoring groups that you require in the code and then cluster 

students. Run the sixth and seventh cells with the debugging code in cell seven 

uncommented. The number of mentor pairs must be manually entered in cell seven as the 

number of clusters to be formed. The target size for each group is automatically calculated 

from the number of mentees and the number of groups. The terminal should display the 

initial cluster labels, initial mentor groups, and initial group sizes. The “Initial Cluster 

Labels” is a list of the group number initially assigned to each student (starting at 0, not 1). 

The “Initial Groups” is a list of each of each group, the first mentor of each pair for that 

group, and the students (identified by number) in that group. The “Group Sizes” is a list of 

the number of mentees within each group. An example of the debugging code after 

successfully clustering the sample data is shown here (Fig. 7). As can be seen the initial 

groups are very imbalanced (Fig. 8). 

 

 

Figure 5. The .py code showing where to enter category names into Cell 4. 

Figure 6. The .py code showing where to enter category weights into Cell 5. 



 

11. Balance groups. Run the eighth cell with the debugging code uncommented. The terminal 

should display why the balancing code stopped, how many moves were made, the balanced 

cluster labels, balanced mentor groups, and balanced group sizes. An example of the 

debugging code after successfully balancing the sample data is shown here (Fig. 9). The 

 

Figure 7. The .py code showing where to enter the number of mentor pairs into Cell 7. 

 

Figure 8. The terminal output for Cell 7 of the .py code after successfully creating 

initial groups from the sample data. The “Initial Cluster Labels” is a list of the group 

number initially assigned to each student (starting at 0, not 1). The “Initial Groups” is 

a list of each of each group, the first mentor of each pair for that group, and the students 

(identified by number) in that group. The “Group Sizes” is a list of the number of 

mentees within each group. Initial groups are very imbalanced. 



output indicates that 50 moves were made to better balance the number of students in each 

group and the code stopped because no more valid moves were available. As can be seen, 

the groups are as balanced as numerically as possible with a group size of either 7 or 8 

students. 

 

12. Create the output csv file. Run the ninth and final cell. The terminal should display 

“Student groups output csv file generated successfully!” The output file will be located in 

the same directory as the .py file with whatever name was entered in cell 9. 

 

 

RQ2: How much faster is the algorithm method compared to the manual method? 

To determine how much time this algorithm saves for developing mentoring circles, we timed how 

long it took for a person not familiar with the code to prepare and run the protocol. We then 

compared this with the time reported for manual group formation. The protocol required 

approximately 40 minutes, and involved two phases: document preparation (20 minutes) and 

updating code and running the algorithm (20 minutes). This time was measured for an individual 

not familiar with python starting with a new dataset that was not previously encoded for this 

algorithm. Given the manual process took a reported 4-8 hours, this demonstrates that using the 

algorithm and new protocol is 6-12 times faster than the manual process of matching mentors and 

mentees. 

 

 

 

Figure 9. The terminal output for Cell 8 of the .py code after successfully balancing 

groups formed from the sample data. The output indicates that 50 moves were made and 

the code stopped because no more valid moves were available. The “Balanced Cluster 

Labels” is a list of the group number assigned to each student (starting at 0, not 1). The 

“Balanced Groups” is a list of each of each group, the first mentor of each pair for that 

group, and the students (identified by number) in that group. The “Group Sizes” is a list 

of the number of mentees within each group. Groups are as balanced as numerically as 

possible. 



RQ3: What are the benefits and limitations of using a computer-based and automated method 

to assign mentees to mentoring circles?  

Benefits of algorithm or computer aided matching for mentoring circles: There are several 

significant advantages to using an algorithm to determine groups of student mentees with mentors 

(Table 1). First, algorithmic matching accelerated the group formation process, allowing for fast 

creation of groups and making the process easier and more streamlined compared to manual 

methods. Second, another benefit includes the reduction of human bias during the matching 

process. Using an algorithm can potentially lead to more fair grouping and increase the 

backgrounds of perspectives within each mentoring circle. Finally, the automated system 

demonstrates the ability to scale this process and continue to grow the mentoring program in the 

future, suggesting it is helpful in automating administrative tasks to handle increases in mentor-

mentee relationships. Not only does this algorithm match students, but the export function 

automatically compiles and organizes all student information after circle creation, eliminating the 

need for manual movement of people on spreadsheets. 

 

Some more nuanced benefits also 

include the benefit of enhanced 

efficient matching, as algorithms 

can analyze more data to identify 

patterns and correlations between 

mentors and within mentees, 

which can lead to more accurate 

and effective matching. With 98 

students and 13 groups, there 

could be over 900 

novemvigintillion (900×1090) 

potential ways to combine 

mentees for mentoring circles. It 

thereby enhances the potential for 

amplifying intersectional 

relationships in mentoring 

circles, and not grouping students 

based on one specific characteristic. The algorithm can also be tweaked to ensure consistent 

groupings by number of mentees, allowing for an even distribution of mentees across mentoring 

circles. An algorithm can thus increase the ability to fine-tune the creation of circles by setting 

different category weights, allowing for administrators to develop different circles depending on 

different contexts.  

 

Overall, the implementation of an algorithm-aided matching for mentoring circles has resulted in 

improvements in this process, including efficiency, reduction in bias, matching accuracy and 

administrative ease. This process has now evolved from a multi-hour matching process to 

something that can be completed in less than 40 minutes. All these improvements enhance the 

effectiveness of the mentoring program. 

 

Limitations of algorithm or computer aided matching for mentoring circles: While algorithm-

aided matching for mentoring circles offer many benefits as previously described, there are also 

Table 1. Benefits and Limitations to computer-aided 

matching for mentoring circles 

Benefits Limitations 

● Fast creation of 

groups 

● Easy 

● Streamlined 

● Reduce Bias 

● Efficient Matching 

● Automated 

● Scalable 

● Personalized 

weights 

● Exporting functions 

● Lack of human touch 

● Can amplify existing 

bias 

● Privacy concerns 

● Lack of transparency 

● Not helpful for 

pairing mentors 

● Can only create 

homogeneous groups, 

no option to add 

heterogeneity 



limitations that should be considered (Table 1). One drawback is the lack of human touch in the 

process. Algorithms might miss nuances in the mentee and mentor application statements and 

essays that a human administrator might capture. These subtle aspects of interests and personality 

may be overlooked by automated systems. This limitation is closely linked to the lack of 

transparency that exists in algorithmic decision-making, which can make it difficult for 

administrators to understand how groups are formed without troubleshooting. 

 

Another concern is the potential for amplifying existing biases. If the algorithm is not carefully 

designed, then it could reinforce stereotypes or limit diversity [25]. This issue is particularly 

relevant when considering the balance between creating homogeneous groups (amplifying 

similarities) and heterogeneous groups (dispersing similarities). Groups with too many similarities 

might not learn and grow from one another, limiting the number of perspectives that are helpful 

for effective mentoring. 

 

While computer-aided matching can be incredibly helpful, it is possible that some manual 

rearrangement will still be necessary to optimize group characteristics. This manual process at the 

end would then reduce the efficiency gained by the automated process. Further, the current 

algorithm is not helpful for pairing up mentors, as the goal is to have differences rather than 

similarities between mentors, especially in smaller programs with 24-30 mentors where having 

mentors from different backgrounds and majors is important. Existing clustering algorithms create 

clusters based on similarities and thus aren’t optimized for creating heterogeneity. 

 

Finally, privacy concerns exist when using algorithms for matching, as they require collecting and 

analyzing personal information. Measures can be taken to protect privacy, such as excluding names 

and coding students prior to input, but privacy is still an important concern. Overall, while 

algorithm-aided matching offers significant advantages, limitations exist and human oversight is 

important. Therefore, the current hybrid approach – combining the efficiency of the algorithm with 

human oversight – is the preferred method of creating mentoring circle groups.  

 

Conclusions 

 

Here, we have shown that our algorithm can successfully cluster students into mentoring circles, 

and have described the key benefits and limitations of this system. The development of this 

algorithm is significant, as it develops one of the first resources to center the formation of these 

mentee groups on mentor characteristics through the use of k-means clustering. With 98 students 

and 13 groups, there could be over 900 novemvigintillion (900×1090) potential ways to combine 

mentees in mentoring circles, and we have developed a fast and objective method of making these 

mentoring groups. The protocol that we developed takes approximately 40 minutes, and it reduces 

the administrative time required for mentoring circle group formation, making the process six to 

twelve times faster. The algorithm and sample data sets are available to download and use for free 

on Github (github.com/tompkinn/mentoring-circle-group-formation).  

 

While we have used this algorithm for the development of mentoring circles for the GradTrack 

Scholars Program, this code could be used and adapted for many other mentoring circle 

applications – such as mentoring circles for peer-mentoring of first year graduate students, 

graduate students and postdocs interested in postdoctoral scholar positions and community [3], 

https://github.com/tompkinn/mentoring-circle-group-formation


future faculty careers [4], as well as any other mentoring circle applications. The code's 

categorization system can be directly adjusted to align with desired grouping criteria, enhancing 

its flexibility and analytical precision. 

 

Future work should compare the composition of the groups formed by this method with the groups 

formed manually. However, if this comparison were to be completed then one would also want to 

determine the effectiveness of each mode of grouping, which would likely require parallel study 

and programming. In this case, it would be important to implement peer evaluations, similar to the 

CATME platform for team evaluations [20] - [22], or perform pre- and post- program surveys to 

understand if specific group formations altered preparation for graduate school. 

 

In developing our algorithm, we encountered some challenges, particularly regarding the 

clustering approach. We initially considered a two-part process for the algorithm: automating first 

the clustering graduate student mentors, followed by clustering undergraduate student mentees. 

However, this method proved ineffective, as clustering mentors failed to achieve the desired 

distribution and representation of mentors across circles. Recognizing these limitations, we 

ultimately opted for a hybrid approach: manually clustering mentors to ensure representation and 

the presence of differences between the mentors, followed by use of the k-means clustering 

algorithm to directly cluster mentees based on their similarities with each other and with the 

mentors. This revised method allowed us to better address the specific grouping criteria we sought 

to implement, overcoming the initial obstacles we faced. 

 

Overall, development of this algorithm has supplied administrators with a more efficient process 

for creating mentoring groups with a reduction in human time and subjectivity, which will support 

the continued growth of the GradTrack Scholars program, and other mentoring circle programs. 
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